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Abstract

In contrast to still image analysis, motion information offers a powerful means to analyze
video. In particular, motion trajectories determined from keypoints have become very popu-
lar in recent years for a variety of video analysis tasks, including search, retrieval and classi-
fication. Additionally, cloudbased analysis of media content has been gaining momentum, so
efficient communication of salient video information to perform the necessary analysis of video
at the cloud server is needed. This paper describes a novel framework to efficiently represent
the keypoint trajectories. In particular, an interframe prediction is designed with the option to
operate in a low-delay mode. Additionally, a scalable coding method is proposed that allows
for a subset of the coded trajectories in a video segment to be easily accessed. Experimental
results on several popular datasets including Stanford MAR and Hopkinl55 demonstrate a
significant rate saving of up to 25% with our proposed trajectory coding approaches relative
to a state-of-the-art reference approach.
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ABSTRACT

In contrast to still image analysis, motion information offers a
powerful means to analyze video. In particular, motion trajec-
tories determined from keypoints have become very popular
in recent years for a variety of video analysis tasks, includ-
ing search, retrieval and classification. Additionally, cloud-
based analysis of media content has been gaining momen-
tum, so efficient communication of salient video information
to perform the necessary analysis of video at the cloud server
is needed. This paper describes a novel framework to effi-
ciently represent the keypoint trajectories. In particular, an
interframe prediction is designed with the option to operate
in a low-delay mode. Additionally, a scalable coding method
is proposed that allows for a subset of the coded trajectories
in a video segment to be easily accessed. Experimental re-
sults on several popular datasets including Stanford MAR and
Hopkinl55 demonstrate a significant rate saving of up to 25%
with our proposed trajectory coding approaches relative to a
state-of-the-art reference approach.

Index Terms— Keypoint trajectory, video analysis, inter-
frame prediction, scalable coding, CDVS, CDVA

1. INTRODUCTION

Many modern computer vision algorithms first identify key-
points in an image, and then extract features for those points
that are invariant to translation, rotation, scaling and illumi-
nation. Examples of such features include scale-invariant
feature transform (SIFT) [1], speeded-up robust features
(SURF) [2], histogram of oriented gradients (HoG) [3] [4],
etc. Accordingly, there has been much study on the coding
and efficient transmission of such feature descriptors to en-
able visual analysis tasks at a server. Compact Descriptor for
Visual Analysis (CDVS) is a standard that has been recently
published by ISO/IEC in this field [5]. One limitation of this
standard is that it only addresses the coding of descriptors
associated with a single image frame.

For video analysis, the motion in a scene is very useful to
facilitate applications such as object tracking, action recogni-
tion /detection [6], mobile robotics [7] and autonomous driv-
ing, as well as motion segmentation [8]. Since many of the

image analysis schemes are based on keypoints, it is natural
to consider the motion trajectories of these keypoints; the cod-
ing of these keypoint trajectories for the purpose of enabling
efficient video analysis is the primary focus of this paper.

A naive method for video extracts descriptors from each
image in the sequence, treating each image independently.
Such a method fails to exploit the fact that features from suc-
cessive video images tend to be very similar, and does not
capture the motion trajectory information, resulting in a very
redundant representation. Furthermore, such a method does
not remove features that are not persistent from one image
to the next, which may result in reduced reliability and accu-
racy. Thus, simply collecting individual image descriptors is
not only inefficient in terms of rate, but is also expected to
result in reduced performance.

Earlier work that was done in the context of MPEG-7 did
define several types of motion descriptors, including those
that described camera motion and motion activity for video
segments, as well as motion trajectories for regions of the
scene [9]. The motion trajectory descriptor was fairly high-
level in that a single point was associated with objects of the
scene. Since there are usually not that many objects in a
scene, the representation of each trajectory did not need to
be very efficient.

Another approach is to compress the descriptors derived
from each image of the video, exploiting the motion of those
descriptors through the video sequence. Such methods exploit
an affine transform between neighboring pictures to reduce
the bit-rate of the transmitted descriptors [10] [11]. However,
those methods are limited in using a single affine transforma-
tion which may oversimplify the motion for many use cases,
thereby reducing the accuracy of the analysis results.

Low-rank non-negative matrix factorization [12] exploits
the near stationarity of salient object descriptors in the scene,
which demonstrates the ability to perform object/scene clus-
tering using a small percentage of visual descriptors from a
large set extracted from each image of the video. Hence, for
the frames following an image with all descriptors being fully
coded, no significant bits are expected to code their corre-
sponding visual descriptors. However, this approach does not
provide a representation for motion over time, which is the
major motivation of our work.
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Fig. 1. System diagram

This paper proposes a novel framework to represent key-
point trajectories across pictures of a video to enable a good
range of video analysis tasks that would benefit from motion
information. Since keypoint trajectories are more dense than
object trajectories, we study two approaches to efficiently
compress the keypoint trajectories to align with the needs of
different applications.

