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Abstract—Malicious data attacks have raised widespread con-
cerns on data integrity and security of cyber-physical systems.
In this paper, we discuss a state recovery problem, where the
underlying cyber-physical system is subject to attacks at different
locations with constant switching frequency. Nonzero sub-row
and nonzero entries sparsity models are presented based on
corresponding switching frequency, which is the fundamental dif-
ference between switching location and other attacks. Moreover,
state recovery constraints are deduced based on corresponding
attack modes, which further proves the higher efficiency com-
pared with fix location and static decoders. According to the
different sparsity models, l1/l2 and l1 decoders are designed,
respectively, which can recover the initial state accurately within
relaxation conditions. Numerical simulations in a randomly cho-
sen system and a 14-bus electric power system show our proposed
dynamic decoder can provide an effective system resilience under
switching location attacks.

Index Terms—Dynamic State Recovery, Switch Location At-
tacks, Block Sparsity, Dynamic Decoder

I. INTRODUCTION

INTEGRATING the computation and communication tech-
niques into control systems, Cyber-Physical Systems

(CPSs) widely exist in critical infrastructure such as electrical,
water, chemical, oil and gas, etc. Even though CPSs can
greatly improve the stability and efficiency, the tight coupling
between IT systems and control systems brings new security
challenges. For example, authentication, encryption and in-
tegrity weakness checks in communication protocols [1] make
CPSs vulnerable to malicious data attacks.

Utilizing the vulnerabilities of the integrated IT systems,
attackers can easily implement malicious data attacks. In order
to circumvent security methods, such as dynamic security
policies [2] and current fix location based state recovery
[3], attackers can change the attack set continuously. As
shown in Fig. 1, utilizing the authentication weakness [4] and
the restart communications option vulnerability [5] in Mod-
bus/TCP protocols, attackers can implement the IP spoofing
attack [6] (the blue arrows) with a denial of service (DoS)
attack (the red arrows) in SCADA systems [7], which can
successfully inject malicious packets. By altering the target
addresses, attackers can easily change the target from RTU-
1 (the solid line) to RTU-n (the dash line). Since vast of
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Fig. 1. An IP spoofing & DoS attack example.

false response packets must be injected for malicious data
injection in SCADA systems using Polling techniques [7], the
compromised RTUs with limited packet generation capacity
and limited communication bandwidth [8] can attack only
part of the devices in the IP spoofing & DoS attack, which
makes the attack sparse. In this paper, we assume that attackers
can implement sparse switching location attacks, i.e., attackers
can compromise any subset of sensors with the constraint
of amount and change the set of attacked sensors with a
constant/variable frequency, limited by the system facilities
and possible attack techniques.

In literature, malicious data attacks have been extensively
studied recently. For example, Liu et al. [9] and Mo et al.
[10] discussed the feasibility of the malicious data attacks in
static and dynamic systems, respectively. To resist such attacks
in static system, measurement low-rank property based attack
identification and miss data recovery methods were presented
in [11] and [12], respectively, where the sparsity of measure-
ment is utilized. Using the sparsity of attack vectors (or system
failure), i.e., the nonzero entries in attack vector is sparse,
a static decoder was designed to recover the system state
[13], where only the current compromised measurements are
used. Based on both the measurement low-rank property and
attack sparsity, a false data detection mechanism was designed
by solving a matrix separation problem [14]. To decrease
the measurement amount in sparse state recovery, a model-
based compressive sensing method, such as block-sparsity, was
presented in [15] and [16], which provide concrete guidelines
on model-based recovery algorithm design with provable per-
formance guarantee. However, the static sparsity based secure
mechanisms given above fail to use the system dynamics,
which will increase the resilience of the system. Based on
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the block-sparsity in static system, [3] and [17] expanded the
method into dynamic systems, where fix location decoders
can recover the initial state by the compromised measurement
sequences. However, the fix location decoder is designed under
the assumption that the set of attacked sensors does not change
over time [3], i.e., if K ⊂ {1, · · · , p} is the set of attacked
sensors, then for all t, supp(e(t)) ⊂ K, where supp(e(t)) is
the set of attacked sensors. Aimed to deal with sensor attack
scenarios with fixed attacked sensors, the fix location decoder
fails to tackle switching location attacks, which brings new
challenges in state recovery. First of all, the switches of attack
set destroy the original fix location sparsity, which damages the
system resilience greatly, especially when the switch frequency
is high. Since attackers may switch the attack set in different
manners, different sparsity models and recovery methods must
be studied, correspondingly.

In this paper, we discuss state recovery in switching loca-
tion attacks using system dynamics and attack sparsity. As
the fundamental motivation, nonzero sub-row and nonzero
entries sparsity models are described based on different attack
manners, which is the basis of this paper. Corresponding to
the different sparsity models, state recovery constraints are
deduced, which reflect the system resilience and guarantee the
state recovery accuracy. As one of the main contributions, we
theoretically proved that the dynamic decoder outperforms the
fix location and static decoders in switching location attacks.
Two different decoders are designed according to the different
sparsity model. With the relaxed conditions, two practical
decoders are presented based on the l0 ones, which can
recover the initial state accurately. Finally, numeral simulations
show the efficiency of dynamic decoder in switching location
attacks.

