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Abstract
We consider a 2D imaging problem where a perturbed mono-static radar is used to detect
localized targets situated in a region of interest. In order to deal with position-induced out-
of-focus, we proposed a sparsity-driven auto-focus imaging approach in which each radar
measurement is modeled as a superposition of weighted and delayed target signatures scat-
tered from the corresponding target phase centers. We iteratively exploit the position-related
delays and the target signatures by analyzing data coherence, and consequently form an
adaptive projection matrix of the radar measurements. By imposing sparsity on the scat-
tering weights, a sparse image and a dense image, without and with the target signatures
respectively, are reconstructed. Compared to existing auto-focus methods, our approach sig-
nificantly improves radar focus performance in imaging localized targets, even under position
perturbations up to 10 wavelengths of the radar central frequency. We validate our algorithm
with simulated noisy data.
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Abstract—We consider a 2D imaging problem where a perturbed
mono-static radar is used to detect localized targets situated in a
region of interest. In order to deal with position-induced out-of-focus,
we proposed a sparsity-driven auto-focus imaging approach in which
each radar measurement is modeled as a superposition of weighted
and delayed target signatures scattered from the corresponding target
phase centers. We iteratively exploit the position-related delays and the
target signatures by analyzing data coherence, and consequently form
an adaptive projection matrix of the radar measurements. By imposing
sparsity on the scattering weights, a sparse image and a dense image,
without and with the target signatures respectively, are reconstructed.
Compared to existing auto-focus methods, our approach significantly
improves radar focus performance in imaging localized targets, even
under position perturbations up to 10 wavelengths of the radar central
frequency. We validate our algorithm with simulated noisy data.
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I. INTRODUCTION

Radar imaging is an inverse problem to determine the reflectivity
of a region of interest (ROI) given the transmitted source signals, the
corresponding received echoes, and the transmitting and receiving
antenna positions. When the antenna positions are known, a simple
delay-and-sum method is able to perform well-focused imaging by
compensating the phase changes of the received echoes.

However, in radar applications, it is very common that the exact
antenna positions are not available due to environment interference
or imprecise motion control of the radar platform. For example,
for a vehicle mounted mono-static radar system, as the vehicle is
moving along some predesigned trajectory, position perturbations
are introduced due to the non-smooth road surface or the varying
driving velocity, etc. These position perturbations can be as large as
several wavelengths of the radar center frequency. Although modern
navigation systems such as the Global Positioning System (GPS) can
measure positions with a high accuracy, the range of resulting errors
is still beyond the requirements of high-resolution radar imaging. In
such a situation, if the phase changes are not well compensated in
the imaging process, the final radar images will be out of focus.

Auto-focus has been a challenging problem in the radar imaging
field as well as other array imaging fields of different sensor modal-
ities. Existing radar auto-focus methods can be roughly grouped into
two categories. One is based on phase compensation [1]–[3], and
the other is based on position or motion compensation [4]–[6]. The
phase-compensation based methods seek to compensate data phases
in terms of different merits such as the entropy or the total energy of
residuals, to generate an overall well-focused image. These methods
generally work well in compensating environment-induced phase
distortions, but poorly in compensating antenna position-induced
phase errors since the position-induced phase errors are generally
different for different imaging positions in the ROI. The position

or motion compensation based methods, on the other hand, seek
to compensate position errors by analyzing radar movements such
that the position-induced phase errors can be well corrected across
the whole ROI [4], [5]. These motion-compensation methods are
effective for fast-moving radar platforms in deblurring radar images,
but not suitable for radars with random position perturbations. In
recent years, with the introduction of compressive sensing (CS) to the
radar imaging community, auto-focus imaging is formulated as a CS
reconstruction problem [6]–[8], where radar signals are modeled as
CS measurements of the underlying sparse reflectivity of the ROI via
a perturbed projection matrix, and each target in the ROI corresponds
to a cluster of non-zero scattering points to be reconstructed. The CS
reconstruction errors, although bounded by a factor of the positions
errors [9], [10], increase dramatically when the unknown position
errors are comparable to the radar central wavelength. A valid CS
solution is achievable only when the position errors are much smaller
than the wavelength. When the position errors are in the order of
several wavelengths, the CS-based methods typically fail to converge
to the right solution due to the phase wrapping issue.

