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Abstract
Large-scale 3D maps of indoor and outdoor environments can be created using devices that
provide localization combined with depth and color measurements of the surrounding en-
vironment. Localization could be achieved with GPS, inertial measurement units (IMU),
cameras, or combinations of these and other devices, while the depth measurements could
be achieved with time-of-flight, radar or laser scanning systems. The resulting 3D maps,
which are composed of 3D point clouds with various attributes, could be used for a variety of
applications, including finding your way around indoor spaces, navigating vehicles around a
city, space planning, topographical surveying or public surveying of infrastructure and roads,
augmented reality, immersive online experiences, and much more. This paper discusses ap-
plication requirements related to the representation and coding of large-scale 3D dynamic
maps. In particular, we address requirements related to different types of acquisition envi-
ronments, scalability in terms of progressive transmission and efficiently rendering different
levels of details, as well as key attributes to be included in the representation. Additionally,
an overview of recently developed coding techniques is presented, including an assessment of
current performance. Finally, technical challenges and needs for future standardization are
discussed.
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ABSTRACT  
Large-scale 3D maps of indoor and outdoor environments can be created using devices that provide localization 
combined with depth and color measurements of the surrounding environment. Localization could be achieved with 
GPS, inertial measurement units (IMU), cameras, or combinations of these and other devices, while the depth 
measurements could be achieved with time-of-flight, radar or laser scanning systems. The resulting 3D maps, which are 
composed of 3D point clouds with various attributes, could be used for a variety of applications, including finding your 
way around indoor spaces, navigating vehicles around a city, space planning, topographical surveying or public 
surveying of infrastructure and roads, augmented reality, immersive online experiences, and much more. This paper 
discusses application requirements related to the representation and coding of large-scale 3D dynamic maps. In 
particular, we address requirements related to different types of acquisition environments, scalability in terms of 
progressive transmission and efficiently rendering different levels of details, as well as key attributes to be included in 
the representation. Additionally, an overview of recently developed coding techniques is presented, including an 
assessment of current performance. Finally, technical challenges and needs for future standardization are discussed. 
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1. INTRODUCTION  
3D maps are often used as means for machines to navigate indoor or outdoor environments in a semi-autonomous or 
autonomous manner. The maps themselves can be created using devices that provide localization combined with depth 
and color measurements. The location information may be obtained through GPS, inertial measurement units (IMU), 
cameras, or combinations of these and other devices, while depth information is typically obtained through time-of-
flight, radar or laser scanning systems. Example mapping systems are already commercially available and come in 
various forms such as the high-end mobile mapping system shown in Figure 1(a) [1]. There also exist lightweight mobile 
platforms based on sensors mounted on drones or in mobile phones/tablets. 
Irrespective of the specific platform that is used to acquire the measurement data, it is possible to generate a 3D map by 
combining the depth measurements, such as the high-density laser-scanned point cloud in Figures 1(b) [1], with camera 
images. This combination of point cloud data with camera images to generate a 3D map is illustrated in Figure 1(c) [1]. 
These maps can further be combined with road markings such as lane information and road signs to create maps to 
enable autonomous navigation of vehicles around a city as shown in Figure 1(d) [2]. Some examples of methods for 
detecting these kinds of road markings from camera-captured images and LiDAR point clouds are discussed in [3]. 
Multiple map layers will be stored and exchanged across the network, including static maps that do not change very 
frequently and dynamic maps that include real-time information about dynamic objects in the scene such as vehicles or 
pedestrians. It is anticipated that dynamic map information should be communicated with very low delay. To facilitate 
autonomous navigation, an example of an algorithm unifying long-term map updates with dynamic object tracking is 
presented in [4]. An example of a layered data organization paradigm that includes static and dynamic mapping data is 
the Local Dynamic Map (LDM) [5]. An implementation and study of a collision detection system using LDM is 
presented in [6]. 
The amounts of data that are captured for static and dynamic maps can be massive, so efficient representation and 
compression schemes are needed to facilitate the storage and transmission of scanned data. Commonly-used storage 
formats for 3D scanned data include the ASTM E57 [7] and LAS [8] file formats. A lossless compression scheme for 
compressing LAS files is LASzip [9], which is designed to compress points such as LiDAR data that are stored in the 



