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Abstract
In this paper, we develop a dynamic mode decomposition algorithm that is robust to both
inlier and outlier noise in the data. One application of our algorithm is the identification
of multiple crowd or traffic flows from compressed video streams. Our method uses motion
vectors that are readily available in the compressed bitstream, and do not require computa-
tionally expensive optical flow. These motion vectors are known to be very noisy, however,
our algorithm is able to extract the underlying dynamical systems that define the flows. We
formulate a rank regularized dynamic mode decomposition problem with total least squares
constraints to estimate the Koopman modes of the motion dynamics. The estimated Koop-
man modes are then used to analyze the stability of the system and extract steady state
and transient flows. We demonstrate the improved performance of our approach compared to
state of the art schemes and illustrate it applicability in identifying transient and steady-state
flows in real video sequences.
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ABSTRACT
In this paper, we develop a dynamic mode decomposition algorithm
that is robust to both inlier and outlier noise in the data. One applica-
tion of our algorithm is the identification of multiple crowd or traffic
flows from compressed video streams. Our method uses motion vec-
tors that are readily available in the compressed bitstream, and do not
require computationally expensive optical flow. These motion vec-
tors are known to be very noisy, however, our algorithm is able to
extract the underlying dynamical systems that define the flows. We
formulate a rank regularized dynamic mode decomposition problem
with total least squares constraints to estimate the Koopman modes
of the motion dynamics. The estimated Koopman modes are then
used to analyze the stability of the system and extract steady state
and transient flows. We demonstrate the improved performance of
our approach compared to state of the art schemes and illustrate it
applicability in identifying transient and steady-state flows in real
video sequences.

Index Terms— Dynamic mode decomposition, crowd analysis,
Koopman modes, low rank matrix recovery, total least squares.

1. INTRODUCTION
The identification of motion flows within dense crowds of people in
surveillance video sequences is an essential tool in crowd safety and
crowd control tasks. Surveillance video of crowded scenes exhibit
complex crowd behaviors even under normal situations. For exam-
ple, crowd flows in large congested train stations can appear chaotic.
However, it is often the case that low dimensional dynamical struc-
tures exist in the observed flow. Such structures are desirable to
identify and segment from unstructured and transient flows. The au-
tomatic identification of different types of crowd flows aids in the
monitoring and prediction of hazardous situations in crowded envi-
ronments. Similarly, the identification of anomalous flows in traf-
fic scenes helps management facilities predict and react to potential
congestion.

Of particular interest is the detection and estimation of flows us-
ing motion information extracted from video streams. Considering
individuals in a crowd scene or cars in a traffic scene as particles
in a flow, the motion vectors of a single video frame correspond to
observations of the velocities of particles at a time instance in the
flow. Motion vectors can be computed using optical flow estimation
applied to the video texture, or they can be parsed directly from the
compressed domain of encoded video bitstreams. However, the ex-
tracted motion vectors are generally noisy and do not reflect the true
motion of the particles. This is especially true in the case of com-
pressed domain motion vectors which can include many outliers due
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to the rate-distortion optimization employed by most modern video
encoders.

There as been extensive research in the field of crowd analysis.
We briefly review some related techniques in Section 2. The dynam-
ics of a crowd can be modeled at the micro (local) and macro (global)
scales as the motion of particles in a fluid flow [1]. We consider in
this paper the global scale and review as an example the Hughes
model in Section 3 which characterizes the flow using a partial dif-
ferential equation (PDE) in terms of the flow density and velocity.
Identifying the system dynamics requires finding solutions to the
PDE given initial and boundary conditions. Alternatively, dynamic
mode decomposition (DMD) has recently been proposed in the fluid
dynamics community as a data-driven and equation-free method for
identifying system dynamics [2, 3]. Given time dependent observa-
tions of a linear or nonlinear dynamical system, DMD computes a
temporal prediction matrix using an Arnoldi-like algorithm that es-
timates the infinite dimensional Koopman operator [4]. The success
of DMD has recently seen broad use in multidimensional time series
analysis including fluid modeling and video foreground background
separation [5, 6]. However, the Arnoldi approach remains sensitive
to noise in the observations. Several techniques have been developed
to overcome the effect of noise in the data including sparsity promot-
ing DMD (sp-DMD) [7] and low rank DMD with total least squares
constraints (tls-DMD) [8]. We provide further details on DMD and
some of the techniques that robustly compute the DMD operator in
Section 4.

