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Abstract

This paper presents a new online method for state-of charge (SoC) estimation of Lithium-
ion (Li-ion) batteries based on sparse Gaussian process regression (GPR). Building upon
sparse approximation of the regular GPR, the proposed method is computationally more
efficient. The battery SoC is estimated based on measured voltage, current and temperature.
The accuracy of the proposed method is verified using LiMn204/hardcarbon battery data
collected from a constant-current discharge test. In addition, the estimation performance of
the proposed method is compared with a SoC estimation method using regular GPR with
different covariance functions.
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Abstract—This paper presents a new online method for state-of
charge (SoC) estimation of Lithium-ion (Li-ion) batteries based
on sparse Gaussian process regression (GPR). Building upon
sparse approximation of the regular GPR, the proposed method
is computationally more efficient. The battery SoC is estimated
based on measured voltage, current and temperature. The ac-
curacy of the proposed method is verified using LiMn204/hard-
carbon battery data collected from a constant-current discharge
test. In addition, the estimation performance of the proposed
method is compared with a SoC estimation method using regular
GPR with different covariance functions.

Index Terms—Battery management system, Lithium-ion bat-
tery, sparse Gaussian process regression, state of charge estima-
tion.

I. INTRODUCTION

State-of-Charge (SoC) estimation is a fundamental compo-
nent for battery management system, which is used to describe
the actual charging status of the battery. Accurate SoC esti-
mates are particularly important not only to avoid permanent
damage from over discharge and over charge events, but also
to improve the life-time of the battery by optimizing the energy
usage.

Different approaches have been developed to determine the
SoC of the battery, which are commonly divided into two
categories: electrochemical model-based methods and data-
driven methods. The model-based methods applied Kalman
filter (KF) [1], extended KF [2], [3] and unscented KF [4], [5]
to estimate the SoC of the battery with an improved accuracy.
However, Kalman filter based SoC estimation methods require
precise battery models in order to achieve higher level of the
estimation accuracy at the expense of high computational com-
plexity. Therefore, data-driven methods have been proposed
to eliminate the dependency of SoC estimation on physical
battery models. The authors in [6] estimated the SoC of
Lithium-ion batteries using neural network (NN) based on
current, voltage and temperature of the battery. The estimation
accuracy was further improved by applying unscented KF
to the artificial NN output, which reduces the noise in SoC
estimates. SoC estimation methods based on support vector
machine were developed in [7], [8], [9]. Recently, in [10],
relevance vector machine, which uses sparse Bayesian learning

was employed to estimate the the capacity of Li-ion battery as
a function of voltage and current measurements during charge.
In this paper, we apply sparse Gaussian process regression
(GPR) to model the relationship between voltage, current,
temperature and the SoC of the battery. After being trained
offline, sparse GPR is used to estimate the SoC. Instead
of using all training dataset as in regular GPR, a subset
of training data points, called inducing points are used for
training the regression model. Therefore, the proposed method
significantly reduces the computational complexity when the
size of the training dataset exceeds a few thousand. To the best
of our knowledge, this is the first work which applies sparse
GPR for estimating the SoC of the battery. The performance
comparison between SoC estimation method based on regular
GPR in [11] and the proposed method is carried out. The
effects of covariance functions on the estimation accuracy are
further analyzed. In order to assess the reliability of the SoC
estimates, we provide uncertainty representation owing to non-
parametric probabilistic modeling of the proposed method.

II. PRELIMINARIES

In this section, we first briefly review the fundamentals
of regular GPR and sparse GPR before introducing the SoC
estimation method.

A. Regular Gaussian Process Regression

Let D = {(x1,¥1),- .-, (XN, yn)} denote a training dataset
in which x; where ¢ € {1,...,N} corresponds to a D-
dimensional training input vector and ¥, represents a scalar
training output. We assume that there is an underlying latent
function f(.), which maps the inputs, x,,, to their correspond-
ing output values, y,,, as follows

Above, ¢,, denotes additive Gaussian noise with mean zero and
variance o2, i.e., £, ~ N(0,02) and {&,}_; is identically

distributed and independent of each other. It is assumed that



f = [f(x1), f(x2),..., f(xx)]T is distributed according to a
multivariate Gaussian distribution

p(f‘Xl,X27,Xn) :N(OaK)a (2)

where 0 is a N x 1 vector with all 0 entries and K is
a covariance matrix whose elements K;; = k(x;,x;) are
determined by evaluating the covariance function at each pair
of training inputs. The prior assumptions about the properties
of the latent function (i.e., smoothness, periodicity and non-
stationary) are encoded in the covariance function. In this
work, we use Matern and rational quadratic (RQ) covariance
functions listed in Table I. In order to represent different
structures of the dataset, we also consider the sum of Matérn
and RQ covariance functions, which is again a valid covariance
function. As it is seen from the table, the covariance functions
depend on hyperparameters, ©, where o; and oo quantify
variation of the underlying latent function from its mean;
and the characteristic length scales, pg and 74 determine the
relative importance of the input variables in estimating the
target output. In particular, a larger values of the characteristic
length scale indicates that the corresponding input variable has
a smaller impact on estimation of the target output, hence it
is less relevant.