The remainder of this paper is organized as follows. In Sec-
tion II, the notation and attack sparsity models are presented.
In Section III, the state recovery condition and the theoretical
analysis of the dynamic decoder are given. Then the dynamic
decoders for two sparsity models are designed in Section IV.
Numerical simulations and conclusion are made in Section V
and VI, respectively.

II. MODEL AND NOTATION

A. Notation

In the rest of this paper, we will use the notations defined
below. For a vector x ∈ Rn, supp(x) denotes the index set of
nonzero elements in x, i.e., supp(x) = {i|i ∈ {1, . . . , n}, xi 6=
0}, where xi is the ith element in x. For a set S, |S| denotes the
cardinality of S. Then the l0 norm of vector x means ‖x‖l0 =
|supp(x)|. Similarly, the l1 norm of vector x is defined as
‖x‖l1 =

∑
i∈{1,...,n} |xi|.

Suppose that a matrix E ∈ Rp×T is divided into k+1 parts
by cutting the matrix in column, we denotes Ei as the ith part
of the matrix E, and (Ei)j as the jth sub-row of the sub-matrix
Ei, where i ∈ {0, · · · , k}, j ∈ {1, · · · , p}. For example, the
attack matrix, Es,T (k), in (2) (Section II-B) is divided into 2
parts, and E1 is the first two columns, and E2 is the last two
columns. Denote ‖E‖l0 as the sum of the nonzero entries in
matrix E. If K ⊂ {1, . . . , p}, Kc denotes the complementary

TABLE I
NOMENCLATURE TABLE.

1 Q Summation of the nonzero entries/sub-rows.

2 q Amount of attacked sensors.

3 qmax The largest correctable attack amount.

4 τ Switching interval in attacks.

5 k Switch times within T .

6 Ki The ith attack set.

7 T Measurement amount in state recovery.

8 Γ Time set Γ = {0, · · · , T − 1}.
9 E Attack matrix.

10 x(0) Initial state of the system.

11 y(t) Compromised measurement at time t.

12 e(t) Attack vector at time t.

13 z Nonzero initial state.

set of K. Moreover, we denote Q as the sum of the nonzero
sub-rows/entries in all the k + 1 sub-matrices, q as the attack
amount limitation, i.e., the number of attacked sensors are no
more than q at each time. Throughout the paper, the variable
with the superscript ′ is defined for comparison with the one
without it. For ease of reading, the nomenclature is given in
Table 1.

B. System Model

Considering the following linear dynamic system,

x(t+1) = Ax(t)

y(t) = Cx(t) + e(t) (1)

where x(t) ∈ Rn is the state of the system at time t ∈ N ,
y(t) ∈ Rp is the measurement at time t. The matrices A and
C have appropriate dimensions and the vector e(t) ∈ Rp is
the attack vector injected by attackers at time t. Since e(t) is
injected by malicious attackers, e(t) will not be assumed to
follow any particular model, and if the jth sensor at time t is
attacked, then e(t)

j is arbitrary, otherwise e(t)
j = 0.

In the rest of this paper, we divide switching location attacks
into two cases: i) the switching frequency is constant and
known to system operators; ii) the switching frequency is
constant but unknown or it is variable.

1) Nonzero Sub-row Sparsity: In case i), attackers change
the set of attacked sensors with a constant switching frequency,
which is known to system operators. Denote τ as the switching
interval (the reciprocal of the switching frequency) in attacks.
For simplicity, we assume the attack starts at t = 0, and the
attacks at other time can be analyzed similarly. Given attack
vectors e(t), t ∈ Γ = {0, · · · , T − 1}, and switched times
k, the attack vectors satisfy supp(et) ⊆ Ki ⊂ {1, · · · , p},
t ∈ {iτ, · · · , (i+1)τ−1}, where Ki as the ith attack set. The
possible attack vector set in Γ with attack amount limitation
q and switched times k can be defined as

Eq,T (k)={(e(0),· · ·, e(T−1))|supp(e(t)) ⊆ Ki, |Ki|=q,
t ∈ {iτ,· · ·, (i+1)τ−1}, i ∈ {0,· · ·, k}}.

Denote E = {e(0), · · · , e(T−1)} as attack matrix within T .
Suppose T = 4 and τ = 2, the attack matrices in fix location



3

attacks [3] and switching location attacks, namely, Ef,T and
Es,T (k), can be expressed in the following forms:

Ef,T =


× × × ×
× × × ×
0 0 0 0
0 0 0 0
0 0 0 0

;Es,T (k)=


× × 0 0
× × 0 0
0 0 0 0
0 0 × ×
0 0 × ×

 (2)

where the locations with “×” denote the attacked sensor mea-
surements. The rows and columns denote sensor location and
the sampling time, respectively. Note that the compromised
measurements “×” can be arbitrary value.