 
 

  
same order in which they are captured. The choice of representation format and compression technique depends upon the 
type of data that is captured and the application requirements. 
The rest of this paper is organized as follows. Section 2 outlines the application requirements for representing and 
compressing large-scale 3D dynamic maps. Section 3 provides a summary of select techniques that have been developed 
for the compression of point cloud attributes, including prediction techniques, 3D shape-adaptive transforms and 3D 
graph transform methods for compressing blocks and residuals. Section 4 reviews approaches for compressing 3D point 
cloud locations, including the well-established octree method and a new method that uses fitted surfaces to approximate 
the locations. Concluding remarks are given in Section 5.  
 

  
(a)       (b) 

      
(c)       (d) 

Figure 1. Illustrations of large-scale 3D mapping equipment and data. (a) Mobile mapping system for data acquisition, (b) 
sample of a high-density laser-scanned point cloud, (c) map creation where images are projected by superimposing laser 
point cloud data onto camera images, and (d) sample of map with roadside features added. The images of (a)-(c) are from 
[1], while (d) is from [2]. 

2. 3D DYNAMIC MAP APPLICATION REQUIREMENTS  
In order to study and develop methods for representing and compressing point clouds for mobile mapping applications, it 
is useful to understand the requirements and capabilities associated with these applications. In this section, we look at 
typical application scenarios and what capabilities are needed to represent and compress the point cloud data used by 
these applications. 
2.1 Application scenarios 
Typical mobile mapping systems gather about 50,000 points every second through laser sensors. If a mobile mapping 
system runs for 10 minutes while traveling along a road at 60 km/h, it gathers 30,000,000 points corresponding to the 10 
kilometer road section.  If we plan to measure all interstate highways in the US, the number of points would be 
450,000,000,000, which is huge amount of data, assuming we measure each direction separately. 
After the point cloud data is gathered, operators visually inspect the data and annotate geographic objects such as lanes, 
road signs or buildings. The annotated point cloud data forms the 3D map database. Once the database is built, any 



 
 

  
portion of the 3D map database can be retrieved according to specified positions and scales. The retrieved map data can 
be used for several purposes such as autonomous vehicle navigation or road maintenance. The retrieved map data should 
be less than several hundred megabytes to enable light-weight terminals to handle the map. 
To keep up with changes in the roads over the years, data gathering should be periodically performed in order to update 
the database. To make the update process easy, old point clouds and new point clouds can be automatically compared to 
determine which portion of the map has been changed. The change detection capability is also useful for finding portions 
of the roads that need repairs, such as potholes or rutting. 
2.2 Representation Format  
In order to store and process point clouds, a common understanding is needed as to what kind of data comprises a point 
cloud and how it is structured. Generally, we consider a point cloud as being a collection of 3D positions (X, Y, Z) of 
known precision and dynamic range. It is expected that an accuracy of 10-30 cm will be required for the 3D map data. 
Each position or point can have associated attributes such as color, reflectance, normal vectors, transparency, and many 
others. Generic attributes such as arbitrary data fields can also be associated with each 3D position. 
For some applications, an object may be scanned repeatedly from many different distances or angles, such is the case 
when performing a scan from a moving vehicle. In this case, it may be desirable to have multiple values of a particular 
attribute for a given point, where the attribute is dependent upon the view distance and angle when visualizing the point 
cloud. 
While many point clouds may represent the physical world at one point in time, or perhaps the duration of time it took to 
perform the scan, some scenarios may need representations that support time-varying point clouds. Such representations 
would be especially useful for dynamic map updating having short time intervals, such as on the order of seconds or 
milliseconds. 
2.3 Compression Format 
Compression algorithms can generally be classified as being lossy or lossless, where lossy compression allows the 
reconstructed or rendered point cloud to be different from the original (uncompressed) point cloud. The distortion 
resulting from lossy compression can be either geometric distortion, i.e. the reconstructed point positions are different 
from the original point positions; or attribute distortion, in which one or more of the attributes are reconstructed with 
some noise or distortion. For lossy compression, a method for controlling the bit-rate or bits per point in the compressed 
point cloud is needed. For lossless compression, the reconstructed data is mathematically equivalent to the original data. 
For time-varying point clouds, the compression method should be capable of leveraging redundancies in temporal 
variations to achieve greater compression efficiency as compared to separately compressing a set of point clouds 
captured at different times. Given the large amount of data that can be contained in both time-varying and static point 
clouds, it is also desirable for the compression method to support progressive or scalable coding. In these cases, a coarse 
point cloud can be decoded first, and then it can subsequently be refined by decoding additional data. 
For view-dependent coding, it would be practical to be able to first decode the point cloud corresponding to a particular 
region, and after that continue to decode other regions if desired. Similarly, it would be useful to be able to access 
different regions in the point cloud directly from the compressed data, i.e. have compressed data that supports random 
access. 
In addition to the functional capabilities and requirements mentioned above for point cloud compression formats, some 
requirements related to implementation should be considered as well. For example, the compression method should 
support low-complexity or real-time encoding and decoding. These capabilities would be facilitated with compression 
formats supporting parallel encoding and decoding architectures. 