In this paper, we propose an auto-focus imaging approach based
on data coherence analysis and image sparsity. In the approach,
each radar target is characterized by a single phase center and its
own scattering signature. Radar measurements are then modeled as
weighted sums of delayed target scattering signatures, with weights
associated with the corresponding target scattering coefficients and the
antenna patterns, and delays related to distances between the target
phase centers and the unknown antenna positions. We then iteratively
exploit the delays using data coherence analysis and adaptively extract
the target signatures to generate the bases of the CS projection matrix.
The focused radar image is then reconstructed by imposing sparsity
on the weights. The main advantage of our sparsity-driven autofocus
approach over the other CS-based autofocus algorithms is that our
approach is capable of compensating random position perturbations
up to several wavelengths and yielding well-focused images. We
verify our approach with a set of simulated noisy data.

II. DATA ACQUISITION MODEL

We consider a 2D radar imaging problem in which a mono-static
moving radar platform is utilized to detect localized targets situated in
a ROI. We use p(t) and P (ω) to denote the transmitted time-domain
source pulse and its frequency spectrum respectively, where

P (ω) =

∫
R
p(t)e−jωt dt. (1)

For a localized target whose phase center is situated at l, the scattered
field at r′ due to the excitation pulse emitted at r can be estimated
using the first order Born approximation as [11]

Yl(ω, r, r
′) = P (ω)S(ω, l)G(ω, l, r)G(ω, r′, l) + o, (2)



where S(ω, l) is a complex-valued function of frequency and it
accounts for all terms introduced by the asymptotic approximation;
G(ω, l, r) accounts for propagation from the transmitter at r to the
target at l; G(ω, r′, l) accounts for propagation from the target at l
to the receiver at r′; and o is the received noise. Further more, for
the mono-static radar we assume r′ = r. Consequently, G(ω, l, r)
and G(ω, r′, l) can be unified and represented by

G(ω, l, r) = G(ω, r′, l) = a(r, l)e−jω‖r−l‖/c, (3)

where a(r, l) accounts for the over all magnitude attenuation caused
by the antenna beampattern and the propagation between r and l, and
e−jω‖r−l‖/c is the phase change term of the received signal relative
to the source pulse after propagating distance ‖r − l‖ at speed c.

Without loss of generality we assume there are up to K localized
targets, each with a phase center located at a pixel in the ROI image.
Let ik ∈ {1, ..., I} be the pixel index of the kth target and lik be
the corresponding location. Ideally the mono-static radar performs
as a uniform linear array, with the nth antenna located at rn, for
n = 1, 2, ...N . Due to position perturbations, the actual measurements
are taken at r̃n = rn+εn, where εn stands for the unknown position
perturbation of the nth antenna with 0 ≤ |εn| ≤ 10λ, and λ is the
wavelength of the radar central frequency. The overall signal received
by the perturbed array is then a superposition of scattered waves from
all targets in the ROI. We consider measurements at discrete frequency
ωm, where m = 1, 2, ...,M . After range compression, we achieve an
M ×N data matrix Ỹ whose entry (m,n) is

Ỹm,n =

K∑
k=1

|P (ωm)|2S(ωm, lik )a
2(r̃n, lik )e

−jωm

2‖r̃n−lik‖
c . (4)

To simplify the expression of acquired data, we define an M×1 unit
vector

φik =



|P (ω1)|2S(ω1,lik
)∑M

m=1 |P2(ωm)S(ωm,lik
)|2

|P (ω2)|2S(ω2,lik
)∑M

m=1 |P2(ωm)S(ωm,lik
)|2

...
|P (ωM )|2S(ωM ,lik

)∑M
m=1 |P2(ωm)S(ωm,lik

)|2


, (5)

an M × 1 exponential vector

ψ̃
(n)
ik

=


e−jω1

2‖r̃n−lik‖
c

e−jω2

2‖r̃n−lik‖
c

...

e−jωM

2‖r̃n−lik‖
c


, (6)

and a scaler

x
(n)
ik

= a2(r̃n, lik )

M∑
m=1

|P 2(ωm)S(ωm, lik )|
2. (7)

The nth column of Ỹ can then be written in a matrix-vector form as

ỹ(n) =

K∑
k=1

(φik ◦ ψ̃
(n)
ik

) · x(n)ik
= (Φ ◦ Ψ̃(n))x(n) = Γ̃(n)x(n), (8)

where the symbol ◦ represents element-wised product. Here Γ̃(n) =
[φi1 ◦ ψ̃

(n)
i1
, ..., φiK ◦ ψ̃

(n)
iK

] is an M × K projection matrix of the
nth antenna position, x(n) = [x

(n)
i1
, ..., x

(n)
iK

]T is a K × 1 vector of
target scattering coefficients. It is important to note that φik is a target
signature vector independent of antenna positions.