Similar to the block sparsity expression in [16], the attack
matrices can be expressed in sequence as shown below:

Ef,T = [× × × ×︸ ︷︷ ︸
xf

[1]

| × × × ×︸ ︷︷ ︸
xf

[2]

| · · · ]

Es,T (k) = [× ×︸ ︷︷ ︸
xs

[1]

| 0 0︸︷︷︸
xs

[2]

| × ×︸ ︷︷ ︸
xs

[3]

| 0 0︸︷︷︸
xs

[4]

| · · · ],

where x[l]
f is the lth row in attack matrix Ef,T , and x[l]

s is the
lth sub-row divided by k switches. Denoting

‖Es,T (k)‖2,0 =

(k+1)p∑
l=1

I(‖x[l]
s ‖2 > 0)

where I(‖x[l]
s ‖2 > 0) = 1 if ‖x[l]

s ‖2 > 0 and 0 otherwise [16].
The sparsity of switching attack is Q-sparse if ‖Es,T (k)‖2,0 ≤
Q. Note that the sparsity in fix location attacks is equivalent to
that the amount of attack points sparsity. While in switching
location attacks, it means that the amount of nonzero sub-
rows is sparse. The number of nonzero sub-rows is determined
by the switched times k and the attacked sensor amount q.
Note that the discussion above is based on the assumption
that the switching frequency is constant and known to system
operators. When the switching frequency is variable or is
not known to system operators, the nonzero sub-row sparsity
model is not suitable.

2) Nonzero Entries Sparsity: In case ii), attackers change
the set of attacked sensors with a unknown constant or variable
switching frequency. Suppose e(t) ∈ R4, and denote attack
matrix with constant switching interval, τ = 2, as E1. Denote
attack matrix with a variable switching interval sequence,
τ = 2, 3, 2, · · · , as E2. Since system operators don’t know
the accurate switching frequency, the incorrect division of sub-
matrices may introduce unnecessary nonzero sub-rows into the
attack matrix. An example is presented below,

E1=

× × 0
× × 0
0 0 ×
0 0 ×

∣∣∣∣∣∣
0 × ×
0 × ×
× 0 0
× 0 0

∣∣∣∣∣∣
...
...
...
...

, E2=

× × 0
× × 0
0 0 ×
0 0 ×

∣∣∣∣∣∣
0 0 ×
0 0 ×
× × 0
× × 0

∣∣∣∣∣∣
× ...
× ...
0 ...
0 ...

, (3)

where the attack matrices are divided by the incorrect switch-
ing interval τ = 3. Obviously, unnecessary nonzero sub-rows
are introduced into the nonzero sub-row sparsity model.

For attacks in case ii), we describe the sparsity of attack
matrices using the number of nonzero entries of the attack
matrix, named nonzero entries sparsity here after. Note that,
nonzero entries sparsity model is a special case of nonzero
sub-row sparsity model, when the constant switching interval
is τ = 1.

Based on the system model (1) and the sparsity model, the
state recovery that we consider in this paper is to recover
the initial state x(0) of system (1) utilizing the compromised
measurements y(0), · · · , y(T−1), i.e., design a decoder D :
(Rp)T → Rn, such that D(y(0), · · · , y(T−1)) = x(0)

As shown in (2), there are 4 nonzero sub-row in Es,T (k)
corresponding to the attack amount limitation q = 2. However,
in the view of fix location attacks, there are q = 4 attacked
sensors. It means that the recovery method based on fix
location attack are not qualified in the case with switching
location attacks. In the following, we’ll analyze the recovery
condition with switching location attacks in details in Section
III.

III. STATE RECOVERY ANALYSIS

In this section, we will address the state recovery condition
of the linear dynamic system in (1) with switching location
attacks. Without losing generality, the initial state recovery,
x(0), is discussed by utilizing the compromised measurement
sequences y(0), · · · , y(T−1).

A. State Recovery Condition

By the system dynamics in (1), the measurement can be
formulated as the function of initial state x(0).

y(t) = CAtx(0) + e(t), t ∈ Γ (4)

Then the process of state recovery is to search an appropriate
initial state x(0) to match the compromised measurements,
which can be denoted as D : (Rp)T → Rn. If the system
state can be recovered correctly in switching location attacks
with q attacked sensors and k switches after T steps, we say
that the system is q-attack k-switch correctable. The definition
is given as follows.

Definition 1. The system is q-attack k-switch correctable
after T steps, if for any x(0) ∈ Rn and any attack set
sequence (e(0), . . . , e(T−1)) ∈ Eq,T (k), there exist a decoder
D : (Rp)T → Rn, such that D(y(0), · · · , y(T−1)) = x(0).

Similar to attack identification in [19], Definition 1 trans-
forms q-attack k-switch correctable into the existence of a
decoder, which can reconstruct any initial state correctly. Next
we will discuss the existence of such a decoder. In order to
facilitate the deduction of the following propositions, we give
the negative forms of the existence shown as follows:

Proposition 1. Let T ∈ N\{0}, the followings are equivalent:
1) There is no decoder to recover the initial state in

switching location attacks with q attacked sensors and
k switches after T steps;

2) There exist x(0), x′(0) ∈ Rn with x(0) 6= x′(0),
and attack vectors (e(0), · · · , e(T−1)) ∈ Eq,T (k),
(e′(0), · · · , e′(T−1)) ∈ Eq,T (k) such that ∀t ∈
Γ, CAtx(0) + e(t) = CAtx′(0) + e′(t).

