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Abstract
We present an object detection and tracking framework integrated into a simultaneous lo-
calization and mapping (SLAM) system using an RGB-D camera. We propose a compact
representation of objects by grouping features hierarchically. Similar to a keyframe being a
collection of features, an object is represented as a set of segments, where a segment is a
subset of features in a frame. Just like keyframes, segments are registered with each other in
a map, which we call an object map. We use the same SLAM procedure in both offline object
scanning and online object detection modes. In the offline scanning mode, we scan an object
using an RGB-D camera to generate an object map. In the online detection mode, a set of
object maps for different objects is given, and the objects are detected via appearance-based
matching between the segments in the current frame and in the object maps. In the case of
a match, the object is localized with respect to the map being reconstructed by the SLAM
system by a RANSAC registration. In the subsequent frames, the tracking is done by pre-
dicting the poses of the objects. We also incorporate constraints obtained from the objects
into bundle adjustment to improve the object pose estimation accuracy as well as the SLAM
reconstruction accuracy. We demonstrate our technique in an object picking scenario using a
robot arm. Experimental results show that the system is able to detect and pick up objects
successfully from different viewpoints and distances.
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Object Detection and Tracking in RGB-D SLAM
via Hierarchical Feature Grouping

Esra Ataer-Cansizoglu and Yuichi Taguchi

Abstract— We present an object detection and tracking
framework integrated into a simultaneous localization and
mapping (SLAM) system using an RGB-D camera. We propose
a compact representation of objects by grouping features
hierarchically. Similar to a keyframe being a collection of
features, an object is represented as a set of segments, where a
segment is a subset of features in a frame. Just like keyframes,
segments are registered with each other in a map, which we call
an object map. We use the same SLAM procedure in both offline
object scanning and online object detection modes. In the offline
scanning mode, we scan an object using an RGB-D camera to
generate an object map. In the online detection mode, a set of
object maps for different objects is given, and the objects are
detected via appearance-based matching between the segments
in the current frame and in the object maps. In the case of
a match, the object is localized with respect to the map being
reconstructed by the SLAM system by a RANSAC registration.
In the subsequent frames, the tracking is done by predicting the
poses of the objects. We also incorporate constraints obtained
from the objects into bundle adjustment to improve the object
pose estimation accuracy as well as the SLAM reconstruction
accuracy. We demonstrate our technique in an object picking
scenario using a robot arm. Experimental results show that the
system is able to detect and pick up objects successfully from
different viewpoints and distances.

I. INTRODUCTION

3D geometric and semantic representation is vital for
autonomous systems that localize themselves and interact
with the surrounding environment. It is hence important
to detect and localize high level entities in a 3D map. In
this paper, we present an object detection and localization
framework integrated into a feature-based RGB-D SLAM
system.

Our key contribution is representing objects based on
hierarchical feature grouping, which is illustrated in Figure 1.
Just like a keyframe being a collection of features, a subset
of features in a frame defines a segment. Keyframe-based
SLAM systems reconstruct a map containing keyframes
registered with each other, which we call a SLAM map.
Similarly, we group a set of segments registered with each
other to generate a map corresponding to an object, which
we call an object map. More specifically, in the first level
of hierarchy features are grouped into segments. At the
second level, segment are grouped into object maps. Since
an instance of an object in a frame might contain multiple
segments, the object map can contain multiple segments
from a single frame as well. The object map provides a
compact representation of the object observed under different
viewpoint and illumination conditions.
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Fig. 1. The key idea of hierarchical feature grouping. A SLAM map
typically stores a set of registered keyframes, each containing a set of
features. We introduce another hierarchy based on segments to represent
an object. A segment contains a subset of features in a keyframe, and an
object map includes a set of registered segments. The object map is used
for the object detection and pose estimation. In our system the segments
are generated by using a depth-based segmentation algorithm and a sliding
window approach.