We include the additive noise component of the output in
(1) into the covariance functions listed in Table I as follows:

k(xi,%;) = ko(xi,%;) + 026; 4, (3)

where 0; ; denotes the Kronecker delta, i.e., §; ; is 1 if ¢ = j
and 0 otherwise.

Then, the distribution of y conditioned on the values of the
latent function f and the input X = {x1,...,xn}, is given
by

p(ylf,X) = N(f,0.1), 4)

where y = {y1,...,yn} and I is an N x N identity matrix.
By using (2) and (4) and integrating over the latent function
values f, the marginal distribution of y is obtained as

p(y|X.0) = / p(y|£. X)p(EX)df = N'(0.K + 02T). (5)

From (5), the marginal log-likelihood of y is expressed in the
following:
T 21\—1 2
y (K+0,1) y_me+%ﬂ_Ebwm
2 2 2
(6)

where |.| is the determinant of a matrix. The optimal values
of the hyperparameters are determined by maximizing the
marginal log-likelihood function in (6). Therefore, we calcu-
late the gradient of (6) with respect to the hyperparameters as
follows:

dlogp(y|X,©) ~ 1 2

9, 2tr (K+o0;,1)

1 O(K +021)
96,

logp(y|X, 9) =

-1 (9(K + 0'7211)
00;

1
in(K + 021) (K +o21)"y.

With the above characterization, any gradient-based optimiza-
tion method can be employed in order to find the maximum
value of the marginal log-likelihood function in (6), which
is in general a nonconvex function of the hyperparamaters.
Therefore, a gradient based method may converge to a sta-
tionary point. In order to alleviate this issue, gradient-based
optimization can be performed with different initial conditions;
and the optimal hyperparameters having the largest marginal
log-likelihood can be chosen. After finding the optimal hyper-
parameters, the joint distribution of the training outputs y and
the test output y, can be written as

0} [Kf,f + 021

o K*,f
p(yvy*|X7X*a@) N( |:0 Kf’*

K.+ U,%] >’

(7N
where the asterisk, * is used as a shorthand for f,, which is the
corresponding latent function value at the test input. Based on
the training dataset D, and given a new input vector, X,, the
main objective of GPR is to find the predictive distribution
of the corresponding output y.. Hence, we can obtain the
predictive distribution of the output, ¥, by marginalizing the
joint distribution (7) over the training dataset output y, which
results in a Gaussian distribution as follows

p(y*‘X7y7X*7e):N(u*’E*) (8)

where
pe =Ko 1(Ke g +02I) 'y ©
Yo =02+ K. — Ko 1(Ke g +02I) ' Kg (10)

where . gives the estimate of the test output, which is a
linear combination of the noisy output y, and the variance X,
provides a measure of the uncertainty in the estimate of the test
output. Note that regular GPR takes O(N?3) time due to the
inversion of the N x N matrix K+ o2I. Once the inversion is
performed, estimation costs O(N) and O(N?) for calculating
the mean p, and the variance, Y., respectively. Therefore,
when the size of the training dataset, N exceeds a few thou-
sand, regular GPR based estimator becomes computationally
prohibitive. In order to overcome this problem, sparse GPR is
proposed, which we will review in the following subsection.

B. Sparse Gaussian Process Regression

The computational cost of a regular GPR is reduced by
introducing inducing variables and modifying the joint prior
distribution, p(f.,f). Let u = [ug,...,uy,|’ denote the
inducing variables which correspond to a set of input locations
Xy called inducing points. The inducing points are chosen as
a subset of the data points. Given the inducing points, the joint
prior distribution, p(f«,f) can be rewritten as

p(ferf) = / P(fur Eu)p(u)du,

where p(u) = N (0, Ky ). It is assumed that f, and f are
conditionally independent given u for the appromixation of

(an



Covariance Functions

Hyperparameters, ©

Matern covariance function :

D Tid—T, Y D Tiq—T;
k(i) = ot e (VPR (2520 i, (VPSR (22

— T
0= [017V7p17"'apD}
o?:signal variance, v:smoothness parameter

pq: characteristic length scale

Rational Quadratic covariance function:

2 —Q
D Tid—Tjd
k(i %;) = 03 (1 ok T, (R )

e = [0-2)0577717""77D]T

nq: characteristic length scale

TABLE I: Covariance functions and their corresponding hyperparameters.

p(f«, f) in the following [13]

p(fur ) ~ q(fu, £) = / o( fo[w)q (£ u)p(u)du.

