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Abstract
In this paper, we present a method for estimating the confusion level of a driver using a
classifier trained on multimodal sensor data. Using the driver confusion status detector,
a car navigation system can proactively support the driver when he/she is confused. A
corpus of data was collected during onroad driving in traffic using a navigation system and
a car instrumented with a variety of sensors. The data was manually annotated with the
driver’s confusion status and with multiple features representing driver’s behavior and the
traffic conditions. We compared different types of classifiers trained from the data: logistic
regression, a feed-forward neural network, a recurrent neural networks, and a long short-term
memory (LSTM)-based recurrent neural network. The accuracy was evaluated using F-max
as well as precision/recall. We found that the LSTM outperformed the other models.
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ABSTRACT
In this paper, we present a method for estimating the confu-
sion level of a driver using a classifier trained on multimodal
sensor data. Using the driver confusion status detector, a car
navigation system can proactively support the driver when
he/she is confused. A corpus of data was collected during on-
road driving in traffic using a navigation system and a car in-
strumented with a variety of sensors. The data was manually
annotated with the driver’s confusion status and with multiple
features representing driver’s behavior and the traffic condi-
tions. We compared different types of classifiers trained from
the data: logistic regression, a feed-forward neural network,
a recurrent neural networks, and a long short-term memory
(LSTM)-based recurrent neural network. The accuracy was
evaluated using F-max as well as precision/recall. We found
that the LSTM outperformed the other models.

Index Terms— driver confusion status prediction, multi-
modal processing, recurrent neural network, long short-term
memory

1. INTRODUCTION

Human-machine interfaces (HMI) for car information and en-
tertainment systems are very important for safe driving and
can offer a convenient interface to control navigation and
other automotive functions. Speech interfaces are currently
employed in car HMI’s to reduce driving distraction. In prac-
tice, drivers need to handle complex situations inside and out-
side of the cars, such as difficult traffic conditions, unclear
navigation instructions, and limited visibility. In such con-
ditions, drivers may become confused because of a lack of
information about how to proceed. Often, the needed infor-
mation is available via the HMI, but the driver does not have
enough time to retrieve that information using speech or man-
ual interfaces. If the system can anticipate these situations
then it can proactively provide more helpful information. We
propose to detect driver confusion in order to provide a more
proactive interface.

There has been some prior work directed at detecting the
driver’s state, or likely actions, using sensor data available
in the vehicle. Available data may include traffic conditions,

navigation status, vehicle status, and information about the
driver’s behavior that can be extracted from sensors such as
cameras and microphones. In prior work, corpora of such data
have been recorded during driving and annotated according to
driver status and driving conditions [1, 2, 3]. In these studies,
data-driven approaches were used for prediction. For exam-
ple, the driver’s emotional state was detected using a Bayesian
network obtained from multimodal data consisting of traffic
condition, driving condition, and the drivers’ facial expres-
sions [4]. Gaussian mixture models, estimated from speech
signals [5], have been used for detection of driver stress. In
addition, destination prediction and driver action prediction
were investigated using driving condition histories, obtained
using the controller area network (CAN) bus, and the naviga-
tion system status [6].

All of these approaches employed classification without
modeling the dynamics of the signals. However, it has been
suggested, in the context of stress detection in speech, that
temporal dynamics of sensor data and the dependency be-
tween multiple features are important [7].

Recently, neural network models such as feed-forward
deep neural networks (DNNs), recurrent neural networks
(RNNs) and related architectures such as and long short-term
memory (LSTM) RNNs, and convolutional neural networks
(CNNs) have been shown to dramatically improve the perfor-
mance of speech and image recognition. In addition, speaker
emotion detection has been investigated in speech signals us-
ing RNN and LSTM models [8, 9].

The sensor data involved in driver state prediction is chal-
lenging due to the large variability and dynamic range. Deep
network models may be more capable of modeling the dy-
namics and interdependencies in sensor data than previous
approaches. In this study, therefore, we propose as a proof
of concept to apply deep network architectures to the prob-
lem of predicting driver confusion. Since the complexity of
the problem relative to the amount of data in our corpus is un-
known, we compare performance using a variety of models:
logistic regression (LR), DNNs, RNNs, and LSTM-RNNs.



2. MULTIMODAL DRIVER PREDICTION CORPUS

A corpus of data was collected during on-road driving in traf-
fic using a car instrumented with a variety of sensors, in-
cluding video cameras (focused both on the road and on the
driver), microphones, car state sensors (via the CAN bus1),
and a navigation system including global positioning system
(GPS). From these a variety of time-series features were de-
rived.