Our system exploits the same SLAM procedure to handle
the following two modes: the offline object scanning mode
and the online object detection mode. Both of the modes
are essential to achieve an object detection and tracking
algorithm that can incorporate a given object instantly into
the system. The goal of the offline object scanning mode is
to generate an object map by collecting the appearance and
geometry information of the object. We perform this process
with user interaction: our system shows candidate segments
that might correspond to the object to the user, and then the
user selects the segments corresponding to the object in each
keyframe that is registered with the SLAM system. In the
online object detection mode, the system takes a set of object
maps corresponding to different objects as the input, and then
localizes these object maps with respect to the SLAM map
that is generated in the online SLAM session.

Our system first detects and localizes objects in an input
frame. We generate several segments in each frame using
a depth-based segmentation algorithm and a simple sliding
window approach. Each segment is matched to the segments
in the object maps using VLAD [1] descriptors computed
using the feature descriptors assigned to the segment. In the
case of a match, a RANSAC registration is performed to
localize the segment in the current frame with the object
map. Segments with successful RANSAC registration initiate
objects, which are stored in the SLAM map as object
landmark candidates. The pose of each object landmark
candidate is then refined by a prediction-based registration,



and if it is successful, the candidate becomes an object
landmark. The list of object landmarks are then merged by
looking at the refined poses, i.e., if two object landmarks
correspond to the same object map and have similar poses,
then they are merged. In the subsequent frames, we use the
same prediction-based registration and merging processes to
track the object landmarks. Consequently, an object landmark
in the SLAM map serves as the representation of the object in
the real world. Note that this procedure applies to both offline
object scanning and online object detection modes: in the
offline mode the object map is incrementally reconstructed
using the segments specified in the previous keyframes, while
in the online mode the object map is fixed.

We demonstrate the use of our method in an object picking
scenario with a robot arm. We report analysis about the
accuracy of object tracking with respect to the distance to
the object. The results show that our system is capable of
detecting and localizing objects from different viewpoints
and distances.

A. Related Work

Object detection and pose estimation using 3D or RGB-
D data have been widely studied topics in the robotics
and computer vision communities, in particular recently
thanks to the emergence of low-cost 3D sensors such as
Kinect. Similar to 2D feature descriptors [2], [3] used for
2D image based object detection, 3D feature descriptors that
represent the local geometry have been defined for keypoints
in 3D point clouds [4], [5], [6]. Simpler 3D features such
as pair features [7] have been also used in voting-based
frameworks [8], [9]. Those 3D feature-based approaches
work well for objects with rich structure variations, but are
not suitable for detecting objects with simple 3D shapes,
such as boxes.

To handle simple as well as complex 3D shapes, RGB-D
data have been exploited. Hinterstoisser et al. [10] defined
multimodal templates for the detection of objects, while
Drost and Ilic [11] defined multimodal pair features for the
detection and pose estimation. Those approaches compute
object poses in a single frame. On the other hand, our
approach estimates them in a SLAM system using multiple
frames and bundle adjustment, leading to better pose estima-
tion accuracy.

Several systems have been proposed that incorporate ob-
ject detection and pose estimation into a SLAM framework,
similar to ours. Salas-Moreno et al. [12] detected objects
from depth maps using [8] and incorporated them as land-
marks in the map for bundle adjustment. Their method uses
the 3D data only and thus requires rich surface variations
for objects as described above. Fioraio et al. [13] proposed a
semantic bundle adjustment approach for performing SLAM
and object detection simultaneously. Based on a 3D model of
the object, they generate a validation graph that contains the
object-to-frame and frame-to-frame correspondences among
2D and 3D point features. Their method lacks a suit-
able framework for object representation, resulting in many
outliers after correspondence search. Hence, the detection

performance depends on bundle adjustment, which might
become slower as the map grows.