Subsequently, it is assumed that the training conditional ¢(f|u)
is fully independent and the test conditional remains exact as

12)

N
q(flu) = H p(fnlu)

= /\;(Kf,uKJ,LU, diag[Kr ¢ — Qs ¢]),
q(f«[a) = p(filu),

where diag[A] denotes the diagonal matrix in which all of the
diagonal elements equal the corresponding elements of A and
other elements are zero. By inserting above distributions into
(12) and integrating over u, the joint prior is given by

alf. ) =N (0, {Q” g e = e %”j > (1)

13)
(14)

Q*,f

where Qa b = KayuK;,llKuyb is a low-rank matrix (i.e., rank
M). Using the above joint prior distribution, the predictive
distribution is obtained as

q(y«|X,y, %4, ©) = N(fi, ) (16)

where
i = Ko QK u Ay 17
Se =00+ Kuw — Qus + Ky oK s (18)

Above, Q = (Kyu+ KusA ' Kp )~ and A = diag[Ks ¢ —
Qr.¢+021]. It is seen that the only matrix requiring inversion
is the N x N diagonal matrix A, which yields a significant
reduction in computational complexity. The computational
cost of training becomes O(N M?) that is linear in N and a
larger M leads to better accuracy at the expense of increased
computational requirements. Also, testing time complexity is
O(M) and O(M?) for calculating the mean and the variance,
respectively.

III. SOC ESTIMATION METHOD BASED ON SPARSE GPR

In this section, we first provide a definition of the SoC of a
battery before introducing a new SoC estimation method using
sparse GPR.

The SoC at time ¢ is defined as

soc(t) = &0
Qr
where (Q(t) represents the residual capacity of the battery
at time ¢, and Q(¢t) € [0,Q,]. Also, @, denotes the max-
imum amount of charge that can be drawn for the battery
in terms of the ampere-hours (Ah). It should be noted that
SoC € [0%,100%)], where 0% and 100% indicate the fully
discharged and the fully charged states, respectively.

x 100%, (19)

We now give the details of the proposed SoC estimation
method based on sparse GPR. As shown in Fig. 1, voltage,
current and temperature measurements of the battery are the
inputs to the sparse GPR and the output is the estimated SoC.
The proposed method consists of training and estimation parts.

votags i Trained
Current |:|' ~ Sparse ::> SoC
Temperature —— > GPR Model

Fig. 1: SoC estimation using sparse GPR.

For training, SoC values in the training dataset are normalized
to have a zero mean by subtracting their sample mean. The
optimal hyperparameters of the chosen covariance function
are obtained by employing a conjugate gradient method.
Consequently, online SoC estimation of a battery is performed
based on voltage, current and temperature measurements of
the battery and the optimal hyperparameters. In particular, the
mean of the predictive distribution gives the SoC estimate. In
order to represent the uncertainty in the estimates, the variance
of the predictive distribution is used to construct a confidence
interval as follows

(e = 2(1—a) /2505 fie + 2(1—a) /2 2] (20)

where o € [0, 1] denotes the confidence level and z(1_q)/2
is the critical value of the standard normal distribution. The
confidence interval returns a range of values which likely
includes the true value of the test output. As the variance
decreases, the confidence interval gets narrower, which implies

o2:signal variance, a: smoothness parameter




a more accurate estimate of the test output. The SoC estimation
procedure is described in more detail in Algorithm 1.

Algorithm 1 can be modified for SoC estimation based
on regular GPR [11] in such a way that the maximum log-
likelihood function in (6) is used in training for finding the
optimal hyperparameters and, fi. and 3, are replaced by the
expressions in (9) and (10), respectively.
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Fig. 2: Experimental dataset: voltage, current, temperature and
SoC of the battery vs. time.

Algorithm 1 The flow chart of SoC estimation method using
sparse GPR

1: Traning part:

2: Step 1: Determine the training dataset, D = (X,y),
where X contains voltage, current and temperature mea-
surements of the battery, and y are the corresponding SoC
values.

3: Step 2: Choose the covariance function and initialize the
corresponding hyperparameters by setting © to zero.

4: Step 3: Apply a conjugate gradient method to find the
optimal values of the hyperparameters that minimize the
negative marginal log-likelihood function or equivalently
maximize the marginal log-likelihood function.

5. Estimation part:

6: Obtain the mean and the variance of predictive distribution
given optimal hyperparameters, training dataset, D, test
input x, as follows:

la* = K*,uQKu,fAily

2* = UEL + K*,* - Q*,* + K*,uQKu,*»

where i, corresponds to the SoC estimate.