III. SPARSITY DRIVEN AUTO-FOCUS IMAGING

A. Optimization problem

Since the antenna positions r̃n are not known exactly, imaging
formation that treats the perturbed array as a uniform array generally
yields a de-focused image with its image quality related to the position
perturbations. In order to perform imaging with autofocus, we solve
the following sparsity constrained optimization problem

min
Γ̃(n),x(n)

N∑
n=1

‖ỹ(n) − Γ̃(n)x(n)‖22, s.t. ‖
N∑
n=1

x(n)‖0 < K. (9)

The above optimization problem is similar to the group sparsity
formulation that is often used in CS imaging [12] in the aspect that all
unknown vectors share the same non-zero support but have generally
different values within the support. However, the auto-focus problem
we are trying to solve here is more general than the group sparsity
problem since the projection matrices are not identical across all
antennas. They share the same target signature vector φik , but are
different in the unknown exponential term ψ̃ik . To solve (9), we re-
organize the data matrix Ỹ as

Ỹ =

K∑
k=1

[x
(1)
ik
φik , ..., x

(N)
ik

φik ] ◦ [ψ̃
(1)
ik
, ..., ψ̃

(N)
ik

] =

K∑
k=1

Eik ◦ Ψ̃ik ,

(10)

where Eik = [x
(1)
ik
· φik , ..., x

(N)
ik
· φik ] is an M × N rank-one

matrix whose dominant left singular vector is exactly φik , and Ψ̃ik =

[ψ̃
(1)
ik
, ..., ψ̃

(N)
ik

] is an M×N exponential matrix parameterized by the
distance between the kth target and the perturbed antennas. Equation
(9) can be equivalently written as

min
Eik

,Ψ̃ik

‖Ỹ −
K∑
k=1

Eik ◦ Ψ̃ik‖
2
F , s.t. rank(Eik ) = 1, (11)

where the subscript F represents the Frobenius norm.

Motivated by the orthogonal matching pursuit algorithm, we solve
the above optimization problem iteratively. In particular, we first
analyze the coherence of measured data to have a warm start in
estimating the first target phase center. Then we repeat the following
steps iteratively, for k = 1, 2...,K, until convergence:

1) Locate lik on the current residual image,
2) Estimate Ψ̃ik with data coherence analysis,
3) Estimate Eik and extract target signature φik ,
4) Update r̃

(n)
k and lik ,

5) Reconstruct a sparse image and a dense radar image,
6) Update residuals for the next iteration.

The details of these steps are explained in the following sub-sections.

B. Data coherence anaysis

Assume that at the kth iteration, we reconstruct an image x̂res,k

using the residual data y
(n)
res,k−1, which is initialized as measured data.

A new target is then detected at location lik where

ik = argmax
i
{|x̂res,k(i)|}. (12)

It is well known that cross-correlation(CC) is a measure of similarity
of two series as a function of the lag of one relative to the other.
The maximum of the CC function indicates the point in time where
the signals are best aligned. In the radar imaging process, the phase



changes, or the lags of scattered waves from a target measured
by perturbed antennas are determined by the distances between the
target and the perturbed antennas. Therefore, the perturbations can be
estimated by analyzing the coherence of the corresponding scattered
signals via the CC function. To reduce the ambiguity of the CC
function, we extract the kth target response using time gating

ŷ
(n)
ik

(t) =

{
y
(n)
res,k−1(t), |t− τ (n)ik

| ≤ 20λ
c

0, |t− τ (n)ik
| > 20λ

c

, (13)

where y
(n)
res,k−1(t) is the time-domain residual signal, and τ

(n)
ik

=
2‖rn−lik

‖
c

. Note that the time-gating boundary 20λ
c

is determined
by the maximum position perturbation, and it can be tightened by
considering the smooth trajectory of the radar platform. We then take
ŷ
([N

2
])

ik
(t) as a reference, where [N

2
] is the largest integer not greater

than N
2

, and estimate the time shift of ŷ(n)ik
(t) in (13) as

τ̂n,[N
2
] = argmax

τ

∫
ŷ
(n)
ik

(t) · ŷ([
N
2
])

ik
(t+ τ)dt. (14)