II. OBJECT DETECTION AND TRACKING VIA
HIERARCHICAL FEATURE GROUPING

We build our object detection and tracking framework on
the point-plane SLAM system [14], [15]. The original point-
plane SLAM system [14] localizes each frame with respect
to a growing map using both 3D points and 3D planes as
primitives. Its extended version [15] further uses 2D points
as primitives and computes 2D-to-2D, 2D-to-3D, and 3D-to-
3D correspondences to exploit information in regions where
the depth is not available (e.g., too close or far from the
sensor). In this paper, our segments include 3D points and
3D planes (but not 2D points) as features similar to [14],
while the SLAM procedure exploits all the 2D points, 3D
points, and 3D planes as features to handle the case where
the camera is close to the object and the depth information
is not available. We use SIFT [2] detector and descriptor for
2D and 3D point measurements.

Figure 2 shows an overview of our system. Our sys-
tem performs initial object detection in an input frame
by the following four major steps: (i) segment generation,
(ii) appearance similarity search and RANSAC registration
between matching segments, (iii) object pose refinement via
prediction-based object registration, and (iv) object merging.
Once the object is detected and initiated as the object
landmark in the SLAM map, we track the object using a
prediction-based registration. Detected object landmarks are
also used as constraints in our bundle adjustment procedure,
which aims to globally optimize landmarks, keyframe poses,
and object poses. Each of the steps is detailed in the
following subsections.

A. Object Detection and Localization in the Frame

The goal of this step is to generate hypotheses about the
objects existing in the frame and their poses. Hence, this step
outputs a set of objects and poses, which will be refined in
the subsequent stages.

For the initial detection of objects, first we need to
know which subset of features refers to a particular object.
Thus, we first generate a group of feature subsets, where
each subset is considered as a segment. Each segment is
then verified by appearance similarity search and RANSAC
registration in the following steps. In other words, a segment
is first matched against the set of segments from the object
maps in terms of appearance. Second, matching segments
are geometrically verified by RANSAC registration.

1) Segment Generation: We generate several segments
using both a depth-based segmentation and a simple sliding
window approach.

Depth-Based Segmentation: Our SLAM system extracts
planes as features, which provide good segmentation in
typical indoor scenes where planes are dominant structures.
Thus we consider each of the extracted planes to generate a
segment. Next, for the remaining non-planar regions of the
frame, we apply a depth-based segmentation algorithm. This



1 Objects & Poses

v
Object Detection & Localization in the Frame Already in
Get Next Appearance SLAM Map
Input Frame —» Gsegmetr'“ > Similarity _>RRA.NtSAt.C +
| eneration egistration
(FeeD) Search 9 Detected

A

in the Frame

Bundle

Adjustment
_ _ _ | Object Sl_i}M
Map(s) tmmmmmmmmmsmoood Map
: 1 L
______ PR —| 1
v 1

Add Keyframe|
& Objects
to SLAM Map

Prediction-Based
Object Registration

Object
Merging

‘Any Objects not
in SLAM Map

Fig. 2. System overview. For initial object detection, our system generates several segments in the current frame. For each segment, it then uses VLAD-
based appearance similarity search followed by RANSAC registration to register the segment with respect to an object map. If the registration is successful,
then the object poses are refined by using a prediction-based registration, which are used to merge segments corresponding to an identical object. The
detected objects are finally added to the SLAM map as object landmarks. Once the object landmarks are initiated in the SLAM map, for the subsequent
frames our system tracks their poses by using the prediction-based registration. The object landmarks are also used as constraints in the bundle adjustment
procedure, which runs asynchronously using a separate thread. Dashed arrows represent the flow between data and processes, while solid arrows indicate

the flow between processes.

method generates clusters by performing region growing on
the remaining 3D point cloud. Based on the planes and the
clusters of non-planar regions, we initiate segments using
the set of features (3D points and 3D planes) that fall inside
each region. We only use regions whose sizes are within a
predefined range to omit too large or too small regions and
speed up the object detection process.