Proof: The detail proof can be easily derived based on the
proof of the attack identification (Lemma 3.2) in [19]. Thus,
omitted here.
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Proposition 1 gives a feasible method in deducing the state
recovery condition ensuring the existence of such decoders.
Based on compressive sensing theory [20], simply, there can’t
exist two different states such that the compromised measure-
ment sequence in Γ are same. Then we have a necessary and
sufficient condition for the existence of such decoders under
switching location attacks in case i).

Proposition 2. Let T ∈ N\{0}, the follows are equivalent:
1) There exists a decoder to recover the initial state under

any switching location attacks with q attacked sensors
and k switches after T steps;

2) For all z ∈ Rn\{0}, the system with k switch location
attack in Γ satisfies:

k∑
i=0

∣∣∣∣∣∣
(i+1)τ−1⋃
t=iτ

supp(CAtz)

∣∣∣∣∣∣ > 2 · (k + 1)q;

Proof: Since the attack matrix Es,T (k) ∈ Rp×T is
divided into k + 1 parts, as shown in (2), then a new attack
matrix, E′s,T (k) ∈ R(k+1)p×τ , can be composed by putting
the sub-matrices one on another.

1)→ 2): Suppose for the sake of contradiction that there ex-
ists z ∈ Rn\{0} such that

∑k
i=0 |

⋃(i+1)τ−1
t=iτ supp(CAtz)| ≤

2 · (k + 1)q. Denote Si, S′i as disjoint subset of {1, . . . , p}
with |Si| ≤ q, |S′i| ≤ q for all i ∈ {0, · · · , k}. Suppose for
all i ∈ {0, · · · , k}, |

⋃(i+1)τ−1
t=iτ supp(CAtz)| ≤ 2q, then there

exist Si, S′i such that Si∪S′i =
⋃(i+1)τ−1
t=iτ supp(CAtz), for all

i ∈ {0, · · · , k}. Let e(t) = CAtz|Si
, be the vector obtained

from CAtz by setting all the components outside Si to 0,
where t ∈ {iτ, · · · , (i + 1)τ − 1}, i ∈ {0, · · · , k}. Similarly
let e′(t) = −CAtz|S′

i
. Then we have CAtz = e(t)− e′(t), i.e.,

for all t ∈ Γ, CAtz + e′(t) = CAt · 0 + e(t). As z 6= 0, it is
obvious that there are two different initial state z and 0 (z 6=
0), with two attack vectors (e(0), · · · , e(T−1)) ∈ Eq,T (k),
(e′(0), · · · , e′(T−1)) ∈ Eq,T (k) such that CAtz + e′(t) =
CAt0 + e(t), i.e., there is no decoder that can correct q attack
with k switches after T steps. Above all, 1) does not hold.

2) → 1): Suppose there is no decoder that can correct q
attacks with k switches after T steps. It means that there exist
two different initial states x(0), x′(0) ∈ Rn, x(0) 6= x′(0), and
attack vectors (e0, · · · , e(T−1)), (e′0, · · · , e′(T−1)) ∈ Eq,T (k),
such that ∀t ∈ Γ, CAtx(0) + e(t) = CAtx′(0) + e′(t). Now let
z = x(0) − x′(0) 6= 0, then we have CAtz = e′(t) − e(t),∀t ∈
Γ. Since for t ∈ {iτ, · · · , (i + 1)τ − 1}, i ∈ {0, · · · , k},
|Si| ≤ q, |S′i| ≤ q, |

⋃(i+1)τ−1
t=iτ supp(CAtz)| = |S′i−Si| ≤ 2q.

Obviously,
∑k
i=0 |

⋃(i+1)τ−1
t=iτ supp(CAtz)| ≤ 2 · (k + 1)q, 2)

does not hold.
Actually Proposition 2 can be well understood with the fol-

lowing physical meaning. Suppose that z ∈ Rn\{0} denotes
the difference between any two different initial states, and
CAtz is the map from state domain to measurement domain.
Then for all t ∈ Γ, CAtz denote the image of state difference,
z, in measurement domain. More specifically, the nonzero
element in CAtz means the characteristic of distinguishing
the two initial states, and |supp(CAtz)| denote the number of
characteristics in distinguishing the two initial states at time
t.

In order to confuse different initial states, attackers must
tamper the characteristics in measurement domain for all
different states. Due to the limited amount of attacked sensors,
for i ∈ {0, · · · , k}, |Si| ≤ q, |S′i| ≤ q, the maximal number
of characteristics being tampered is 2 · (k + 1)q. In order to
distinguish the initial states in the worst case, there must be
more than 2 · (k + 1)q characteristics for system (A,C), i.e.,∑k
i=0 |

⋃(i+1)τ−1
t=iτ supp(CAtz)| > 2 · (k + 1)q.