In this paper, we propose a factorized low rank DMD algorithm
(flora-DMD) that computes low rank factors of the DMD operator
while satisfying total least squares constraints on the noise and out-
liers. The proposed approach, described in Section 5, scales well
with large problems and addresses the same problem as tls-DMD
with additional robustness to outliers in the data. We use an alternat-
ing direction method of multiplier (ADMM) framework for solving
the rank regularized total least squares problem and demonstrate in
Section 6 that our optimization formulation achieves better robust-
ness to noise on synthetic examples than existing DMD schemes.
Finally, we illustrate the applicability of our scheme for identifying
steady state and transient flows in crowd and traffic video sequences.

2. RELATED WORK ON CROWD ANALYSIS
Early works on crowd analysis rely on particle advection in the op-
tical flow field. [9] applies particle advection to extract Lagrangian
Coherent Structures (LCS). Solmaz et. al. [10] uses LCS to find
interest points in the motion field, and then characterizes the flow
using an eigenvalue analysis of the motion Jacobian around the in-
terest points. The work in [11–14] focus on individual or small group
trajectories and can be considered complementary to our approach.



Other works, such as the present work and [15], [16] focus
on understanding the dominant flow components in the scene. [15]
models the spatio-temporal behavior of the flow using mixture of
Gaussian based clustering followed by an extrapolation based on
conditional expectations. [16] assumes a strong affinity in the mo-
tion field and similarly constructs a probabilistic framework which
can be manipulated using Lie algebra. Our method is less restrictive
since it does not impose any geometric restrictions on the scene.

Another closely related branch of work is dynamic texture anal-
ysis, especially methods from [17] and [18]. Similar to [17], [18] we
model the flow field as a dynamical system with a very high dimen-
sional output. The advantage of our approach is that we do not limit
our model to linear systems. We use the linear approximation opera-
tor DMD of the Koopman operator, which can also capture nonlinear
dynamics in the data [2].

3. DYNAMICAL SYSTEM MODELING
When the density of a crowd is high, the motion of individuals in
the crowd can be modeled as a fluid flow. One commonly used
model for crowd analysis is the Hughes model [19] that models
a crowd flow as a function of its density ρ(x, y, t) and velocity
(u(x, y, t),v(x, y, t)) as follows

∂

∂t
ρ+

∂

∂x
(ρ · u) +

∂

∂y
(ρ · v) = 0, (1)

where u(x, y, t) and v(x, y, t) are the respective velocities in the
horizontal and vertical directions of every point (x, y) and time t.

The solution to (1) results in the crowd density map ρ and con-
sequently the velocity fields (u,v) for all (x, y, t) that satisfy given
initial and boundary conditions. Although, the dimensionality of
the differential equations governing the evolution of ρ and (u,v) is
theoretically infinite, it is often the case that the flows exhibit low
dimensional behavior. Denote by x(t) the low dimensional state
variable at time t, for which an observable vector y(t) = G(x(t))
corresponds to stacking of the density and velocity fields for all po-
sitions x and y at time t. The function G is a mapping from the low
finite dimensional manifold X on which x evolves to the space of
observables. Then, the solution to (1) projected onto X determines
the transient response and stability of the corresponding dynamical
system generally characterized by

ẋ(t) = F (x(t)), (2)

where F (·) is some mapping in the low dimensional manifold X on
which the dynamical system evolves. If (1) is further descretized in
time, then the dynamical system evolution is characterized by

xk+1 = F (xk), (3)

where k is a time index.