Sliding Window Approach: Objects touching the table
or another object might have been missed in the depth-
based segmentation. Hence, we also exploit a sliding window
approach in order to generate additional subsets of features.
We consider the set of 3D point features that fall inside
a W, x W, patch by sliding the patch over the image.
The segments with too few features are discarded to avoid
unnecessary computation.

In offline object scan mode, we only use depth-based
segmentation, since the aim is to track a single object in
a simple scene. In online object detection mode, we utilize
both depth-based segmentation and sliding window methods
in order to come up with as many hypothesis as we can from
a cluttered scene.

2) Appearance Similarity Search and RANSAC Registra-
tion: We aim to ensure that the segments are verified in
terms of both appearance and geometry. In order to find the
associated object map for each segment in the current frame,
we first find k closest segments in the set of object maps by
using VLAD descriptor matching [1]. Matches with a score
above a threshold are returned, since there might be segments
that do not belong to any object of interest. The segment in
the frame is registered with the matching segment in the
object map by using a RANSAC procedure. Namely, we do
all-to-all descriptor matching between the point features of
the two segments followed by a RANSAC-based registration
that also considers all possible plane correspondences. The
segment that generates the largest number of inliers is
recalled as the corresponding object. If RANSAC fails for all
of the k matching segments of the object maps, the segment

of the frame is discarded.

This step produces object landmark candidates. We con-
sider them as candidates, because they are only registered
with a single segment in the object map, not with the object
map as a whole. An object might also correspond to multiple
segments in a frame, resulting in repetitions in this list of
object landmark candidates. Thus, we proceed with pose
refinement and merging processes.

B. Object Pose Refinement by Prediction-Based Registration

An object map contains a set of segments that are acquired
from different viewpoints. In this step, we register the entire
object map with respect to the current frame by using the
estimated pose of the object as a predicted pose.

We project all point and plane landmarks of the object map
to the current frame based on the predicted pose of the object
landmark candidate. Matches between point measurements
of the current frame and point landmarks of the object map
are computed. We ignore unnecessary matches based on
two rules: (i) a point measurement is matched with a point
landmark if the projected landmark falls within an r pixel
neighborhood, and (ii) a point measurement is matched with
a point landmark if the landmark was observed from a similar
viewing angle when the object map was reconstructed. The
first rule is to avoid unnecessary point pairs that are too far
on the object and the second rule is to avoid performing
matches for point landmarks that fall behind the object from
the current viewing angle of the frame. Similarly, a plane
landmark is considered in RANSAC if it is visible from the
viewing angle of the frame. Note that the features of the
object map are matched not only with the features included
in the segment, but with all the features in the frame.

We use a RANSAC-based registration after finding the
correspondences. If it succeeds, the candidate becomes an
object landmark in the SLAM map with its refined pose and
measurement-landmark associations of the point and plane
features.
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C. Object Merging

The generated list of object landmarks might have rep-
etitions, since we do not consider disjoint feature sets in
segment generation and an object might refer to multiple
segments in an image. As a result, we merge the object
landmarks that have similar poses, belonging to an identical
object.

D. SLAM Map Update

Typically in the SLAM system, a frame is added to the
SLAM map as a keyframe if its pose is different from
the poses of any existing keyframes in the SLAM map. In
addition to this condition, our system also adds a frame as a
keyframe if it includes new object landmarks. This ensures
the initialization of newly seen object landmarks and mainte-
nance of the associations between frame measurements and
object map landmarks.

E. Object Tracking

Once an object is detected and the object landmark is
added to the SLAM map, it is tracked by the prediction-
based registration. We use the pose of the object landmark
and the pose of the current frame estimated by the SLAM
system to predict the pose of the object map in the current
frame. Then, we register the object map using the prediction-
based registration method explained in Section II-B. If the
tracking is successful and the current frame is selected as a
new keyframe, then we update the associations of the object
landmark in the SLAM map.