Let τ̃ (n)ik
=

2‖r̃n−lik
‖

c
represent the unknown pulse propagation time

from r̃n to lik and back to r̃n. Based on (14), and assuming the total
propagation time is the same as that of the ideal uniform array, we
have the following equations to solve τ̃ (n)ik

for n = 1, 2, ..., N , such
that the signals in (13) are coherent at lik after back-propagation,{

τ̃
(n)
ik
− τ̃ [N/2]ik

= τ̂n,[N
2
], for n 6= [N

2
]∑N

n=1 τ̃
(n)
ik

=
∑N
n=1 τ

(n)
ik

. (15)

With the solution of (15), ψ̃(n)
ik

is computed using (6).

C. Target signature extraction

Given Ψ̃ik , we determine Eik by minimizing the following
degenerated objective function of (11)

Eik = argmin
E
‖Ỹres,k −E ◦ Ψ̃ik‖

2
F s.t. rank(E) = 1. (16)

This optimization problem can be solved by using the singular value
decomposition (SVD) of Yres,k = Ỹres,k ◦ Ψ̃∗ik [13]:

Yres,k = UkΣkV
H
k , (17)

where the superscripts ∗ and H represent the phase conjugate and
the Hermitian transpose respectively. Based on the SVD, we have

Eik = σk1uk1vk1
H , (18)

where σk1 is the largest singular value of Yres,k representing the
scattering strength of the kth target, uk1 is the corresponding left
singular vector representing the target signature, i.e.

φ̂ik = uk1, (19)

and vH1,ik is the corresponding right singular vector related to the
antenna pattern.

D. Antenna position estimation

Based on the propagation time between each antenna and the k
detected targets, we estimate the antenna positions as

r̂
(n)
k =argmin

r
|〈r − rn,

rn+1 − rn
‖rn+1 − rn‖

〉|2

+
k∑

k′=1

σk′1∑k
k′=1 σk′1

‖r − lik′ ‖ −
τ̃
(n)
ik′
c

2

2

. (20)

The above cost function is composed of two parts. The first part
minimizes the azimuth discrepancy between the nth perturbed antenna
position and its ideal position. The second part restricts the distance
in the range direction according to the propagation time. We use
normalized target strength σk′1/(

∑k
k′=1 σk′1) to weight the second

part considering that stronger scattering targets are more likely well
located and less likely to be interfered by noise than weaker targets in
our iterative approach. While the cost function in (20) is not convex,
a global optimal solution may be achievable using the algorithm in
[14] with a proper initial value of r. Note that since the antenna
locations are determined based on distance measurements, which are
translation and rotation invariant, we assume in our simulations the
mean and the dominant orientation of the perturbed array are the same
as the ideal uniform array. The translation and the rotation effects of
the perturbed antennas can be removed while keeping the distances
between the perturbed antennas and the targets unchanged by a liner
transform on the antenna and target locations simultaneously.

E. Image reconstruction

Given the estimated projection matrix

Γ̂
(n)
k =

[
φ̂i1 ◦ ψ̃

(n)
i1
, φ̂i2 ◦ ψ̃

(n)
i2
, ..., φ̂ik ◦ ψ̃

(n)
ik

]
, (21)

scattering coefficients are computed using least squares

x̂
(n)
k = (Γ̂

(n)
k )†ỹ(n), (22)

where x̂
(n)
k is a k × 1 vector representing the scattering coefficients

of the k detected targets and the superscript † denotes the Penrose-
Moore inverse. A sparse image x̂s,k of the ROI is then reconstructed
by assigning x̂

(n)
k to the corresponding pixel locations, i.e.

x̂s,k(ik′) =

N∑
n=1

x̂
(n)
k (k′), for k′ = 1, ..., k. (23)

For the purpose of target recognition, a dense image preserving target
signature information can also be reconstructed by incorporating
target signatures. We first reconstruct data of the ideal uniform array
using the signatures of the k detected targets as follows

ŷ
(n)
k =

k∑
k′=1

x̂
(n)
ik′
· (φ̂ik′ ◦ ψ

(n)
ik′

), (24)

where ψ(n)
ik′

has the same expression as ψ̃(n)
ik

except using the uniform
antenna position rn. Based on the reconstructed data, we then perform
delay-and-sum imaging to reconstruct a dense image

x̂d,k =

N∑
n=1

(
Ψ(n)

)H
ŷ
(n)
k , (25)

where Ψ(n) is an M × I exponential matrix related to the ideal
uniform array and the whole ROI.