4. KOOPMAN AND DYNAMIC MODE DECOMPOSITION
4.1. The Koopman operator
The Koopman operator [2, 4] is a linear operator K that satisfies the
equation

G(F (xk)) = KG(xk)
⇔ yk+1 = Kyk.

(4)

Although the dynamical system is nonlinear and evolves on a finite
dimensional manifold, the Koopman operator is linear but infinite
dimensional. Spectral analysis of the Koopman operator can be used
to decompose the flow in terms of Koopman modes and associated
Koopman eigenvalues that determine the temporal behavior of the
corresponding Koopman mode.

4.2. Dynamic mode decomposition

Estimating the Koopman modes can be achieved through dynamic
mode decomposition (DMD). Consider the data snapshot matrices

Y1 =

 | |
y0 . . . ym−1

| |

 ; Y2 =

 | |
y1 . . . ym
| |

 .
(5)

The dynamic mode decomposition finds the best fit matrix K that
satisfies the relation

Y2 ≈ KY1. (6)

Moreover, the eigenvectors and eigenvalues of K approximate the
Koopman modes and Koopman eigenvalues. In what follows we
shall use the terms Koopman modes and DMD modes interchange-
ably.

Let uk and vk be the horizontal and vertical motion vectors of
all spatial blocks in a video frame indexed by k. We construct the
observation yk = [uTk ,v

T
k ]T by vertically stacking the horizontal

and vertical motion vectors in a vector yk. The time evolution of the
motion vectors can now be modeled using an operator K by fitting
the data to the one step prediction model

yk = Kyk−1. (7)

Notice that (7) ensures that the same operator K models the evolu-
tion of both uk and vk.

Next, suppose that we havem+1 observations of motion vectors
from m + 1 video frames. We can then compute the operator K by
forming the data matrices Y1 and Y2 similar to (5) and finding the
operator Kls that achieves the least squares fit, i.e.,

Kls = arg min
K

1
2
‖Y2 −KY1‖2F

= Y2Y
†
1,

(8)

where the superscript † indicates the Moore-Penrose pseudo-inverse
of a matrix, and ‖ · ‖F is the Frobenius norm of a matrix.

If the motion vectors correspond to the true motion of pedestri-
ans in the video sequence, then the operator Kls captures the full
dynamics of the flow in the system. However, motion vectors, espe-
cially those extracted from an encoded sequence, are generally very
noisy and often contain motion vectors that do not correspond to
the true motion but are specified by the rate-distortion optimization
engine employed in the video encoder.

4.3. Sparsity promoting DMD and total least squares DMD

Sparsity promoting DMD (sp-DMD) [7] is a two-step algorithm
where in the first step all the modes are computed from the data,
and in the second step a sparse subset of those modes are selected
to explain the data. The first step performs a rank-r singular value
decomposition (SVD) of the data matrix Y1 = UΣVT to compute
the reduced dimension DMD matrix

J := UTY2VΣ−1

= ΨDµΨ†,
(9)

where the second equality is an eigendecomposition of J, Ψ is the
matrix of eigenvectors, and Dµ is the diagonal matrix of eigenvalues
µ of J. The second step computes a set of sparse coefficients α that
select the active modes in the data. This is achieved by solving the
following sparse coding problem

min
α
‖Y1 −UΨDαVµ‖F + γ‖α‖1, (10)



where Dα is a diagonal matrix with α on the diagonal, and Vµ is the
Vandermond matrix of the vector µ. The sp-DMD approach works
quite well where the data is contaminated with relatively small noise.
However, its performance suffers when large noise, or outliers are
present in the data. This is primarily due to the PCA dimensionality
reduction applied in the first step of the algorithm resulting in noisy
modes. Therefore, the second step cannot find a sparse-enough sub-
set to explain the observations.