The remainder of the paper is organized as follows. The
next section presents the overall system framework. Section 3
proposes an interframe trajectory coding approach (ITC) that
is well-suited for low-delay applications, and a scalable tra-
Jjectory coding method (STC) that provides a fine granular
scalability in terms of keypoint trajectories is described in
Section 4. Section 5 presents experimental results compar-
ing the proposed methods against a homography model based
benchmark method to show the superiority of the proposed
methods. Finally, Section 6 provides concluding remarks.

2. SYSTEM OVERVIEW

Keypoint trajectories basically represent low-level motion in-
formation but they are considered useful for many high-level
motion analysis task. To the best of our knowledge, there is no
work done to efficiently compress the keypoint trajectories.

In a typical scenario as shown in Fig. 1, we propose to
extract trajectory information for each keypoint and compress
them at the client device (encoder side). We rely on existing
methods to generate the keypoint trajectories. At the cloud
server (decoder side), the keypoint trajectories are recon-
structed then fed to a motion-based video analysis module to
extract high-level motion descriptors or perform the desired
video analysis tasks.

In an effort to build from the existing CDVS standardiza-
tion framework, it is desirable for the descriptors to be used
for video analysis to be compatible with the image descrip-
tors and analysis systems. Hence, it is proposed that the fea-
ture descriptors associated with select pictures are coded in
a manner that is compatible with the existing image analysis
system; we will refer to such pictures as key pictures. We
further assume that the video signal is split into Group of Pic-
tures (GOP) structures for every n pictures.

More formally, a keypoint trajectory is represented by a
sorted set of positions over time,

{P(ty) = (Pu(ty), Py(ty)), tj € {t1,ta, ., tn} }. (1)

Assume that there are m keypoints with associated tra-
jectories. Let P°, ¢ € [1,m] denote the position in the c-th
trajectory. In the earlier MPEG-7 work, there is only one rep-
resentative point for each object, that is m = 1 for each single
object in a picture. However, in this work, we typically con-
sider the case with m > 1 for an object.

As the trajectory represents the travel path of a keypoint,
the associated feature descriptors of the same keypoint in the
subsequent picture are assumed to be unchanged and would
be skipped for actual coding. Therefore, the main focus is
on coding {P°(t;), ¢ € [1,m], j € [2,n]}, given picture
t1 as a reference key picture that has been previously coded.
In addition, let P denote the reconstructed trajectory from a
coded bitstream.

3. INTERFRAME TRAJECTORY CODING

This section describes our proposed interframe trajectory
coding (ITC) method, in which all keypoints in a picture
will be coded before any keypoint from another picture. We
describe both uni-directional and bi-directional prediction of
the trajectories. For the case that the picture coding order is
exactly the same as the picture presentation (capture) order,
the delay to start coding would only be 1-frame, which is
useful for real-time applications; this special case is referred
to as low-delay interframe trajectory coding (LD-ITC). In
contrast, with scalable trajectory coding (STC) to be pre-
sented in Section 4, such a low-delay mode of operation is
not possible and the delay would typically be equal to the
period of a full GOP.

3.1. Uni-Prediction for Trajectory Coding

With uni-prediction, the keypoints from a single reference
picture are used to predict the keypoints in the current pic-
ture. Assume P°(t;), ¢ € [1,m] in picture ¢;,j > 2 is the
current keypoint to be coded, and a previously coded picture
ty, f > 1is used as a reference. A 3-step prediction using a
derived motion vector (MV) is shown in the center of Fig. 2.

Firstly, among the keypoints that have been coded in the
current picture ¢;, we determine a reference keypoint r that is
nearest to the current keypoint ¢ using a distance |P" (¢7) —
P<(t )| that is measured in the reference picture # .

Then, a motion vector for keypoint r is calculated from
picture ¢ to picture ;,

VI = Pr(t;) — P"(t). 2)

Next, the predicted keypoint c is given based on the mo-
tion vector in Eqn. (2),

P'(t;) = Pe(tg) + V7. 3)
Finally the residual to be coded is,

Re(tj) = Pe(t;) — P'(t)). )



e g 7
o P || e o
@ @,4 5 i @ A 3 @ Qﬁ‘

A :

i 3 i \, i
P 1 3%y

o ) el .0 ¥y O a
ty t, et 1 Referefk:m 1 Referenc?:\m
Gef;:nce Current 2) Derived MV E:rreonitnt 2) Derived TV Current
picture picture 3) Generate predictor < '" 3) Generate predictor KeYPOInt

Pictures with three trajectories ITC, Motion Vectors based STC, Translation Vectors based

Fig. 2. Proposed trajectory coding methods

When a reference keypoint 7 for the current trajectory c is
not present, the principle in Section 4.1 is applied, where the
motion vector is set to be zero, VI = 0. If the residual R®
obtained in Eqn. (4) is small enough to be ignored, it may be
desirable to skip the residual coding.