F. Initialization, iteration, and termination

Since the position perturbations can be several-wavelength large,
radar targets may be not resolvable on the initial image without any
phase compensation. In order to have a warm start for our iterative
algorithm, we first perform coherence analysis on measured data such
that their overall lags can be approximately compensated.

To iteratively exploit targets, we compute the residual signal of
the nth antenna for the next iteration by removing the signals of all
the detected targets

y
(n)
res,k = y(n) − Γ̂

(n)
k x̂

(n)
k . (26)
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Fig. 1. Setup of mono-static radar imaging.
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Fig. 2. (a) Emitted pulse and (b) Simulated noisy radar echoes.

The residual image is then updated as

x̂res,k+1 =

N∑
n=1

(Ψ̂
(n)
k )Hy

(n)
res,k, (27)

The algorithm is terminated when the preset sparsity level is met or
no more targets are identified, i.e., mathematically when k = K or
σk1−σk2
σk1

< ε is satisfied. Here σk2 is the second largest singular
value of Yres,k, and ε is a threshold with value 0 < ε < 1.

IV. NUMERICAL SIMULATIONS

The simulation setup is depicted in Fig. 1, where we use black
dots to indicate ideal antenna positions, and x-marks to indicate
perturbed antenna positions. We note that the antenna perturbations
are up to 10λ. A differential Gaussian pulse, illustrated in Fig. 2(a),
is emitted to illuminate the ROI. The received signals are simulated
using the free-space Green’s function with added white Gaussian
noise. Fig. 2(b) shows the simulated signal with PSNR=25dB.

In our auto-focus approach, we set the total number of targets
K = 50 and the stop threshold ε = 0.2. The imaging results
are plotted in Fig. 3 with 30 dB dynamic range. In particular,
Fig. 3(a) shows the imaging result using the conventional delay-and-
sum method, ignoring unknown positions errors. Figure 3(b) shows
the imaging result with initial phase-compensation using coherence
analysis for a focus point at the center of the ROI. We can see that
the image focus is better overall, but the three off-center targets
are still not well focused. In stead, when we use our proposed
approach, the sparse image is reconstructed using (23) as shown in
Fig. 3(c), where each circle represents a sparse target, with the circle
center corresponding to the target phase center and the circle size
proportional to the target scattering coefficient. The dense image with
target signatures using (25) is reconstructed as shown in Fig. 3(d).
For comparison, we plot the result using the conventional delay-and-
sum imaging method given the exactly perturbed position errors in
Fig. 3(e); and the benchmark result of the ideal uniform array in Fig.
3(f). We can notice that our imaging result in Fig. 3(d) with target
signatures is visually very close to that of the ideal uniform array
shown in Fig. 3(f), and even better than the result of known position
errors shown in Fig. 3(e) in reducing target sidelobes. This is because
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Fig. 3. Imaging results: (a) delay-and-sum imaging with uniform array
Green’s function; (b) imaging with initial phase compensation; (c) CS with
image-domain sparsity; (d) dense image with target signatures; (e) imaging
with known position errors; (f) imaging with ideal uniform array data
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Fig. 4. (a) Comparison of ideal, actual, and estimated antenna positions, and
(b) Relative reconstruction error of iterative autofocus algorithm

our image is based on reconstructed data of the ideal uniform array,
which typically exhibits smaller sidelobes than a random array of
the same aperture size [15]. The performance of our method is also
verified by position estimation and relative error reduction. In Fig.
4 (a) we observed good agreement between the estimated and the
actual antenna positions. Figure 4 (b) shows the relative error of the
residual data relative to the original measured data. The curve shows
that our method converges in only several iterations.

V. CONCLUSIONS

We propose a sparsity-driven radar auto-focus imaging approach
for unknown position errors up to several wavelengths. Our auto-
focus approach is realized by building an adaptive projection matrix
of target signatures via data coherence analysis, and imposing sparsity
on the reflectivity to be reconstructed. Both the sparse image of
target phase centers and the dense image with target signatures can
be reconstructed efficiently using our proposed approach. Imaging
results using simulated noisy data of a mono-static radar demonstrate
auto-focus ability and computational efficiency of our approach in
imaging localized targets even under up to 10 wavelength position
perturbations.
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