Total least squares DMD (tls-DMD) [8] is another recent method
that strives to eliminate noise and find the true poles (eigenvalues)
of the DMD operator from the data. In a nutshell it obtains bet-
ter accuracy by applying a simple lifting to the data and partial
SVD. Consider the lifted data matrix Ylift = [YT

1 ,Y
T
2 ]T in 2N

dimensional space, the tls-DMD method first computes an SVD of
Ylift = ŪΣ̄V̄T . The matrix Ū is then restricted to the first r
columns and split into two submatrices Ūr = [ŪT

1,r, Ū
T
2,r]

T , where
Ū1,r and Ū2,r is each of size N × r. The tls-DMD operator is then
computed as

Ktls = Ūr,2Ū
†
r,1. (11)

This method is effective in the cases where the order of the under-
lying system is known and when the noise is white Gaussian dis-
tributed. However, it also suffers when the data is contaminated with
outliers.

5. FACTORIZED LOW-RANK DMD

We now introduce our robust DMD algorithm. Suppose that there
exist noise-free velocity observations yk measuring the true motion
of pedestrians in the scene and let the motion vectors zk correspond
to noisy observations such that

zk + ek = yk, (12)

where ek is the additive noise. Let E1,E2, Z1, Z2 and Y1,Y2 be
as in (5) for ek, zk and yk, respectively. Then the Koopman operator
corresponding to the noise-free dynamics is given by the total least
squares constraint

Y2 = KY1

⇔ Z2 + E2 = K (Z1 + E1) .
(13)

However, problem (13) is non-convex and ill-posed since only
Z1 and Z2 are observed and K, E1 and E2 are unknowns. To rem-
edy this situation, we invoke the following priors in our problem.
Highly complex systems can be accurately modeled by low-order
dynamics. This translates into the prior that the operator K model-
ing the evolution of a noise-free system has a low rank. The second
prior derives from the definition of the matrices E1 and E2. Denote
by Im−1 the identity matrix of size (m − 1) × (m − 1), and let
I0 = [0|Im−1]T and I0 = [Im−1|0]T be selection operators that
respectively remove the first column and the last column of a matrix
with m columns. Then, E1 and E2 satisfy the relation

E1I0 = E2I0. (14)

We pose the low-rank dynamic mode decomposition problem
with total least squares constraints as follows

min
K,E1,E2

‖K‖∗ + γ
2

(
‖E2‖2F + ‖e0‖22

)
subject to Z2 + E2 = K (Z1 + E1)

E1I0 = E2I0,
(15)

where e0 is the first column in E1, γ is a regularization parameter,
and ‖K‖∗ is the nuclear norm equal to the sum of the singular values

of a matrix K.
Let N be the number of motion blocks in a video frame. Then

the size of the operator K will be equal toN×N which can become
prohibitively expensive to store and compute for high resolution
videos. Therefore, we replace K with its rank r factors L ∈ RN×r
and R ∈ RN×r , such that K = LRT to reduce the computational
complexity. Moreover, we employ the nuclear norm proxy proposed
in [20] which replaces the nuclear norm of a matrix with the average
of the square of the Frobenius norms of its low rank factors

‖K‖∗ = inf
L,R:K=LRT

1

2

(
‖L‖2F + ‖R‖2F

)
. (16)

Consequently, the factorized low-rank DMD problem with total least
squares constraints (flora-DMD-tls) is formulated as follows

min
L,R,E1,E2

1
2

(
‖L‖2F + ‖R‖2F

)
+ γ

2

(
‖E2‖2F + ‖e0‖22

)
subject to Z2 + E2 = LRT (Z1 + E1)

E1I0 = E2I0,
(17)

which we solve using an alternating direction method of multiplier
(ADMM) algorithm formulated below in unconstrained form.

max
P,Q,W

min
L,R,C,E1,E2

1
2
‖L‖2F + 1

2
‖R‖2F + γ

2

(
‖E2‖2F + ‖e0‖22

)
+µ

2
‖Z2 + E2 − LC + P/µ‖2F

+ η
2
‖C−RT (Z1 + E1) + W/η‖2F

+ ρ
2
‖E1I0 −E2I0 + Q/ρ‖2F

(18)
The update steps of (18) are shown in detail in Algorithm 1. Here
we introduced the temporary variable C to simplify the update steps
of L and R. The variables P, Q, W are Lagrange multipliers, and
µ, η, and ρ are the augmented Lagrangian parameters.

