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Abstract
We present a new deep neural network architecture, motivated by sparse random matrix the-
ory that uses a low-complexity embedding through a sparse matrix instead of a conventional
stacked autoencoder. We regard autoencoders as an information-preserving dimensionality
reduction method, similar to random projections in compressed sensing. Thus, exploiting
recent theory on sparse matrices for dimensionality reduction, we demonstrate experimen-
tally that classification performance does not deteriorate if the autoencoder is replaced with
a computationally-efficient sparse dimensionality reduction matrix.
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Abstract.  
We present a new deep neural network architecture, motivated by sparse ran-
dom matrix theory that uses a low-complexity embedding through a sparse ma-
trix instead of a conventional stacked autoencoder. We regard autoencoders as 
an information-preserving dimensionality reduction method, similar to random 
projections in compressed sensing. Thus, exploiting recent theory on sparse ma-
trices for dimensionality reduction, we demonstrate experimentally that classifi-
cation performance does not deteriorate if the autoencoder is replaced with a 
computationally-efficient sparse dimensionality reduction matrix. 
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1 Introduction 

Image and signal classification is one of the most fundamental problems in com-
puter vision and pattern recognition. Recently, deep learning has become a popular 
solution in this area owing to its superior performance [1, 2]. One of the most com-
monly used deep learning architectures is the feedforward deep neural network 
(DNN) [2]. Typical DNNs include a stacked autoencoder as an initial component in 
their structure. A stacked autoencoder is a multilayer network, trained to reduce data 
dimensionality while preserving information, thus providing an effective feature ex-
traction and signal representation mechanism for further processing [3].  

In a similar vein, compressed sensing (CS) has attracted considerable attention for 
suggesting that it is possible to overcome the traditional limits of sampling theory. 
Specifically, Candes et al. [4, 5] and Donoho [6] demonstrated that a signal having a 
sparse representation can be recovered exactly from a small set of linear, nonadaptive 
measurements. The CS measurement mechanism is related to Johnson-Lindenstrauss 
(JL) embeddings [7,8], and has been extended to other signal sets, such as manifolds 
[9]. The results suggest that it may be possible to sense structured signals by taking 



 

 

far fewer measurements. Furthermore, Berinde and Indyk [10] demonstrated infor-
mation embedding and algorithms for sparse recovery, based on sparse random matri-
ces. Such matrices are attractive because of their low computational complexity. 

In the remainder of this paper, we demonstrate that efficient randomized dimen-
sionality reduction, using a sparse measurement matrix, can be used to replace the 
autoencoder stage of a DNN. Thanks to its embedding properties, this dimensionality 
reduction still preserves the information necessary for classification. The sparsity of 
the matrix significantly reduces the classification complexity. This paper is organized 
as follows. Section 2 discusses the motivation and develops the proposed sparse con-
struction using recent theoretical work. Section 3 presents an experimental perfor-
mance comparison of the proposed sparse construction to conventional networks. 
Section 4 concludes the document.  

2 Deep neural network with sparse construction 

 
Fig. 1. Multilayer neural network 

To establish notation, we first define a deep neural network structure. We use the 
N-dimensional vector 𝐱 = 𝑥!, 𝑥!,⋯ , 𝑥! ! ∈ ℝ! to denote the input signal. We as-
sume a multilayer structure, with 𝑙 denoting the layer’s index as 𝑙 = 1,2,3,⋯. The 
vector 𝐮 ! = 𝑢!

! , 𝑢!
! ,⋯ , 𝑢!

! !
∈ ℝ!  denotes the weighted sum for the 𝑙-th layer, 

computed as𝑢!
! = 𝑤!"

! 𝑥!
! + 𝑏!

!!
!!! , where 𝐖 ! =

𝑤!!
! ⋯ 𝑤!!

!

⋮ ⋱ ⋮
𝑤!!

! ⋯ 𝑤!"
!

 

is the weight 

matrix and 𝐛 ! = 𝑏!
! , 𝑏!

! ,⋯ , 𝑏!
! !

∈ ℝ!  is the bias vector. Given 𝑢!
! , the activa-

tion function 𝑓 produces the input vector 𝑥!
!!!  for the next (i.e., 𝑙 + 1-th) layer, using 

the element-wise computation 𝑥!
!!! = 𝑓 𝑢!

! . To simplify discussion, in the re-
mainder of this paper we assume 𝑏!

! = 0  and 𝑢 = 𝑢. 
 



 

 

2.1 Similarity of  autoencoder and compressed sensing 

	 A stacked autoencoder is pre-trained using unsupervised learning, separately from 
the DNN used for classification. The goal is to convert high-dimensional input data to 
low dimensional features that capture the salient information of the input and can be 
used for classification. Each layer is typically trained by minimizing the discrepancy 
between the input data and its reconstruction using the autoencoder. This training is 
applied layer by layer from bottom to top using gradient descent and backpropagation. 
However, this works well only if the initial weights are close to a reasonable solution.  