F. Bundle Adjustment

Let the triplet (k,I,m) denote an association between
feature landmark p; and feature measurement pf, of keyframe
k with pose Ty. Let I contain the triplets representing all such
associations generated by the SLAM system in the current
SLAM map. On the other hand, let the tuple (k,I,m,o0)
denote an object association such that object landmark o
with pose T, contains an association between the feature
landmark p? of the object map and feature measurement pk,
in keyframe k. Let I, contain the tuples representing such
associations between the SLAM map and the object map.
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List of objects used in our experiments.

The error that comes from the registration of the keyframes
in the SLAM map is

Y dp.T(ph), (1)

(kLm)el
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where d(-,-) denotes the distance between a feature landmark
and a feature measurement and T(f) denotes application of
transformation T to the feature f. The error that comes from
object localization is

Eppj(Ti,-+ T Ty, To) = d(pf, ToTe(pl))-
(k.l,m,0)€l,
(2)

The bundle adjustment procedure aims to minimize the total
error with respect to the landmark parameters, keyframe
poses, and object poses:

argmin gy (pr,-..,pLiTh, ., k) +
YTy, To.ps

Enj(Ty,...,Tk;T1,...,To). (3)

We used the Ceres Solver [16] to perform the bundle
adjustment.

III. EXPERIMENTS

We used our method for object detection and localization
during SLAM in indoor scenes. We also used our method to
pick up objects with a robot arm. We report qualitative results
for the SLAM in indoor scenes and detailed quantitative
analysis for the robot system. Our SLAM system runs at
1.5 frames per second on a Windows 7 machine with 3.40
GHz Intel Core i7-2600 processor.

A. Objects Used in Experiments

We evaluated our method using 18 objects from Amazon
Picking Challenge (APC) [17], [18]. We omitted seven APC
objects that have few keypoints or that are not suitable to
be picked with our gripper. Figure 3 shows the objects used
in our experiments. Each image is the cropped version of
the initial frame captured during the object scanning phase
with the robot arm. As can be seen articulated objects such
as squeaker foam balls or dog toys are scanned
partially using only their non-deformable parts. Note also
that dog toy has green and yellow versions that are
considered as different objects in APC. However, since their



Fig. 4. Example frames from the offline object scanning mode for coffee
stirrers (top) and brush (bottom) objects.

non-deformable parts are identical we used the same object
model for detecting and localizing them. For each object or
object part, we created two object maps for front and back
sides.

B. Object Detection and Localization during SLAM

To generate object maps, we used a tablet-based platform
consisting of an Axus Xtion sensor and a Surface tablet to
scan the objects. Figure 4 shows some example frames used
to generate the object maps for two example objects. Using
a hand-held sensor provided flexibility to vary the viewpoint
as much as we want in object map construction. Figure 5
depicts object detection and pose estimation results in an
office sequence using the obtained object maps.

C. Object Picking with Robot Arm

We applied the detection and tracking method to an
object picking scenario using a robot arm. As shown in
Figure 7 (left), we mounted an Asus Xtion sensor on a robot
arm, which were calibrated with each other via hand-eye
calibration.

The object maps are generated semi-automatically with the
robot arm. We placed each object on the table and sampled
25 camera poses located on two circles of radius r; = 100
mm and r» = 200 mm where the sensor looks at the center

Fig. 5. Object detection results in an office sequence: input frames (top),
object localization results overlayed on depth map (bottom).

of the table for each location. For the initial frame, a user
clicks on the segments corresponding to the object. For the
subsequent frames, the robot arm travels on the sampled
poses and the system grows the map by tracking the initially
selected object.

1) Object Pose Estimation Accuracy: We first analyzed
the accuracy of the pose estimation with respect to the
distance to the object. Considering the picking scenario
where the robot arm starts from a far location and approaches
to the object, we started from 13 different poses in various
positions and viewing angles. For each starting point, we
approached one step (i.e., lcm) to the object by centering
it in the RGB frame. The pose of the object was updated
at every step by adding the frame to the SLAM map. In
each step, we recorded the pose of the object landmark
and the distance between the object and the sensor. The
distance was computed by considering the mean of all point
landmark coordinates associated with the object. After the
experiments, the reference object pose was computed as the
mean of all estimations after removing outliers with medoid-
shift clustering. Namely, we clustered all the poses and used
the largest cluster as the data points to be used in reference
pose computation. The experiments were carried out on four
different objects with different structures.