Algorithm 1 Factorized low-rank DMD with total least squares
(flora-DMD-tls)

1: Input Z1, Z2, γ, R, maxiter, c > 1
2: Output L, R, E1, E2

3: Initialize j = 0, µ = 1, η = 1, ρ = 1, C = RT (Z1), E1 = 0,
E2 = 0,
P = 0, Q = 0, W = 0

4: for j = 0 to maxiter do
5: L = (P + µ(Z2 + E2))CT

(
Ir + µCCT

)−1

6: C = (ηIr+µLTL)−1
(
LT (P+µ(Z2 +E2))+ηRT (Z1 +

E1)−W
)

7: R =
(
IN + η(Z1 + E1)(Z1 + E1)T

)−1
(Z1 + E1)(ηC +

W)T

8: E2I0 =
(
−µ(Z2−LC+ 1

µ
P)+(ρE1I0−Q)IT0

)
/(γ+µ+ρ)

9: em = −µ(Z2 − LC + 1
µ
P)/(γ + µ)

10: E1I0 = (ρIN + ηRRT )−1
(
ηR(C − RTZ1 + 1

η
W) +

ρ(E2I0 + Q/ρ)I0T
)

11: e0 = (γIN + ηRRT )−1
(
ηR(C−RTZ1 + 1

η
W)

)
12: P = P + µ(Z2 + E2 − LC)
13: W = W + η(C−RT (Z1 + E1))
14: Q = Q + ρ(E1I0 −E2I0)
15: µ = cµ, η = cη, ρ = cρ
16: end for

Steps 7, 10, and 11 in Algorithm 1 involve inverting large N ×
N matrices, which can be prohibitive when N � m. Instead, we
utilize the matrix inversion lemma to reduce the complexity of the



computation. The corresponding update steps are shown below:

DR = ( 1
η
Im + (Z1 + E1)T (Z1 + E1)),

R =
(
IN − (Z1 + E1)D−1

R (Z1 + E1)T
)
(Z1 + E1)(ηC + W)T

(19)
DE = ρ2( 1

η
Ir + 1

ρ
RTR),

E1I0 =
(

1
ρ
IN −RD−1

E RT
)(
ηR(C−RTZ1 + 1

η
W)

+ρ(E2I0 + Q/ρ)I0T
)

(20)
De = γ2( 1

η
Ir + 1

γ
RTR),

E1I0 =
(

1
γ
IN −RD−1

e RT
)(
ηR(C−RTZ1 + 1

η
W)

) (21)

The problem defined in (17) addresses the case where the noise
is Gaussian distributed. If in addition, the measurements Z are con-
taminated with outlier sparse noise, we propose the following robust
formulation to the problem

min
L,R,E1,E2,S1,S2

1
2

(
‖L‖2F + ‖R‖2F

)
+ γ

2

(
‖E2‖2F + ‖e0‖22

)
+ λ‖S2‖1

subject to Z2 + E2 + S2 = LRT (Z1 + E1 + S1)
E1I0 = E2I0
S1I0 = S2I0,

(22)
where the variables S1 and S2 capture the outlier noise in the data,
and γ and λ are regularization parameters. The solution to (22) can
also be obtained using an ADMM algorithm similar to Algorithm 1
which we omit from the presentation. We refer to problem (22) as
robust flora-DMD-tls.