3. ATTRIBUTE COMPRESSION METHODS 
Many of the techniques used for the compression of pixel-based images and video sequences can be extended for 
compressing point cloud attributes. Compression can be achieved in reducing or eliminating redundancies among 
attributes of neighboring points in a point cloud. This section summarizes selected techniques that use prediction and 
transforms for compressing attributes.   



 
 

  
3.1 Intra prediction of 3D point cloud blocks 
Using prediction among blocks to reduce redundancy is a common technique in most video coding standards. 
Neighboring decoded blocks are used to predict pixels in the current block, and then the prediction error or residuals are 
optionally transformed and then are coded in a bit-stream. In [11], a block prediction scheme for 3D point cloud data 
was introduced. As shown in Figure 2(a), points in the current block can be predicted from points contained in non-
empty neighboring blocks, when adjacent neighboring blocks are available. The point cloud encoder performs prediction 
in the x, y, and z directions and chooses the prediction direction that yields the least distortion. Coding the current block 
without prediction from neighboring blocks is also considered if it yields lower distortion. Therefore, the current block 
has the option of being coded with or without prediction. 
To perform the prediction itself, the method uses a multivariate interpolation/extrapolation to compute a projection of the 
attribute values in the neighboring block onto the adjacent edge plane of the current block. An example of this step is 
shown in Figure 2(b). Here, data from known points are used to compute an interpolation or prediction located at an 
arbitrary point, in this case, along the boundary between the previous block and the current block.  
Once the attribute values along the boundary plane are estimated, these values are then projected or replicated into the 
current block along the direction of prediction, similar to how prediction values are projected into the current block for 
the directional intra prediction used in standards such as H.264/AVC and HEVC. These projected and replicated values 
are then used to predict attributes for points present in the current block. 

    Figure 2. 3D block-based prediction. (a) Available prediction directions; (b) Multivariate interpolation/projection. 
 