With this prediction and coding scheme, the reference pic-
ture ¢y could be a picture appearing before or after the current
picture ¢;. If we force ¢y < . to hold all the time, a low-delay
configuration could be implemented.

3.2. Bi-Prediction for Trajectory Coding

In this section we consider using two reference pictures
simultaneously as a bi-prediction coding mode to achieve
greater rate savings. In addition to a first reference picture
¢, a second reference picture ¢, will be selected to predict
the keypoints in the current picture ¢;. For example, ¢ is
selected as the nearest picture from the past or a forward
reference picture, while ¢, is selected as the nearest picture
from the future or a backward reference picture.

As with uni-prediction, a reference keypoint r needs to
first be determined among the keypoints that have already
been coded in the current picture ¢;. Two motion vectors cor-
responding to the forward and backward references are calcu-
lated as,

VI = Pr(t;) = P"(ty), VP = P"(t;) = P (ts).  (5)
Then two intermediate predicted keypoints for c are given,
P'(ty,t;) = P(tg) + VI, P(ty, t5) = P°(ty) + V*. (6)

The final keypoint predictor ¢ is given according to a
weighted average based on the distances between reference
pictures and the current picture,

_ e = [P (o 1) + [t — 851 P (B, 1)

P'(t;)
! [ty —t;] + [to — 5]

)

Finally, the residual is calculated as in Eqn. (4), which will
be coded or possibly skipped in the bitstream. Note that intro-
ducing bi-prediction may break the low-delay configuration if
one of the reference pictures is from the future.

4. SCALABLE TRAJECTORY CODING

Compared with the ITC approach presented in the previous
section, where all keypoints in a picture are coded before
start coding any keypoint in a next picture, we propose a
Scalable Trajectory Coding (STC) scheme, in which all key-
points corresponding to a trajectory are coded before coding
any keypoint from another trajectory. This approach permits
fine granular scalability with respect to keypoint trajectories.
That is, a decoder is able to recover some complete trajecto-
ries from a partially received bitstream making it is possible
to begin an analysis of the video with a subset of the key-
point trajectories and even discard the remaining bitstream if
the preliminary results are satisfactory. Of course, the server
may refine its results in a fine granular manner when more tra-
jectories become available. With the ITC approach described
in section 3, however, the decoder has to decode all pictures
before a complete keypoint trajectory could be obtained.

4.1. Intra-Scalable Trajectory Coding

We first describe an Intra-Scalable Trajectory coding (Intra-
STC) scheme, whereby a trajectory is coded independently
from others. Assume that we will code the c-th trajectory,
P¢ = {P“(t;), tj € [ta,t3,..,t,]} With reconstructed posi-
tion P(t;) from the available key picture. An earlier keypoint
is used to predict a newer keypoint within the same trajectory.
Let {P'(t;),t; € [ta2,t3,..,t,]} denote the predictors. A first
order predictor is given in Eqn. (8),

P'(t;) = P(tj—1) + o(t; — t;-1), ®)
_ P(tn)—P(t1) - . .
where v = — T s the keypoint velocity. We may use

a second order predictor given the keypoint’s initial velocity
and its acceleration for more accurate prediction.

The prediction parameters v may be signaled at the se-
quence/GOP level or for trajectories in a local area. To sim-
plify, we could select a predefined value for v, e.g. let v = 0,
then the residuals R°(¢;) are simply the position differences
of a keypoint between neighboring pictures.

4.2. Inter-Scalable Trajectory Coding

In order to better exploit redundancies between trajectories,
we propose Inter-Scalable Trajectory Coding (Inter-STC)
mode, which has the capability to predict the current trajec-
tory from a reference trajectory (see right figure of Fig. 2).
The trajectories coded in Inter-STC mode may use Intra-STC
trajectories or other Inter-STC trajectories as references.