The total least squares constraints in both flora-DMD-tls (17)
and robust flora-DMD-tls (22) represent exact, albeit non-convex
constrained, modeling of the observed data. We evaluate the validity
of these models in the next section by comparing with the convex
constrained problem

min
L,R,E2

1
2

(
‖L‖2F + ‖R‖2F

)
+ γ

2
‖E2‖2F

subject to Z2 + E2 = LRTZ1,
(23)

where the E1 term is dropped from the optimization. We refer to
problem (23) as flora-DMD-ls.

6. NUMERICAL RESULTS

We test the performance of our proposed algorithms on synthetic
data and on real crowd and traffic videos. As a benchmark, we
compare the denoising performance and the prediction performance
with that of sp-DMD and tls-DMD using the synthetic dataset. Then
we apply our robust flora-DMD-tls algorithm to compressed domain
motion vectors extracted from HEVC [21] encoded video sequences
from the UCF crowd analysis dataset [10].

6.1. Synthetic data

We generate a multidimensional time series Y of length 100 with kth
column yk ∈ R200 driven by a rank 10 one-step prediction operator
K with eigenvalues bounded in magnitude by the interval [0.3, 1.01].
The vector y1 is initialized with independent identically distributed
(i.i.d.) standard Gaussian random entries drawn from N (0, 1). The
series {yk} is then computed using the recursion yk = Kyk−1 for
k ∈ {2 . . . 100}.

Next, we generate noisy observations zk = yk + ek + sk by
adding dense white Gaussian noise ek with a signal-to-noise-ratio
(SNR) of 14dB, 20dB, 26dB, and 34dB, as well as sparse outliers

sk to the data. The outliers are set such that 10% of the data entries
are corrupted with i.i.d. entries drawn fromN (0, 4). For each noise
setting, we generate 20 instances and run standard DMD, tls-DMD,
sp-DMD, flora-DMD-ls, flora-DMD-tls, and robust flora-DMD-tls
to denoise the data and/or recovery the operator K. Except for sp-
DMD, we perform the recovery while overestimating the rank by
setting the rank of the factors to 16. We have included the recovery
results for when the factors have a correct rank of 10 in the supple-
mentary material. In the flora-DMD algorithms, we set the param-
eters λ = 0.1 and choose the best performance between γ = 1, 5
and 10. In sp-DMD, we set γ = 200 which we found to perform
best in terms of recovery performance. Fig. 1 and Fig. 2 compare
the recovery performance of all algorithms in terms of the denoising
SNR and prediction SNR, respectively, averaged over the 20 instan-
tiations of the noise. Here we define the error in denoising for the
flora-DMD algorithms as the difference yk− (zk + êk + ŝk), where
êk and ŝk are the recovered noise and outliers. For sp-DMD, the
recovered error is the difference between Y and the recovered sig-
nal Ŷsp = UΨDα∗Vµ, where α∗ is the solution of (10). On the
other hand, we use the rank-r truncated lifted data matrix to form the
tls-DMD denoised data matrix Ŷtls = Ūr,2Σ̄V̄T .

The prediction error is computed by driving the noise free sys-
tem using the operator K for another 100 time steps to produce a
ground truth prediction matrix Yp of size 200×100. For each of the
six algorithms defined above, we use the respective estimated DMD
operator to drive the system for 100 time steps using the same initial
vector y100. All six algorithms allow prediction and the error in the
prediction is then computed relative to Yp. The experiments show
that the flora-DMD algorithms result in better denoising and predic-
tion performance compared to sp-DMD and tls-DMD. Moreover, in
the absence of outliers, flora-DMD-tls seems to perform best. On
the other hand, the existence of outliers dominates the performance
of the algorithms favoring robust flora-DMD-tls over the others.
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Fig. 1: Comparison of denoising performance when the data have
(a) no outliers, and (b) 10% of the entries are corrupted by outliers.