IV. RESULTS AND DISCUSSION

In this section, we validate the proposed SoC estimation
method based on sparse GPR using experimental data from
a constant-current discharge test of a LiMn204/hard-carbon
battery. We compare the performance of regular GPR and
sparse GPR. Also, we analyze the effect of the covariance
function selection on the estimation performance. The perfor-
mance evaluation is carried out in terms of the root mean
square error (RMSE) and maximum absolute error (MAE),
which are defined, respectively as follows

Ny
1
RMSE =\ | <= > (% — 5%)%, 1)
ti=1
MAE = max |y — $%|. (22)

Particularly, N is the size of test data, y™® and § are vectors
of length N;, which include SoC values of the test data and
the estimated SoC values, respectively.

We first describe the experimental setup, and then present
the SoC estimation results of the proposed method. Fig. 2
shows the experimental dataset including voltage, temperature,
current and SoC of a LiMn204/hard-carbon battery with a
nominal capacity of 4.93 Ah tested in the Advanced Tech-
nology R&D Center, Mitsubishi Electric Corporation. As it is
seen from the figure, five consecutive cycles of charging and
discharging at 10 C-rates were performed using a rechargeable
battery test equipment produced by Fujitsu Telecom Networks.
The sampling period was set to 1 second. The first 1100
samples are used for training in order to determine the optimal
hyperparameters whereas the remaining 900 samples are used
to verify the performance of the proposed method.

In Fig. 3, we plot the actual SoC, the estimated SoC values
and 95% confidence interval for Matern, RQ, and sum of
Matern and RQ covariance functions using sparse GPR. The
shaded blue area represents the 95% confidence interval. 14
inducing points are randomly chosen from the training dataset.
In Matérn covariance function, v is set to 3/2. The RMSE and
MAE values of SoC estimation using regular GPR and sparse
GPR are listed in Table II.

Although slightly higher RMSE and MAE values are ob-
served for SoC estimation based on sparse GPR compared to
regular GPR, the computational cost is significantly reduced,
i.e., time complexity is O(1100 x 142) for sparse GPR and
O(1100%) for GPR in training. In the case of the sparse GPR,
Matern and RQ covariance functions have RMSE below 1%
and 1.35%, and MAE below 3.7% and 4.7%, respectively,
which result in resonable SoC estimates. On the other hand,
combining the two covariance functions provides a better fit to
the data. In particular, the sum of Mateérn and RQ covariance
functions achieves better estimation performance compared
to Matern and RQ covariance functions with less than 0.5%
RMSE in regular GPR and less than 1% RMSE in sparse GPR.

In the same figure, a larger confidence interval indicates
higher gap between the actual and estimated SoC values.
On the other hand, more precise SoC estimates have lower
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Fig. 3: SoC estimation based on GPR with (a) Matérn covariance function, (b) RQ covariance function, (c) sum of Matern and RQ covariance
functions.
Regular GPR Sparse GPR
Covariance Functions RMSE (%) | MAE (%) | RMSE (%) | MAE (%)
Matern 0.7273 2.1796 0.9955 3.6133
Rational Quadratic (RQ) | 1.1233 3.6897 1.3479 4.6650
Sum of Matern and RQ | 0.4588 1.5502 0.9161 3.7661

TABLE II: RMSE and MAE values of SoC estimation using GPR and sparse GPR with Matern, RQ and the sum of Mateérn

and RQ covariance functions.

uncertainty, thus smaller confidence interval. Moreover, the
relative importance of the inputs can be identified through the
values of the optimal hyperparameters. In particular, smaller
values of the characteristic length scales indicate that the
corresponding input is more important and relevant for SoC
estimation. In the case of a sparse GPR with Matern covariance
function, the optimal values of the characteristic length scales
for voltage, current and temperature are 0.5326, 84.7906 and
58.1731, respectively, which implies that voltage has more
impact than temperature, and temperature has more impact
than current on the SoC estimate. We observe the same relative
importance order for other covariance functions, hence we
have not included the corresponding optimal hyperparameter
values for the sake of clear presentation.

V. CONCLUSION

In this paper, we have introduced a new method based on
sparse GPR for estimating the SoC of Li-ion batteries as a
function of voltage, current and temperature measurements of
the battery. In comparison to the method based on regular
GPR, the proposed method requires smaller amount of training
data. Through experimental results, it is shown that the pro-
posed method achieves high accuracy with RMSE below 1%
and MAE below 3.8%. Also, it is observed that the sparse GPR
significantly reduces the computational time at the expense of
minor performance degradation compared to regular GPR.
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