Eleven human subjects drove cars on a fixed route in a
medium sized city in Japan. Drivers were guided by a car
navigation system for the first section of the route and by a
human navigator for the second section of the route. The two
sections of the route were designed to require approximately
equal driving time. The total driving time was approximately
55 minutes per driver. The data was manually annotated with
the driver’s confusion status as well as multiple features rep-
resenting driver’s behavior and the traffic conditions. Sensors
and human annotations were sampled at one-second intervals.
Table 1 shows the set of features used in our experiments
along with their basic characteristics.

3. CLASSIFICATION MODELS

The four models we used for classification can all be seen
as various forms of a neural network. Logistic regression is
a simple log-linear model that corresponds to a simple feed-
forward softmax ”network” with no hidden layers. A more
general architecture is shown in Figure 1. The network has
an input layer that takes each input sensor data, a projection
layer that reduces the multiple sensor information into a low-
dimensional space, a hidden layer with recurrent connections
that keeps context information, and an output layer that esti-
mates a probability of driver confusion. The figure depicts a
general RNN architecture, which incorporates left context via
the recurrent connections (shown as a dashed directed edge).
The DNN architecture can be seen as a special case of this
model in which there are no recurrent connections. In the
LSTM version of this model, the hidden layer units are LSTM
cells instead of regular network units. The internal architec-
ture of an LSTM cell is depicted in Figure 2. In theory, an
LSTM cell can remember a value for an arbitrary length of
time due to a system of gating. The LSTM cell contains in-
put, forget, and output gates which determine when the input
is significant enough to remember, when it should continue to
remember or forget the value, and when it should contribute
to the output value.

The input vector xt is prepared as

xt = SensorInput(t), (1)

where SensorInput(t) is a set of multiple sensor data obtained
at time t, and is converted to the input feature vector xt ∈ RN .

1A controller area network (CAN bus) systems which is a vehicle bus
standard designed to allow microcontrollers and devices to communicate
with each other in applications.

Fig. 1. Recurrent Neural Network.

Fig. 2. LSTM cell.

The input vector is projected to the D dimensional vector

x′t =Wprxt + bpr (2)

and fed to the recurrent hidden layer, where Wpr and bpr are
the projection matrix and the bias vector.

At the hidden layer, activation vector ht is computed using
the LSTM cells according to the way of [10][11], i.e.

it = σ(Wxix
′
t +Whiht−1 + bi) (3)

ft = σ(Wxfx
′
t +Whfht−1 + bf ) (4)

ct = ftct−1 + it tanh(Wxcx
′
t +Whcht−1 + bc) (5)

ot = σ(Wxox
′
t +Whoht−1 + bo) (6)

ht = ot tanh(ct), (7)

where σ(.) is the element-wise sigmoid function, and it, ft,
ot and ct are the input gate, forget gate, output gate, and cell
activation vectors for the sensor input at time t, respectively.
In an abuse of notation, we identify the weight matrices and
bias vectors via their indices. For example,Whi is the hidden-
input gate matrix and Wxo is the input-output gate matrix.



Table 1. Feature specification of multimodal sensed data. ”∗” shows the features already proposed in the existing systems. H
and S in the last column show human annotation and sensor output, respectively. Colors correspond to those used in Figure 3.

Driving condition
(1) Acceleration level∗ Continuous values [0, 134]
(2) Steering angle∗ Continuous values [−6482, 6358]
(3) Velocity [km/h]∗ Continuous values [0, 68.17]
(4) Gear shift position∗ Multiple classes 6 levels S
(5) Wiper on/off∗ Binary flag 0 or 1
(6) Light on/off∗ Binary flag 0 or 1
(7) Turn signal on/off∗ Binary flag 0 or 1

9 types : change lanes, stop, U-turn, backward, turn left∗, right/left curve∗,(8) Driving action Multiple classes
passing parking cars on the street, others

H

Traffic condition
12 types : highway, urban express way, national road, main local road,

(9) Road type Multiple classes prefectural road, regular road type I and II, approach ramp, secondary
street type I and II, ferry route, others

(10) Type Multiple classes 8 types : bus, truck, motor bike, bicycle, light car, standard-sized car, othersCar ahead
(11) Color Multiple classes 10 types : white, red∗, black, blue, yellow, green, silver, gray, brown, others

(12) Traffic signals Multiple classes 5 types : blue, red, yellow, directed one way, others H
(13) Number of lanes Multiple classes 4 types : one lane, two lanes, w/o center line, others