Next we show in Fig. 3 the performance of the six algorithms at re-
covering the true poles of the operator K from 20dB SNR data and
with or without outliers. Notice that in all cases, the large magni-
tude poles are captured by all algorithms. When the data contains
no outliers, flora-DMD-tls does a better job at recovering the cor-
rect locations of the poles, including the transient (small magnitude)
poles. On the other hand, the introduction of outliers makes it harder
to capture the correct pole locations. However, the improved denois-
ing and prediction performance of robust flora-DMD-tls compared
to the other algorithms leads us to believe that true poles and modes
lie in the span of the estimated poles and modes.
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Fig. 2: Comparison of prediction performance when the data have
(a) no outliers, and (b) 10% of the entries are corrupted by outliers.
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Fig. 3: Estimated locations of the poles of the DMD operator when
the data are corrupted by 20dB SNR and have (a) no outliers, and (b)
10% of the entries are corrupted by outliers.

6.2. Crowd/traffic videos

Next, we use our robust flora-DMD-tls algorithm to identify steady-
state and transient flows in real video sequences. For this purpose,
we select two sequences from the UCF crowd analysis dataset, one
of a crowd flow and the other of a chaotic traffic flow. We first form
the data matrices Z1 and Z2 by vertically stacking the horizontal and
vertical motion vectors of each frame indexed by k into a vector zk
as discussed in Section 4.2. Therefore, a video sequence containing
N motion blocks and T + 1 video frames produces a data matrix
of size 2N × T . Assuming that the motion vectors are noisy ob-
servations of the velocity field of an underlying dynamical system,
we estimate the Koopman operator Kflora = LRT and perform an
eigendecomposition of Kflora=UΛU† , where U is the eigenvector
matrix and Λ is the diagonal matrix containing the eigenvalues of
K. For all videos we set an operator rank equal to 10. Hence, Kflora

has 10 eigenvectors and 10 eigenvalues.
Our flow analysis is based on separating the flow directions spec-

ified by the columns of U according to the magnitudes of the asso-
ciated eigenvalues in Λ. Therefore, we split the range of magnitudes
between (0, 1.2] into six segments of width 0.2. Next, we compute
the mean flow Z by averaging across the rows of Z2 and evaluate
the projection coefficients α = U†Z of Z onto U. For each seg-
ment indexed by j ∈ {1, . . . 5}, we can now compute an eigenflow
fj ∈ R2N as follows

fj = UΩjΛΩjαΩj , (24)

where Ωj is the set of indices corresponding to the eigenval-
ues and associated eigenvectors having with magnitudes in seg-
ment j. The first N entries in fj contain the horizontal eigen-
motionvectors, while the remaining N entries contain the vertical

eigen-motionvectors.
Figs. 4 and 5 show the transient and steady-state flows identi-

fied by our method when applied to video sequences from the UCF
dataset, namely, Seq31 and Seq20. The figures also show the poles
of the estimated Koopman operators for each video. The first two
transient flows of Seq 31 illustrated in Fig.4 (b) and (c) correspond
to the camera shake. The third transient flow in Fig.4 (d) captures the
motion of people crossing between the dominant steady state flows
captured in Fig.4 (e). Similarly in Seq20, the transient flows of Fig.5
(b) and (c) are also dominated by the camera shake, while the flow in
(c) also captures some transients in the traffic. The flow in Fig.5 (d)
is mainly dominated by the motion of vehicles moving to the bottom
left of the screen, whereas the stead-state flow captures the turning
vehicles as well as the the straight motion towards the top right of the
screen. The complete videos overlaid with the input motion vectors
are available in the supplementary material.