As described in Section II-B, nonzero entries sparsity is a
special case of nonzero sub-rows sparsity, when the constant
switching interval is τ = 1, the necessary and sufficient
condition of recovering initial state under switching location
attacks in case ii) is a special case of Proposition 2, i.e., for
all z ∈ Rn\{0}, the system satisfies

∑T−1
t=0 |supp(CAtz)| >

2 · T · q.
Proposition 2 is deduced based on the assumption that

the switching frequency is constant and known to system
operators, and attack starts at t = 0, i.e., system operators
knows the switching time points. If system operators have
no idea about the switching frequency and attack starting
time, i.e., the condition using fix location decoders [3] under
switching location attacks, the recovery condition can be
expressed as follows:

Corollary 1. The initial state x(0) of system (1) can be
recovered by decoders based on fix location sparsity model
in [3] after T steps under any switching location attacks with
q limited attack amount and k switches if and only if for all
z ∈ Rn\{0}, the following satisfies∣∣∣∣⋃T−1

t=0
supp(CAtz)

∣∣∣∣ > 2 · (k + 1)q

For a given system (A,C), denote qmax and q′max as the
largest correctable attack amount of switching location attacks
corresponding to Proposition 2 and Corollary 1, respectively.
Obviously, q′max decrease when the switched times k increase
in Γ. Moreover, Since

∑k
i=0 |

⋃(i+1)τ−1
t=iτ supp(CAtz)| ≥∣∣∣⋃T−1

t=0 supp(CAtz)
∣∣∣, the state recovery method using accu-

racy time point can be more effective than the fix location
decoder in switching location attacks, i.e., qmax ≥ q′max. Note
that the state recovery condition in [3] is a special case of
Proposition 2 and Corollary 1.

Denote M as the measurement matrix consisted of ma-
trix C, · · · , CAT−1 one on another, then M is the system
observation matrix when T = n. Since for both fix and
switching location attacks, the state recovery condition is the
sufficient but not necessary condition of the condition that the
measurement matrix is column full rank, i.e., rank(M) = n.
As a simple proof, if rank(M) < n, there exists z 6= 0 such
that Cz = · · · = CAT−1z = 0. It means that the system can
correct no attack [3]. Then for a given system and steps T ,
the largest number of correctable attack can be transferred into
the measurement matrix column full rank problem. In detail,
by extract the rows corresponding to the attacked sensors,
the largest correctable q can be found at the boundary of
rank(M) = n.

Denote M ′ as a sub-matrix of measurement matrix M ,
consisted of rows of matrix M . Let M c be the rest matrix
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by extracting the corresponding rows of the attacked sensors
from M , and M ′c = M c ∩M ′. Then we have rank(M c) ≥
rank(M ′c). It means that for the same attack amount q in
switching location attacks, rank(M c) ≥ rank(M ′c), i.e., M
can recover no less attack amount than M ′. Considering the
worst case in switching location attacks, i.e., τ = 1, the
efficiency of recovery method based on Proposition 2 and the
static decoder in [13], can be analyzed, simply.

Remark 1. For the dynamic system (1) under switching
location attacks with limited attack amount q and k = T − 1
switches, decoders in Proposition 2 can recover no less attack
than the static decoder.

B. Recovery Upper Bound and Steps T

As discussed in Section III-A, for a given system (A,C),
the recovery upper bound can be transferred into the matrix
column full rank problem. Obviously, the problem above is a
NP-hard problem, and there is no practical algorithm [18].

In fix location attacks, the largest correctable amount can be
reached when T = n based on the Cayley-Hamilton theorem,
while for switching location attacks, the result in fix location
is not quit suitable here. A simple example is given below.

Suppose there is a structural system as shown below:

A =


0 0 0 0 ×
× 0 0 0 0
0 × 0 0 0
0 0 × 0 0
0 0 0 × ×

 , C =


× 0 0 0 0
0 × 0 0 0
0 0 × 0 0
0 0 0 × 0
0 0 0 0 ×

 ;

Assume attackers’ switch attack set with a constant frequency
and the switch interval τ = τmin = 1. Based on Proposition
2, the recovered attack amount satisfies

q < min
z

1

2(k + 1)
·

∑
t∈{0,··· ,T−1}

|supp(CAtz)|

For the possible structural z ∈
{(×, 0, 0, 0, 0), · · · , (×,×,×,×,×)}, the recovery upper
bound for different T shows in the table below:

TABLE II
THE RECOVERY UPPER BOUND FOR DIFFERENT T

T = 1 4 8 12 16

q < 0.5 0.5 1.125 1.5833 1.8125

T = 20 24 28 32 36

q < 1.95 2.0417 2.1071 2.1563 2.1944

As shown in the table above, for most z except for special
values in the parameter space of the given system, the recovery
upper bound does not reach within T ≤ n, while the recovery
upper bound reaches within T ≤ n in fix location attacks [3].
The decision of optimal steps T is still a hard problem with
the possible constraint such as the acceptable recovery delay
determined by the steps T .

IV. DYNAMIC DECODER DESIGN

In this section, we will propose the design of the q-attack
k-switch state recovery method, named dynamic decoder,

corresponding to nonzero sub-row and nonzero entries sparsity
models under switching location attacks. As shown in Section
III, we know that the initial state x(0) can be recovered using
the compromised measurement sequence y(0), · · · , y(T−1),
when the system (A,C) satisfies

k+1∑
i=1

∣∣∣∣∣∣
iτ−1⋃

t=(i−1)τ

supp(CAtz)

∣∣∣∣∣∣ > 2 · (k + 1)q (5)

A. State Recovery for Nonzero Sub-row Sparsity Model

For switching location attacks in case i), the sparsity of the
attack matrix refers to that the nonzero sub-row, is sparse. It
is natural to minimize the summation of nonzero sub-rows in
the attack matrix.