4 types : two-lane road without a dividing strip, two-lane and four-lane road(14) Lane type Multiple classes
for two ways, others

(15) Oncoming car∗ Binary flag 0 or 1
(16) Cars parking on the street∗ Binary flag 0 or 1
Driver’s behavior

(17) Driver Binary flag 0 or 1
Voice activity (18) Human Navigator Binary flag 0 or 1 H

(19) Navigation system Binary flag 0 or 1
8 types : staring forward, backward with tour around, right or left backward,Gazing (20) Simple Multiple classes
room mirror, right or left mirrordirection

(21) Complex Multiple classes 2 types : looking around, bent forward
H

(22) Other Behaviors Multiple classes 2 types : raising hands, bent forward
Location information
(23) Checkpoints on the route Multiple classes 6 types
(24) Longitude of the car Multiple classes Continuous values
(25) Latitude of the car Multiple classes Continuous values

S
(26) Distance to the goal Multiple classes Continuous values

The output value at time t is computed as

yt = σ(WHOht + bO), (8)

where WHO and bO are the transformation matrix and the
bias vector to classify the input vector into binary classes, i.e.
confused or not confused, according to the hidden vector. The
sigmoid function is used to normalize output values so that
they range from 0 to 1.

The final output of the network can be considered as a
confusion probability of the driver at time t. If the probabil-
ity is greater than a threshold, the system detects confusion
status. The sensor data are sequentially input to the network
and a sequence of confusion probabilities is obtained, one for
each time t.

4. EXPERIMENTS

4.1. Data

We evaluated driver’s confusion detection using multiple sen-
sor data from 11 drivers. Because of the small amount of
data, we used a leave-one-out evaluation approach. We used

each driver’s data as a test set, for which we built a driver-
independent classifier trained on data from eight of the other
drivers, for each type of model. The data from the two re-
maining drivers were used for development, for example, pa-
rameter tuning and early stopping. The resulting classifier
was evaluated on the held-out driver’s data.

There were approximately 50 times as many negatively
labeled (non-confusion) samples as positively labeled (confu-
sion) samples.

We selected a subset of the sensors and driving conditions
in a preliminary experiment by individually testing the perfor-
mance of each component as a predictor of driver confusion.
The set of features used for the experiments is listed in Table
1. Fig. 3 shows the maximum F-score (MaxF) of a set of
Logistic Regression classifiers for the confusion probability,
individually trained on each component, sorted by maximum
F-score. The maximum F-score for each classifier was cal-
culated as the maximum of the F-scores from the precision
and recall rates obtained across all detection thresholds for
that classifier. The maximum F-scores give some indication
of how predictive the feature is for our data set.

In Fig. 3, location information shows the highest scores,
followed by traffic condition, driving status, driver’s condi-
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Fig. 3. Effective sensors and driving conditions for the fea-
tures listed in Table 1, indexed by (1) through (26). The hori-
zontal axis is the maximum F-score (MaxF) where the maxi-
mum is taken over all threshold settings.

tion, and finally navigation status. The importance of lo-
cation features indicates that there were some points in the
route where many drivers were confused. Although the lo-
cation appears to be informative for prediction of confusion,
we excluded it from the set of input features for subsequent
experiments because we are interested in features sensitive
to the characteristics of those locations rather than the loca-
tions themselves. From the point of view of generalization,
we would need data from every possible location to general-
ize on the basis of location features. Further study is needed
to understand the characteristics that make a location confus-
ing. With the exception of location, we selected the top scor-
ing 38 feature components for training the classifiers. These
components are listed in Table 1.

Table 2. Evaluation results of the models using Max F-score
(MaxF) and Average Precision (AP).

MaxF AP
Dev. set Test set Dev. set Test set

LR 0.22 0.23 0.11 0.12
DNN 0.25 0.26 0.14 0.17
RNN 0.28 0.26 0.16 0.17
LSTM 0.30 0.31 0.19 0.21

Fig. 4. Comparison of Average Precision among the methods.

4.2. Classifiers

To evaluate the efficiency of our proposed method, we com-
pared confusion detection performances of four models, LR,
DNN, RNN, and LSTM RNN. L2 regularization using weight
decay was used for the LR model. The other models were
not regularized. The LR and DNN systems used sensor data
independently at each time frame. The DNN had two hid-
den layers, each of which had 100 units. The simple RNN
and the LSTM RNN had one projection layer and two hid-
den/LSTM layers, each of which had 100 units. The output
layer of each network had only one unit with a sigmoid acti-
vation, which indicates a probability of driver confusion. All
the neural networks were trained using the stochastic gradient
decent method, where the development set was used to select
the best training parameters.