7. CONCLUSION

We developed a factorized low rank dynamic mode decomposition
algorithm (flora-DMD) that is robust to both inlier and outlier noise
in data. Our method estimates the Koopman modes of the data dy-
namics by formulating a rank regularized DMD problem with total
least squares constraints and solving the problem using an ADMM
algorithm. We demonstrated using experiments on synthetic data
that our method enjoys better data denoising and prediction capa-
bilities compared to the recently proposed sp-DMD and tls-DMD.
We also demonstrate the effectiveness of our approach in crowd and
traffic flow analysis. Using only noisy compressed domain motion
vectors as input, our method is capable of denoising the motion vec-
tors and determining steady-state and transient flows in the video
sequences.
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[7] M. R. Jovanović, P. J Schmid, and J. W. Nichols, “Sparsity-
promoting dynamic mode decomposition,” Physics of Fluids
(1994-present), vol. 26, no. 2, pp. 024103, 2014.

[8] S. Dawson, M. Hemati, M. Williams, and C. Rowley, “Char-
acterizing and correcting for the effect of sensor noise in the
dynamic mode decomposition,” Bulletin of the American Phys-
ical Society, vol. 59, 2014.



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b) (c) (d) (e)

Fig. 4: Detected eigenflows for sequence number 31 from the UCF crowd dataset. (a) Positions of the computed eigenvalues, (b) transient
flow of segment (0, 0.2], (c) transient flow of segment (0.4, 0.6], (d) transient flow of segment (0.8, 1), (e) stead-state flow.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b) (c) (d) (e)

Fig. 5: Detected eigenflows for sequence number 20 from the UCF crowd dataset. (a) Positions of the computed eigenvalues, (b) transient
flow of segment (0, 0.2], (c) transient flow of segment (0.4, 0.6], (d) transient flow of segment (0.6, 0.8), (e) stead-state flow.

[9] S. Ali and M. Shah, “A Lagrangian particle dynamics approach
for crowd flow segmentation and stability analysis,” in Com-
puter Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on. IEEE, 2007, pp. 1–6.

[10] B. Solmaz, B. E. Moore, and M. Shah, “Identifying behav-
iors in crowd scenes using stability analysis for dynamical sys-
tems,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 34, no. 10, pp. 2064–2070, 2012.

[11] B. T. Morris and M. M. Trivedi, “Trajectory learning for ac-
tivity understanding: Unsupervised, multilevel, and long-term
adaptive approach,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 33, no. 11, pp. 2287–2301,
2011.

[12] K. Kim, D. Lee, and I. Essa, “Gaussian process regression
flow for analysis of motion trajectories,” in Computer Vision
(ICCV), 2011 IEEE International Conference on. IEEE, 2011,
pp. 1164–1171.

[13] A. Nakhmani, A. Surana, and A. Tannenbaum, “Macroscopic
analysis of crowd motion in video sequences,” in Decision and
Control (CDC), 2014 IEEE 53rd Annual Conference on. IEEE,
2014, pp. 1822–1827.

[14] F. Zhu, X. Wang, and N. Yu, “Crowd tracking with dynamic
evolution of group structures,” in Computer Vision–ECCV
2014, pp. 139–154. Springer, 2014.

[15] I. Saleemi, L. Hartung, and M. Shah, “Scene understanding by
statistical modeling of motion patterns,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on.
IEEE, 2010, pp. 2069–2076.

[16] D. Lin, E. Grimson, and J. Fisher, “Learning visual flows:
A Lie algebraic approach,” in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 747–754.

[17] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic
textures,” International Journal of Computer Vision, vol. 51,
no. 2, pp. 91–109, 2003.

[18] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and
segmenting video with mixtures of dynamic textures,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol.
30, no. 5, pp. 909–926, 2008.

[19] R. L. Hughes, “A continuum theory for the flow of pedestri-
ans,” Transportation Research Part B: Methodological, vol.
36, no. 6, pp. 507 – 535, 2002.

[20] N. Srebro, Learning with matrix factorizations, Ph.D. thesis,
Cambridge, MA, USA, 2004, AAI0807530.

[21] B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, Y. K. Wang,
and T. Wiegand, High Efficiency Video Coding (HEVC) text
specification draft 10, JCT-VC of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, Jan. 2013.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-087.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