Figure 6 shows the scatter plots for rotational and trans-
lational error. Red line is the median of the error values in
a 1 cm bin in terms of distance. Green dashed line indicates
the distance where no 3D measurement was visible on the
object. As can be seen, our method is able to localize the
object by tracking even when there is no 3D point and
plane measurements extracted from the object. The results
also show that the technique provides different accuracy
ranges for different object structures. For example, planar
objects such as cheez—1it yield smaller errors compared to
feline bag and kong ball, which have curvy surface
structures.

2) Object Pickup Performance: For object picking exper-
iments, we used a vacuum gripper specialized for uneven
surfaces and has a suction power to carry a maximum weight
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of 0.8 pounds. For each object map, we input a selected
region where the object can be gripped. Once the object
is detected and localized, we transfer each point in the
input gripping area based on the pose of the object, and
fit local planes to a w x w patch, where w = 25 pixels in our
experiments. If local plane fitting succeeds, the robot arm
goes to that position in the direction of local plane normal
to pick up the object. With the use of depth information,
we also avoid using occluded areas in the object as pickup
locations. If multiple objects are detected and localized, we
first pick up the object that has the maximum number of

Examples of object detection and localization results (right) using our robot platform (left): top panel shows the RGB frame, where red dots
indicate gripping position and bottom panel shows localization results overlayed on the depth maps.

feature associations with its object map. Note that we avoid
regions close to object boundary during input gripping region
selection.

For each experiment, we put K randomly selected objects
on the table. We carried out 20 experiments for each value
of K ={3,5,10,15}. In each attempt, robot arm moves to
random positions until an object is detected in the scene.
If no object is detected after robot arm traveled 25 random
positions, we call the attempt a pickup failure due to misde-
tection. We obtained 91.2% pickup success ratio over all the
experiments. Table I reports the performance with respect to



TABLE I
PICKUP SUCCESS RATIO PER NUMBER OF OBJECTS USED IN
EXPERIMENTS.

# Objects (K) | Success Ratio | # Failed Attempts | # Misdetections
3 96.7% 2 1
5 92.0% 8 0
10 92.5% 15 2
15 89.0% 33 2
[ Total [ 91.2% [ 58 5
TABLE II

PICKUP SUCCESS RATIO FOR EACH OBJECT.

Objects # Attempts | # Success | Success Ratio
Crayola crayons 44 44 100.0 %
Coffee stirrers 27 27 100.0 %
Book 1 45 44 97.8 %
Glue 43 42 97.7 %
Book 2 36 35 97.2 %
Squeaker foam balls 35 34 97.1 %
Pencils 32 31 96.9 %
Eraser 35 33 94.3 %
Feline bag 46 43 93.5 %
Sharpie 28 26 92.9 %
Sticky notes 40 36 90.0 %
Brush 28 25 89.3 %
Cheez-it 35 31 88.6 %
Dog toy (green) 43 38 88.4 %
Dog toy (yellow) 50 44 88.0 %
Oreo 30 25 83.3 %
Kong ball 39 31 79.5 %
Rubber duck 24 13 542 %

the number of objects in each experiment. Among all 660
pickup attempts, only 5 of them failed due to misdetection.
As can be seen, the success ratio decreases as the number of
objects on the table increases. Table II shows pickup success
ratio per object.

Please refer to the supplementary video for the exper-
imental results. The detection results from three different
runs can be seen in Figure 7. Our system is able to detect
multiple objects on a table or in a cluttered environment
such as in a box. Moreover, detecting multiple instances of
the same object is also possible with the proposed object
representation scheme. The grasping positions are displayed
with red dots at the upper panel. The lower panel shows the
localization results, where we overlay the segment from the
object map that is the most similar to the pose of the object
in the frame.