In this section, motivated by sparse matrix theory, we describe an effective method 
of initializing the weights to construct deep neural networks. Instead of a dense auto-
encoder, we learn and use low-dimensional sparse codes to reduce data dimensionali-
ty. The implicit regularization also removes the requirement to use dropout during 
learning. 

Given a network layer, 𝐱 !!! = 𝐖 ! 𝐱 ! , the recovered vector 𝐱 !  is generated 
from 𝐱 !  using a weight matrix 𝐖 !  by computing 𝐱 ! = 𝐖 ! 𝐱 !!! . Training esti-
mates the weight matrices 𝐖 ! ≈ 𝐖 ! and 𝐱 !!!  by solving the optimization 

 min 𝐱 ! 𝐱 ! − 𝐱 !
!
!
= min 𝐱 ! 𝐱 !!! 𝐱 ! − 𝐱 !

!
!
. 

We use  𝐽
!  to denote the length of  𝐱

! . In general,  𝐽
!!! ≤ 𝐽 ! , so that the auto-

encoder reduces the dimensionality of the data, similar to CS measurements.  That is, 
given a measured signal 𝐱 !!! , the autoencoder problem can be regarded as a prob-
lem to recover the original signal 𝐱 !  using a measurement matrix 𝐖 ! . 

An accurate reconstruction means that the exact signal is reconstructed. The prob-
lem is how to design the measurement matrix 𝐖 ! . To solve this problem, we first 
review the CS literature for desirable properties of  𝐖 ! .  

 

	 	 	 	 	 	 	  
Fig. 2.  Structure of autoencoder 

Compressed sensing can be regarded as a generalization of Nyquist-Shannon sam-
pling for structured signals - typically sparse signals that have very few non-zero en-
tries.  In the Nyquist-Shannon sampling theorem, signals, images, videos, and other 



 

 

data can be exactly represented with a set of uniformly spaced samples taken at the 
Nyquist rate, i.e., twice the highest frequency present in the signal of interest. Rather 
than sampling at specific points in times, CS, instead, uses a few generalized linear 
measurements of the signal, exploiting the fact that most signals of interest exhibit 
structure such as sparsity that can be used in the reconstruction.  

For example, the majority of natural images are characterized by large smooth or 
textured regions and relatively few sharp edges. In the wavelet transform of a typical 
natural image, most coefficients are very small [11]. Hence, we can obtain a good 
approximation of the signal by setting the small coefficients to zero to obtain a K-
sparse representation. We say that a vector 𝐱 is K-sparse if it contains at most K non-
zero entries. 

Recognition for a neural network can be considered as a classification problem, 
under a signal model that exhibits some structure such as sparsity. In this sense, the 
autoencoder has the same goal as compressive measurements: reduce the dimension-
ality of the original signal while preserving the appropriate information. 

2.2 Sparse recovery using sparse random matrices 

In the subsequent discussion, we consider a single layer and sparse signal models. 
We first review sparse recovery guarantees that ensure the preservation of infor-
mation. To simplify the notation, we replace 𝐱 !!! = 𝐖 ! 𝐱 !

 with 𝐲 = 𝐖𝐱. We 
assume deterministic signals, in which 𝐱 ∈ ℝ𝑵 is a fixed but unknown vector with 
exactly K non-zero entries. We use the set 𝑆 ≔ supp 𝐱  to denote the support of  𝐱, 
i.e, the location of non-zeros. Note that there are 𝑀 = 𝑁

𝐾  possible support sets, cor-

responding to the 𝑀 possible K-dimensional subspaces in which 𝐱 may lie.  We are 
given a vector of m  noisy observations  𝐲 ∈ ℝ𝒎, of the form 

 𝐲 = 𝐖𝐱 + 𝐕, 

where 𝐖 ∈ ℝ!×! is the measurement matrix, and 𝐕~𝑁 0,𝜎!𝐈!×!  is additive 
Gaussian noise. Throughout this paper, we assume, without loss of generality, that 
𝜎! = 1, since any scaling of σ can be accounted for in the scaling of 𝐱. 

We consider exact recovery of the support set 𝑆, which corresponds to model se-
lection. More precisely, we measure the error between the estimate 𝐱 and the true 
signal 𝐱 using the 0,1 -valued indicator loss function of the support: 

 𝜌(𝐱, 𝐱):=𝕀 𝑥! ≠ 0,∀𝑖 ∈ 𝑆 ∩ 𝑥! = 0,∀𝑗 ∉ 𝑆 . 