Let Es,T (k) be the attack matrix with attack q limited
amount and k switches. Denote Ei and Yi as the attack
matrix and the compromised measurement matrix for t ∈
{iτ, · · · , (i+ 1)τ − 1}, as below:

Ei = [ eiτ · · · e(i+1)τ−1 ] ∈ Rp×τ ,
Yi = [ yiτ · · · y(i+1)τ−1 ] ∈ Rp×τ ;

Correspondingly, the state measurement matrix Φi(x) can be
expressed as follows:

Φi(x) = [CAiτx · · · CA(i+1)τ−1x ]
= [CAiτ · · · CA(i+1)τ−1 ] · blkdiag(x, · · · , x),

where Φi(x) ∈ Rp×τ , and blkdiag(x, · · · , x) ∈ Rnτ×τ is a
block diagonal matrix. Then for t ∈ {iτ, · · · , (i + 1)τ − 1},
the measurement function can be expressed as

Yi = Φi(x) + Ei

As defined in Section II-B-1), indicator function I(‖x[l]
s ‖2 >

0) = 1 if ‖x[l]
s ‖2 > 0 and 0 otherwise [16]. Based on the

description above, the initial state can be recovered by solving
the following mixed l1/l2 optimization problem.

(D1,2) min
x̂∈Rn

k∑
i=0

‖Yi − Φi(x̂)‖l1/l2 (6)

where ‖Ei‖l1/l2 is defined as the sum of the l2 norms of the
sum-row in sub-matrix Ei.

‖Ei‖l1/l2 =

p∑
j=1

‖(Ei)j‖l2

Even though Proposition 2 can guarantee the accuracy of
state recovery by minimizing the summation of nonzero sub-
rows, the accuracy of decoder D1,2 can not be guaranteed
by Proposition 2 directly. In order to prove the accuracy
of decoder D1,2, the following must be satisfied, for all
i ∈ {0, · · · , k}, Ki ⊂ {1, · · · , p} with |Ki| = q, and for
all z ∈ Rn\{0}, it holds

k∑
i=0

∑
j∈Ki

‖(Yi − Φi(x))j‖l2 <
k∑
i=0

∑
j∈Kc

i

‖(Yi − Φi(x))j‖l2 .

The detail proof can be easily derived based on the proof
(Proposition 6) in [3], thus omitted here.
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B. State Recovery for Nonzero Entries Sparsity Model

For switching location attacks in case ii), the sparsity of the
attack matrix is equivalent to the number of nonzero entries
of the attack matrix. Different from the method in [3], the
state recovery problem can be expressed as the following l0
optimization.

(D0) min
x̂∈Rn

∑
t∈Γ

||y(t) − CAtx̂||l0 (7)

As shown above, the l0 dynamic decoder D0 try to find the
initial state x(0) by minimize the summation of the nonzero
element in attack matrix Es,T (k). It is obvious that the solution
of D0 is the initial state if (5) holds.

Proposition 3. If the system can recover the initial state in
switching location attacks with q attacked sensors and k =
T − 1 switches, the solution of dynamic decoder D0 is the
initial state x(0).

Proof: Since the system can recovery the initial state in
such switching location attacks, then (5) holds when k = T−1.

Denote x(0) as the initial state, and denote
(e(0), . . . , e(T−1)) ∈ Eq,T (k) as the attack sequence,
where

∑
t∈Γ ‖supp(e(t))‖ ≤ 2 · T · q̄, where q̄ is the largest

attack amount correctable, determined by (5). Suppose
there is another solution, x′(0) for decoder (7). Hence there
are two solutions x(0) 6= x′(0) and (e(0), . . . , e(T−1)) ∈
Eq,T (k), (e′(0), . . . , e′(T−1)) ∈ Eq′,T (k) generate the same
compromised measurement y(0), . . . , y(T−1), with a limitation,∑
t∈Γ ‖supp(e′(t))‖ ≤

∑
t∈Γ ‖supp(e(t))‖ ≤ 2 · T · q̄. Then

we have two different initial states and attack sequences
corresponding to the same measurement sequence where
the nonzero entries are less than 2 · T · q̄. It means that q
errors are not correctable after T steps which contradicts the
assumption. Thus the above proposition holds.

Obviously, the l0 dynamic decoder (7) is a NP-hard prob-
lem. Similar to the l1 relaxation in [13], the l0 norm can be
relaxed to the l1 norm.

(D1) min
x̂∈Rn

∑
t∈Γ

||y(t) − CAtx̂||l1 (8)

As shown above the optimality of the dynamic decoder
D0 is guaranteed by proposition 2. It means that once (5)
holds, D0 can recover the initial state x(0) correctly. In order
to guarantee the accuracy of the dynamic decoder D1 a
proposition is given below.