3.2 Transforms for 3D block data 
After the prediction process, a 3D block containing prediction residuals for each point in the current block, or the current 
block itself if it yields lower coding distortion, is transformed. Recall that not all the positions in the block may be 
occupied by a point. The transform must therefore be designed so it will work on these potentially sparse blocks. Two 
types of transforms have been studied in [11]: a new variant of the shape-adaptive discrete cosine transform (SA-DCT) 
designed for 3D point cloud attribute compression, and a 3D graph transform. 
The shape-adaptive DCT (SA-DCT) [10] is a well-known transform designed to code arbitrarily shaped regions in 
images. This concept is extended for 3D point cloud data such that positions in the block that do not contain points are 
considered as being outside the region. The modified SA-DCT process is shown in Figure 3. Given a 3D block of 
attribute values or prediction residual values, the points present in the block are shifted line by line along dimension 1 
toward the border so that there are no empty positions in the block along that border, except for empty lines. One-
dimensional DCTs are applied along each occupied column of data along dimension 1, starting at the block border and 
ending at the last data point present in the block for each column. If there are empty positions between the first and last 
points in the column, we insert filler values, e.g. zero. An alternative method that will be considered for future work 
would be to shift the remaining data in the column into those empty positions, thus reducing the lengths of the DCTs. 
After the DCTs are applied along dimension 1, the shift and transform process is repeated on the transform coefficients 
along dimension 2. Finally, the process is applied along the third dimension, resulting in one DC and one or more AC 
coefficients. Compression is achieved by quantizing the coefficients. 
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 Figure 3. Modified Shape-Adaptive DCT for 3D point cloud data. 
 
The basic idea behind the graph transform is illustrated in Figure 4. A graph is formed by connecting adjacent points 
present in the 3D block. Two points are considered adjacent if they are at most one position apart in any dimension. 
Graph weights are assigned to each connection between points, also referred to as a graph edge. The weights of a graph 
edge are inversely proportional to the distance between the two connected points. An adjacency matrix is populated by 
the weights, from which a graph Laplacian matrix is computed. The eigenvector matrix of the graph Laplacian matrix is 
used as a transform for the attribute values. After the transform is applied, each connected sub-graph has the equivalent 
of one DC coefficient and one or more AC coefficients. Therefore, in the example of Figure 4(a), the graph is composed 
of two disjoint sub-graphs, so the resulting graph transform will produce two DC coefficients and two corresponding sets 
of AC coefficients. In [ICIP16], the benefits of expanding the connections between points to the k nearest neighbors was 
studied, hence the graph in Figure 4(c) will only produce one DC coefficient. 

 
(a)   (b)   (c) 

Figure 4. Example of block containing two disjoint sets of connected points. (a) Graph connecting nearest neighbors for 
each point; (b)(c) graphs connecting points with greater numbers of nearest neighbors. 

 
3.3 Experimental Results 
As described in [11], the experiments reported here use an input point cloud (Statue Klimt PointCloud.ply) that has been 
preprocessed so that the points lie on a uniform grid. This point cloud contains approximately 500k points, with each 
point having a floating-point (x, y, z) location with a corresponding RGB color attribute. We convert the RGB color 
attributes to YCbCr luminance and chrominance values and use the 8-bit luminance value Y as the attribute used in all 
experiments. The octree resolution used for preprocessing is r = 1.0. Coding performance is as luminance PSNR vs. the 
entropy in bits needed to represent the attribute, assuming a sign-magnitude representation of the coefficients, is shown 
in Figure 5(a). Coding performance results for block sizes k = 5 and k = 10 are shown, along with results for when one 
large block is used to contain the entire point cloud. Generally, the modified SA-DCT outperformed the graph transform 
approach. Part of this difference in performance is due to the graph transform producing a DC coefficient that was 
significantly larger than the AC coefficients. Also, for sparse blocks containing few connected points, more DC 
coefficients are present in each block when the graph transform is used. More bits are therefore needed to represent that 
larger number of DC coefficients. 
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With the aim to overcome some of these issues, as reported in [12], Figure 5(b) illustrates the results of the graph 
transform with a higher number of connected neighbors. The results show that greater connectivity generally has a 
benefit at lower bit rates. As the rate increases, the performance of the graph transform with less connectivity is better. 
The rate at which this crossover point occurs increases as the partition resolution or block size decreases. 

   
Figure 5. Simulation Results. (a) Comparison of modified SA-DCT and graph transforms; (b) Comparison of coding 
performance of graph transform with varying number of nearest neighbors. 