A decoder is a mapping g from observations y to a support estimate 𝑆 = g 𝐲 . We 
are interested in both sparse and dense encoding matrices, denoting by 𝛾 the sparsifi-
cation fraction of the matrix, i.e., the fraction of non-zero elements. 

A general performance lower bound for arbitrary decoders is developed in [11]. 
Specifically, let ℙ g 𝐲 ≠ 𝑆|𝑆  be the conditional probability of error given that the 
true support is 𝑆. Assuming that 𝐱 has support 𝑆 chosen uniformly at random over the 
𝑀 possible subsets of size 𝐾, the average probability of error is given by  



 

 

 𝑝!"" =
!
!
!

ℙ g 𝐲 ≠ 𝑆|𝑆! . 

We say that sparsity recovery is asymptotically reliable if 𝑝!"" → 0 as 𝑚 → ∞. 
Since our goal is exact support recovery from noisy measurements, the minimum 
value of 𝐱 on its support is important,  

 𝑥!"# ≔ min!∈! 𝑥! . 

Thus, given 𝑥!"#, we can define a signal class  

 𝐶 𝑥!"# ≔ 𝐱 ∈ ℝ!| 𝑥! ≥ 𝑥!"# ∀𝑖 ∈ 𝑆 . 

For this class, [11] derives the necessary conditions on 
ters 𝑚,𝑁,𝐾, 𝑥!"#, 𝛾 , such that a decoder with asymptotically reliable recovery can 
exist, regardless of its computational complexity. The lower bounds describe the re-
quired number of measurements m, in general settings, where both the signal sparsity 
𝐾, and the measurement sparsity 𝛾 are allowed to scale with the signal dimension 𝑁. 
The analysis in [11] applies to random ensembles of measurement matrices 
𝐖 ∈ ℝ!×!, where each entry 𝑤!" is drawn i.i.d. from some underlying distribution. 
The most commonly used ensemble is the standard Gaussian distribution, in which 
𝑤!"~𝑁 0,1 . This choice generates a dense measurement matrix 𝐖, with mN non-
zero entries. Theorem 1 in [11] applies to more general ensembles satisfying the mo-
ment conditions 𝔼 𝑥!" = 0 and var 𝑥!" = 1, allowing for a variety of non-Gaussian 
distributions (e.g., uniform, Bernoulli). Further, Theorem 2 in [11] is derived for 𝛾-
sparsified matrices 𝐖, in which each entry 𝑤!" 

is i.i.d., drawn according to  

 𝑤!" =
𝑁 0, !

!
      w. p.    𝛾

           0              w. p.  1 − 𝛾
 .     (1) 

Note that when 𝛾 = 1, 𝐖 is the standard Gaussian ensemble. We refer to the sparsi-
fication parameters 0 ≤ 𝛾 ≤ 1 as the measurement sparsity. The analysis allows this 
parameter to vary as a function of 𝑚,𝑁,𝐾 . 
 

2.3 Bounds on dense ensembles and sparse ensembles 

Theorem 1 in [11] provides a necessary condition for asymptotically reliable re-
covery on measurement matrices with dense ensembles. 
Theorem 1 [11] (general ensembles). Let the measurement matrix  𝐖 ∈ ℝ!×! be drawn with 
i.i.d. elements from any distribution with zero-mean and variance one. Then a necessary condi-
tion for asymptotically reliable recovery over the signal class 𝐶 𝑥!"#  is  

 𝑚 > max 𝑓! 𝑁,𝐾, 𝑥!"# , 𝑓! 𝑁,𝐾, 𝑥!"# , 𝑘 − 1 , 

  where  



 

 

 𝑓! 𝑁,𝐾, 𝑥!"# :=
!"# !

! !!
!
! !"# !!!!!"#

! !!!!
 

 𝑓! 𝑁,𝐾, 𝑥!"# :=
!"# !!!!! !!

!
! !"# !!!!"#

! !! !
!!!!!

. 

Furthermore, Theorem 2 in [11] provides a necessary condition for asymptotically 
reliable recovery on measurement matrices with sparse ensembles. 
 
Theorem 2 and Corollary 2 [11] (sparse ensembles). Let the measurement matrix  𝐖 ∈ ℝ!×! 
be drawn with i.i.d. elements from the 𝛾-sparsified Gaussian ensemble (1). A necessary condi-
tion for asymptotically reliable recovery over the signal class 𝐶 𝑥!"#  is  
 𝑚 > max g! 𝑁,𝐾, 𝑥!"#,𝛾 , g! 𝑁,𝐾, 𝑥!"#,𝛾 , 𝑘 − 1 , 

where in general  

 g! 𝑁,𝐾, 𝑥!"#, 𝛾 ≥
!"# !

! !!
!
! !"# !!!!!"#

!  

 g! 𝑁,𝐾, 𝑥!"#, 𝛾 ≥ !"# !!!!! !!
!
! !"# !!!!"#

! . 