Proposition 4. The solution of the l1 dynamic decoder D1

equals to the initial state in switching location attacks with
q attacked sensors and k = T − 1 switches, if For all Kt ⊂
{1, . . . , p}, |Kt| = q, t ∈ Γ and for all z ∈ Rn\{0},it holds∑

t∈Γ

∑
j∈Kt

|(CAtz)j | <
∑
t∈Γ

∑
j∈Kt

c

|(CAtz)j |. (9)

Proof: (Sufficiency) We will proof it by contradiction.
Suppose there exist t ∈ Γ, Kt ⊂ {1, . . . , p},
|Kt| = q, and z ∈ Rn\{0}, such that∑
t∈Γ

∑
j∈Kt

|(CAtz)j | ≥
∑
t∈Γ

∑
j∈Kc

t
|(CAtz)j |, i.e.,

(9) does not hold. Let x(0) = 0, supp(e(t)) ⊆ Kt, |Kt| = q,

then y(t) = CAtx(0) + e(t) = e(t). Define e(t)
j = (CAtz)j ,

j ∈ Kt, z 6= 0, and e(t)
j = 0, otherwise. When x̂ = x(0) = 0

and x̂ = z 6= 0, we have∑
t∈Γ

||y(t) − CAtz||l1 =
∑
t∈Γ

p∑
j=1

|(y(t) − CAtz)j |

=
∑
t∈Γ

∑
j∈Kc

t

|(CAtz|)j ≤
∑
t∈Γ

∑
j∈Kt

|(CAtz)j |

=
∑
t∈Γ

p∑
j=1

|(y(t) − CAtx(0))j | =
∑
t∈Γ

||y(t) − CAtx(0)||l1 .

It means that the recovered state x̂ = z 6= x0, i.e., decoder D1

fails to correct q errors after T steps when k = T − 1. Then
the sufficiency hold.

(Necessity) Similarly, proof by contradiction. Suppose the
l1 decoder D1 can not correct q errors after T steps when k =
T−1. This means there exists x(0) ∈ Rn, (e(0), . . . , e(T−1)) ∈
Eq,T (k), and y(t) = CAtx(0) + e(t), such that the recovered
initial state D1(y(0), . . . , y(T−1)) = x̃(0) 6= x(0), where
supp(e(t)) ⊆ Kt, |Kt| = q. According to the definition of
the l1 decoder D1, there exists x̃(0) 6= x(0) such that∑

t∈Γ

||y(t) − CAtx̃(0)||l1 ≤
∑
t∈Γ

||y(t) − CAtx(0)||l1 . (10)

Let z = x̃(0)−x(0) 6= 0, then CAtz = CAtx̃(0)−CAtx(0) =
(y(t) − CAtx(0))− (y(t) − CAtx̃(0)). Then∑

t∈Γ

∑
j∈Kt

|(CAtz)j |

=
∑
t∈Γ

∑
j∈Kt

|(y(t) − CAtx(0))j − (y(t) − CAtx̃(0))j |

≥
∑
t∈Γ

∑
j∈Kt

(|(y(t) − CAtx(0))j | − |(y(t) − CAtx̃(0))j |)

For the initial state x(0), and x̃(0), the inequation (10) holds,
then∑
t∈Γ

∑
j∈Kt

|(y(t) − CAtx(0))j |

=
∑
t∈Γ

p∑
j=1

|(y(t) − CAtx(0))j | ≥
∑
t∈Γ

p∑
j=1

|(y(t) − CAtx̃(0))j |.

We have∑
t∈Γ

∑
j∈Kt

|(CAtz)j |

≥
∑
t∈Γ

p∑
j=1

|(y(t) − CAtx̃(0))j | −
∑
t∈Γ

∑
j∈Kt

|(y(t) − CAtx̃(0))j |

=
∑
t∈Γ

∑
j∈Kc

t

|(y(t) − CAtx̃(0))j |

Since supp(e(t)) = supp(y(t) − CAtx(0)) ⊆ Kt, then∑
j∈Kc

t
|(y(t) − CAtx(0))j | = 0. Hence∑

t∈Γ

∑
j∈Kt

|(CAtz)j | ≥
∑
t∈Γ

∑
j∈Kc

t

|(y(t) − CAtx̃(0))j |

=
∑
t∈Γ

∑
j∈Kc

t

|(CAtz)j |,

which contradict with (9). Then the necessity holds.
It is obvious that if the dynamic decoder D1 can recover

the initial state in switch location attacks with q attacked
sensors and T − 1 switches, then the decoder D0 can as
well. Assume for contradiction that there is z ∈ Rn\{0}
such that maxt∈Γ|supp(CAtz)| ≤ 2q. Denote Kt as the
q largest elements index of |(CAtz)j |, j = 1, . . . , p, then
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there is
∑
t∈Γ

∑
j∈Kt

|(CAtz)j | ≥
∑
t∈Γ

∑
j∈Kc

t

|(CAtz)j |. It means

that Proposition 4 is the sufficient condition of Proposition
2. When the proposition above satisfies, the original state can
be recovered by the l1 decoder D1.

Since the problem D1 and D1,2 are convex, we solve the
problem using CVX [21] in this paper.