A similar 3-step procedure as used in the ITC scheme is
applied for Inter-STC. However, instead of deriving a motion
vector (MV) between neighboring pictures, a translation vec-
tor (TV) is derived from the selected reference trajectory r to
the current trajectory within a reference picture ¢,

VP = Pe(ty) — PT(ty), ©9)



which will be used to generate a predictor,
P'(t;) = P"(t;) + V. (10)

In Inter-STC approach, the determination of a reference
trajectory only needs to be done once for all keypoints within
one trajectory. However, for ITC approaches , due to the key-
point coding order, it either has to repeat the finding of a ref-
erence trajectory for each keypoint, or keep the reference tra-
jectory in memory.

Note that the above TV-based Inter-STC may be modi-
fied to use the motion vector in Eqn. (2) while keep using
STC coding order for the keypoints. The coding performance
of the MV-based Inter-STC is equivalent to ITC with uni-
prediction, so in our experiment, we will use TV-based Inter-
STC when evaluating the STC method.

5. EXPERIMENTS

5.1. Experiment Set-up

In order to evaluate the proposed keypoint trajectory cod-
ing approaches, we chose several dataset popular in different
video analysis projects. Results for four sample sequences
are reported. If sorted according to scene/motion complexity
from low to high, the four sequences are, Seql from Stan-
ford MAR dataset [11] demonstrates some slow motion; Seq2
from KITTI dataset [7] is captured by a camera mounted on
a moving car; Seq3 in [8] is also captured from a car and
it was driven on an uneven road; and Seg4 from Hopkinl55
dataset [13] is acquired by a hand-held camera having multi-
ple objects with different motions plus a camera motion.

First, the trajectories are extracted based on Wang’s
method in [6]. Then 300 trajectories evenly distributed over
each picture are selected for the coding experiments. The
GOP size is set to 15 pictures. Keypoint trajectories of the 4
example sequences are shown in Fig. 3.

We implemented a benchmark approach based on ho-
mography model prediction, which is motivated by the work
in [10] [11]. When finding the motion model parameters, the
positions of all input keypoints from two pictures are utilized
to estimate the homography model. In particular, the affine
transform is selected for the homography structure. Once the
affine transform is estimated, we use it to project keypoint
positions in the current picture based on their locations in the
previous picture. It fits for a low-delay configuration as ITC.

For the ITC scheme, we apply uni-prediction described
in Section 3.1 to realize a low-delay configuration. For STC,
we use the translation vector based Inter-STC in Section 4.2,
since we found that the performance of the motion vector
based STC is equivalent to the ITC.

5.2. Observations and Discussions

Since we focus on predictive coding of the keypoint trajec-
tories and do not introduce any loss in the coding, we report

Fig. 3. Keypoint trajectories of example video sequences,
from left to right: Seql .. Seq4

’ -

\ Seql \ Seq?2 \ Seq3 \ Seq4 ‘

Homography 1660 | 1879 | 1719 | 1973
ITC, MV-based | 1529 | 1597 | 1417 | 1462
STC, TV-based | 1541 | 1663 | 1455 | 1499

Bits saving (%) | 7.89 | 15.01 | 17.57 | 25.90 |

Table 1. Entropy of residuals, in bits/picture

the zero entropy of the residual trajectories generated by each
approach in Table 1 as a measure of performance. The results
of any analysis algorithm that uses motion trajectories would
be unchanged by the coding.

From Table 1, for the homography model based bench-
mark method, the bits required are increased significantly
with increases in scene/motion complexity from Seqgl to
Seq4. On the other hand, the proposed ITC and STC meth-
ods do not necessarily require more bits with increased
scene/motion complexity. However, our approaches are more
sensitive to the noise level in the trajectories. For Seql and
Seq2 with less texture and thus more noise in the trajectory,
our approaches consumes more bits than the other two se-
quences. Based on this observation, it might be desirable to
filter the trajectories prior to coding.

In Table 1, the bits saving percentage is calculated be-
tween the MV-based ITC and the benchmark. Examining the
bits used for the same sequence, it is clear that proposed meth-
ods need much less bits to code the keypoint trajectories. Ad-
ditionally, the proposed methods have more significant bits
saving for sequences with more complex scene/motion, which
is up to about 25% bits saving for the most complex sequence.

6. CONCLUSIONS AND FUTURE WORK

This paper describes novel methods to code keypoint trajec-
tories of videos for the purpose of analysis. Inter-frame pre-
diction of the keypoint trajectories was proposed to efficiently
compress the trajectories. This coding scheme is able to oper-
ate with low delay. Additionally, a scalable trajectory coding
method has been presented, which provides fine granular scal-
ability to the set of keypoint trajectories. Experimental results
demonstrate that the proposed methods significantly outper-
form a conventional method that uses a homography model.
Future work will consider alternative ways to generate or fil-
ter the trajectories prior to coding in order to suppress noise,
with the aim to optimize rate and analysis performance.
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