In general, 𝑁 ≫ 𝐾, hence 1 ≫ !
!

 , 1 ≫ !
!!!!!

. Under this assumption, from Theo-
rem 1 and 2, and Corollary 2, we can derive the following necessary condition:  

 
𝑚 > max 𝑓! 𝑁,𝐾, 𝑥!"# , 𝑓! 𝑁,𝐾, 𝑥!"# , 𝑘 − 1  

                       ≈ max g! 𝑁,𝐾, 𝑥!"#, 𝛾 , g! 𝑁,𝐾, 𝑥!"#,𝛾 , 𝑘 − 1 , 

where in general  

 g! 𝑁,𝐾, 𝑥!"#, 𝛾 ≥
!"# !

! !!
!
! !"# !!!!!"#

!  

 g! 𝑁,𝐾, 𝑥!"#, 𝛾 ≥ !"# !!!!! !!
!
! !"# !!!!"#

! . 

 That is, the number of observations necessary is almost independent of whether we 
use dense or sparse ensembles. Thus, even if we use sparse matrices as measurement 
matrices, in principle, we can recover the original signals. We exploit this to provide 
an effective method of initializing the weights that uses sparse random matrices to 
construct deep neural networks that use low-dimensional codes as a tool to reduce the 
dimensionality of the data, instead of using an autoencoder. 

3 Performance evaluation and comparison 

We performed experiments that compared the performance of sparse matrices with 
those of dense, Gaussian matrices. In our experiments we generated 𝛾-sparsified ma-



 

 

trices 𝐖 of m rows and N columns, in which each entry 𝑤!" 
was i.i.d. drawn accord-

ing to (1). Note that when 𝛾 = 1, 𝐖 is exactly the standard Gaussian ensemble. 𝑑 is 
the average non-zero entries in each column for 𝐖, so that 𝛾 = !

!
. To evaluate our 

experiment we used the MNIST handwritten digit dataset containing ten classes (0-9) 
consisting of 50,000 training, 10,000 validation and 10,000 test images [13]. The 
digits were size-normalized and centered in 28 x 28 grayscale images. 

3.1 Unsupervised feature learning results 

To compare the quality of the features learnt by sparse matrices with dense matri-
ces, we first extracted features using the unsupervised learning algorithm and com-
pared the reconstruction mean square error (MSE) !

!
𝐱 − 𝐱 !

!. The network had 784 
input units (28 x 28 grayscale image, normalized to values ranging from [0,1]). These 
were connected to 500 hidden units, so that 𝑁 = 784,𝑚 = 500. For the unsupervised 
training, we set the momentum to 𝜏! = 0.5, the learning rate to 𝜂! = 0.1, and trained 
for 10,000 epochs. 

The MSE results for dense and different sparse matrices are compared in Table 1. 
We can see that the final MSE of the unsupervised learning algorithm with dense and 
sparse matrices is almost the same, approximately 5.0e-4. 

Table 1. MSE of unsupervised learning algorithm with dense and sparse matrices 
 

Sparsity 𝛾 = 1  𝛾 = 0.33 𝛾 = 0.16 𝛾 = 0.081 𝛾 = 0.04 
784=d  256=d  128=d  64=d  32=d  

MSE 5.29e-4 5.12e-4 4.95e-4 5.19e-4 5.88e-4 

3.2 Supervised learning results 

 In supervised learning, it is a common practice to use the weights generated by the 
unsupervised learning method to initialize the early layers of a multilayer network. A 
discriminative algorithm is then used to adjust the weights of the last hidden layer and 
also to fine tune the weights in the previous layers. 

The accuracy results for dense and different sparse matrices are compared in Table 
2. As is evident, the performance of supervised learning with dense and sparse matri-
ces is almost the same, with average accuracy approximately 98% for the ten digit 
classes (0-9).   

Table 2.  Average accuracy of unsupervised learning algorithm with dense and sparse matrices 
 

Sparsity 𝛾 = 1 𝛾 = 0.33 𝛾 = 0.16 𝛾 = 0.081 𝛾 = 0.04 
784=d  256=d  128=d  64=d  32=d  

Average  accuracy 98.38% 98.34% 98.13% 98.17% 97.9% 



 

 

4 Conclusion  

 In this work, we proposed a sparse coding method with sparse measurement ma-
trices for deep neural networks. We described an effective method of initializing the 
weights that permits sparse random matrices to construct deep neural networks to 
learn low-dimensional codes as a tool to reduce the dimensionality of data for autoen-
coder. The resultant neural network was constructed with extremely sparse edge con-
necting units for each layer. This proposal can provide benefits such as the reduction 
of training and inference time, reduction of the number of free parameters, and the 
enhancement of the generalization capability. 
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