V. NUMERICAL SIMULATIONS

In this section, we compare the performance of the dynamic
decoder, fix location decoder [3], and the static decoder [13]
in switching location attacks on a random toy example and an
electric power system.

A. Random System

In the simulated system of size n = 10, p = 15, T = 12,
A ∈ R10×10, and C ∈ R15×10 have iid Gaussian entries.
In simulation, we generate switching location attacks with
q attacked sensors, and k switches, where q = 1, · · · , 15,
with switching intervals τ ∈ {1, 3, 6}. For each q and k
combination, we simulate the decoders for 200 times. For a
given q and τ , the attack set is constant within τ , and the
number of attacked sensors is q, i.e., |Ki| = q. For each
j ∈ Ki, the value of such attack point, e(t)

j , is arbitrary
with a similar order of the real measurement y(t). The initial
state x(0) is generated from the standard Gaussian distribution.
Note that the adjacent sets of attacked sensors, Ki and Ki+1,
are generated randomly, there are both constant and variable
switching frequencies in simulations when τ = 1.

In order to verify the effect of the system dynamic in state
recovery, we design the static decoder by minimizing the
nonzero entries in attack vector e(t) for each time t ∈ Γ.
The minimal residual is used for static decoders at each time
t ∈ Γ. To assess the influence of switching location attacks
in fix location decoder, the fix location decoder is simulated.
To quantize the performance of the decoders, we define the
normalized residual of the recovered state as follows:

δ =
‖x(0) − x̂(0)‖l1
‖x(0)‖l1

Define the residual upper bound of the successful recovery as
δ ≤ 1×10−3, the successful recovery fraction of the decoders
are presented in Fig. 2∼4.

As shown in Fig. 2∼4, the dynamic decoder (the red one
marked with squares) can recover the initial state perfectly
when the attacked sensors are no more than 6, i.e, q ≤ 6.
However, for the fix location decoder (the blue one marked
with circle), the largest correctable attacked sensors decrease
when the switch times k increase, which is consist with
the analysis in Corollary 1. Compared with the fix location
decoder, the dynamic decoder is more efficient in switching
location attacks, because of the utilization of switching loca-
tion information in the dynamic decoder. Compared with the
static decoder, the dynamic decoder can correct more attacked
sensors, which is consist with Remark 1, because the system
dynamic is used in dynamic decoder. In summary, utilizing the
switching location attack information and the system dynamic,
the dynamic decoder is efficient.
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Fig. 2. Performance of the dynamic and fix location decoders in switching
location attacks with τ = 6.
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Fig. 3. Performance of the dynamic and fix location decoders in switching
location attacks with τ = 3.
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Fig. 4. Performance of the dynamic, fix location, and static decoders in
switching location attacks with τ = 1.

B. Electric Power System

In this part, we simulate the performance of dynamic
decoder on a 14-bus power system with 5 generators [22].
There are 10 states in the system, i.e., the rotor angle σ and
frequency ω of the 5 generators, where ωi = dσi/dt. The
system matrix A can be deduced from the linearized swing
equations [23] by eliminating the bus angle θ. Similar to
[24], we assume there are p = 35 measurements, consists
of 14 bus injection power sensors, 20 power line sensor and
1 rotor angle sensor at generator. Based the DC power flow
model, the last five columns in measurement matrix C are
zero, i.e., the measurements can only measure the rotor angle
σ. In simulations, we generate switching location attacks with
q attacked sensors, where q = 1, · · · , 34, T = 12, with
switching intervals τ ∈ {1, 3, 6}. Similar to the simulations
in the random toy example above, we simulate 200 times for
each combination of q and τ .

In simulations, the fix location decoder is calculated in a
l1/l∞ form [3]. For different q and k, we simulate 200 times.
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The initial state and the attack vectors are generated randomly,
similar to the simulation in a random system. In simulation,
we don’t allow the last sensor be attacked. The fraction of
successful recovery is presented as shown in Fig. 5∼7.
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Fig. 5. Performance of the dynamic and fix location decoders in fix location
attack and switching location attacks with τ = 6.
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Fig. 6. Performance of the dynamic and fix location decoders in switching
location attacks with τ = 3.
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Fig. 7. Performance of the dynamic, fix location, and static decoders in
switching location attacks with τ = 1.

As shown in Fig. 5∼7, the dynamic decoder (the red one
marked with squares) can recover the initial state perfectly
when the attacked sensors are less than 25, because there
are much measurement redundancy in the power systems.
However, the performance of the fix location decoder in
switching location attacks (the blue one marked with cycles)
decrease rapidly when the switches increase. Compared with
the fix location and static decoder, the dynamic decoder can
correct more attacked sensors in power systems.

VI. CONCLUSION

In this paper, we discussed the state recovery problem in
switching location attacks. A state recovery condition and a
dynamic decoder are presented utilizing the system dynamics
and the sub-row sparsity in attack matrices. The efficiency of
the dynamic decoder, compared with the fix location decoder
and static decoder, is verified both in theoretical analysis and
numeral simulations. Considering that the attackers might not
be rational or information incomplete, a more generalized
recovery should be studied based on a more generalized
sparsity model in a system with noise in the future.
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