For both training and testing the RNN and LSTM RNNs,
sequences of 20 frame input chunks were used with a 10
frame left context ”warmup” period. In pilot experiments this
yielded similar results to testing on one long input sequence.
The LR, DNNs, RNNs and LSTMs were trained using the
Chainer neural network toolkit [12].

4.3. Evaluation Metrics

The max F-score (MaxF) and the average precision (AP) were
used for the evaluation. MaxF corresponds to maximum value
of F-score on the precision/recall curve. The average preci-
sion corresponds to the area under the precision/recall curve.
As noted above, our data has a large imbalance between pos-
itive and negative samples, and in general we would expect
this to be true for driving - drivers are in a normal (negative
confusion) state much more often than they are in a confused
state. It is well known that ROC curves can be misleading for
imbalanced data, because the useful operating region for the
model is a very narrow area at one edge of the ROC curve.
Therefore, we use PR curves and Average Precision instead
for evaluation.

4.4. Evaluation Results

The experimental results are shown in Table 2 and Fig. 4.
The models were selected based on the best AP for the dev
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Fig. 6. Precision/Recall curve for DNN.

set. The values in the table represent the max F-score (MaxF)
and the average precision (AP) for each classifier. For the LR
model, we obtained 0.23 max F-score for the test set. Next we
tested DNNs and obtained 0.26 max F-score, which is larger
than LR. The simple RNN classifier performance was compa-
rable to that of the DNN. Finally, we tested the LSTM RNN
and obtained a significant improvement to 0.31. We also mea-
sured AP. The average precision corresponds to the area under
the precision/recall curve. Similarly to the MaxF results, the
LSTM RNN significantly outperformed the other classifiers.
This improvement is probably due to the LSTM’s greater abil-
ity to make use of long time context.

However, the MaxF and AP values obtained in these ex-
periments are still not high enough to use for actual applica-
tions, but show some promising predictability given the small
data size. Driver-dependent factors may contribute too much
variance relative to the detectable confusion signal, but such
problems may be greatly diminished with larger training data.

This can be seen in the performance for individual drivers.
Figures 5-8 show the precision/recall curves for all drivers,
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Fig. 7. Precision/Recall curve for RNN.
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Fig. 8. Precision/Recall curve for LSTM.

one figure per classifier. The performance of the different
models for different drivers can be compared in Figure 9,
which shows the AP score for each driver for each model.
Here we compare an additional type of LSTM, trained and
tested in 10-frame chunks (LSTM-10) in addition to the stan-
dard LSTM with 20-frame context used elsewhere. The per-
formance of the models varied greatly between drivers. The
confusion status was moderately detected for some drivers,
while it was detected poorly for Drivers 1, 6, 7 and 11. Driver
9 was the best case for the LR, DNN and RNN classifiers, but
the 20-frame LSTM classifier performed much worse than the
10-frame version for Driver 9. For Driver 5, the reverse was
true: the performance of the LSTM model was good, while
LSTM-10 had much worse performance. On the other hand,
for Driver 10, both LSTM classifiers had good performance
while the other classifiers performed poorly. Apparently vari-
ation in the temporal context dependencies of driver behavior
may cause the optimal LSTM context size to differ between
drivers. If this is true, then a mismatch between training and
test drivers could give rise to the difference in performance



Fig. 9. Comparison of Average Precision among the drivers.

seen for Drivers 5 and 9 LSTM’s. Perhaps this could be miti-
gated by allowing the model to handle context in a more flex-
ible way between drivers, or it might just reflect an idiosyn-
crasy of a relatively small data-set.

Overall, the wide range of performance across drivers in-
dicates that some driver dependency needs to be incorporated
into the models to improve the performance for many drivers.
We believe that using a corpus with both more drivers, and
much more data for each driver would help the models incor-
porate various drivers’ behaviors. Additionally, model param-
eters could be adapted to incorporate different context sensi-
tivities for each driver.

5. CONCLUSION

We applied several different classifier types to driver confu-
sion detection using data collected from heterogeneous sen-
sors and driving conditions in real driving. The LSTM RNN
outperformed logistic regression, feed-forward neural net-
works and simple RNNs. This may be because of the LSTM’s
greater ability to make use of long time context, and may in-
dicate that such context is important to detect driver’s status.
Future work will include LSTMs trained using features from
more sensors including audio, video and other recognition
systems’ outputs.
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