4. POINT LOCATION COMPRESSION METHODS 
Many techniques exist for compressing the point locations or (x,y,z) coordinates of each point in a point cloud. The 
octree-based method used for mesh representations in [13] was extended in [14] for coding point clouds for which a 
mesh is not defined. The latter work was implemented using the open-source Point Cloud Library (PCL) [15]. The 
octree-based method hierarchically partitions a 3D bounding box for the point cloud into leaf nodes or voxels, where 
each node contains one or more points. The point locations can then be downsampled by representing all the points 
within each leaf node as the centroid of their corresponding node; or all point locations can be preserved by signaling the 
difference between each point and the coordinates of the origin of each octree leaf node. 
 
Some additional methods for 3D point cloud compression make use of surface fitting techniques to approximate the 
point locations. These methods are usually either based on fitting planes to the input point cloud as described in [16], in 
which approximation capabilities are limited to points that lie on or close to a plane; or else they require a prior 
decomposition of the point cloud into an octree and then they approximate the points in each octree cell by a localized 
surface patch [17][18]. The idea of fitting Bézier or other B-Spline surfaces to compactly represent 3D point clouds has 
been explored in [19] and [20]; however, these applications do not aim to be able to reconstruct the original point 
locations, but to create a new representation of the point cloud surface, which is an approximation of the original point 
cloud geometry. 
 
In this section, we present a method for point location compression, which is based on fitting Bézier surface patches to a 
hierarchical decomposition of an organized point cloud. These surface patches are used as prediction models for the 
point cloud geometry. We achieve compression by encoding the model parameters, as well as quantizing and encoding 
the residual vectors that represent the fitting errors between the points on the model and each corresponding input point 
location. 
 
The input to our method is a point cloud organized in a raster-grid structure, where each (x,y,z) coordinate of a point is 
associated with a cell on a grid whose width × height equals the total number of points in the point cloud. Note that this 
does not mean that the (x,y,z) coordinates themselves are necessarily aligned to a 3D spatial grid. We adaptively 
subdivide this input into a set of cubic Bézier surface patches, according to a predefined fitting error threshold. The 
subdivision process is hierarchical: it starts with one large patch (rectangle) that covers the entire point cloud; if the 
fitting error for this patch is too large, then the patch is divided into two patches. This process is repeated hierarchically 
on any patches having a sufficient number of points, until we have a set of patches that approximate the input point 
cloud as well as possible given the prescribed fitting error threshold. Each of these Bézier surface patches is a 4 x 4 grid 
of 16 control points and corresponds to a rectangular sub-domain in the input data parameter domain. These patches, i.e. 



 
 

  
their control points, constitute our model that generates a prediction of the point cloud geometry. The residual or 
difference between each fitted point and its corresponding point in the original point cloud is then quantized and signaled 
along with the control points. An illustration of a model having four patches is shown in Figure 6. A binary tree 
representing the splitting process is also signaled. 
 

 
Figure 6. Illustration of point cloud, a predictor having four patches and the prediction error 

In Figure 7 we compare the compression performance between the octree-based method of [14] and the patch-fitting 
method described above. For the patch-fitting method, the initial point at approximately 40 dB was achieved without 
signaling the residuals; only the control points and associated hierarchy information were signaled, using a total of 
approximately 0.1 bits per input point. For the remaining points, the residuals with successively finer levels of 
quantization were additionally coded. 
 

 
Figure 7. Compression performance for octree and Bézier-fitting methods 

5. CONCLUDING REMARKS 
In this paper, we outlined the application requirements for representing and compressing large-scale 3D dynamic maps, 
with a focus on point cloud representations. Examples of recently developed methods for compressing point cloud 
attributes and geometries were also presented. With the recent increased proliferation of 3D mobile mapping scanner 
systems used to capture both static and dynamic map data, the need to develop standards for representing 3D dynamic 
map data is becoming more urgent. For storing and transmitting these increasing amounts of data, efficient compression 
schemes are needed as well. 
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