3) Discussion: Pickup failures mostly occurred due to
inaccurate computation of the gripping position and direc-
tion. All misdetections occured when there was a single
object on the table and the system was not able to detect
any objects after a certain number of robot arm positions.
The system failed because of misdetection in only 5 of
the 58 failed attempts, which shows the competence of our
object detection framework. Missed objects were back side
of objects that has very few keypoints, such as eraser
and sticky notes. For the remaining failure cases, there

were two major reasons: (i) the target object was touching
another object or the table which resulted in a local plane
with an inaccurate gripping location, and (ii) the target object
was heavy and/or partially occluded by other objects such
that during pickup the object slid from the gripper. Both
factors can be avoided by working on system integration. The
first type of failures can be avoided by choosing the gripping
location as the best local plane centered at the interior points
rather than the local planes centered at the boundary points.
Moreover, strategies to further improve the accuracy of object
map reconstruction and object localization can help more
precise gripping position computation. For avoiding second
type of failure cases, we can use different grippers based on
the weight of the target object.

Gripping location computation affected the performance
per object and performance per number of objects. For
example, the rubber duck object has a package part that
is small, hence the gripping location should have been very
accurate for a successful pickup. On the other hand, planar
objects in boxes were easier to pickup as they are mostly at
the top rows of Table II. Our strategy of partially scanning
non-deformable parts of the articulated objects worked very
well. For example, for squeaker foam ball and dog
toy objects focusing on the region with the plush toys might
have made the pickup impossible. However, for those objects
our system achieved a performance of at least 88%. There
were more occlusions when we used more objects in the
experiments. Hence, the pickup success ratio decreased as
the number of objects increased as reported in Table L.

IV. CONCLUSION AND FUTURE WORK

We presented an object detection and tracking framework
that jointly runs with an RGB-D SLAM system. We in-
troduced the concept of hierarchical feature grouping by
using segments and represented an object as an object map
consisting of a set of registered segments. Both the offline
scanning and online detection modes were described in a
single framework by exploiting the same SLAM procedure,
enabling instant incorporation of a given object into the
system. We applied our framework for object picking using
a robot arm and showed successful object detection, pose
estimation, and grasping results.

The proposed representation is compact. Namely, there
is an analogy between keyframe-SLAM map and segment-
object map pairs respectively. Both of them uses the same
features, in our case planes, 3D points, and 2D points that are
extracted from input RGB-D data. Moreover, relocalization
and tracking techniques are applicable to both concepts as
explained in this paper. Thus, one can easily use different
sets of features or different relocalization/tracking techniques
instead of ours.

An important limitation of our method is on segment
generation. The segments are generated based on a simple
sliding window approach or depth-based segmentation. The
first one generates too many segments that would contain
redundancy, while the latter is too conservative as it can
miss objects touching other surfaces. This can be improved



with a better segmentation method which also takes into
account texture information or other important features. It
is important to note that, we only make use of segments for
initial detection of the objects. Thus, object detection module
can be easily changed with any kind of object detection
method.

In this study we did not focus on how incorporation of
object constraints affect the registration accuracy in SLAM,
as the scope of this paper was on object detection and
tracking rather than improving SLAM accuracy via objects.
However, the experiments showed that joint optimization of
object pose and the map improves the object localization
performance, since the localization becomes more accurate
as we capture more frames. In the future, we plan to
perform detailed analysis on joint bundle adjustment and its
effect on object and keyframe localization. In addition, this
analysis can consider different weights for different objects
in optimization since object localization accuracy varies for
objects with different structures.

Lastly, an important future extension of our work is on
improving the registration accuracy in an object map. Offline
pinpoint postprocessing [15] can be applied on the object
map after scanning. This would improve the detection and
tracking performance in online detection mode as the system
relies on the generated object map.
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