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Abstract
We present a multi-stream bi-directional recurrent neural network for fine-grained action
detection. Recently, twostream convolutional neural networks (CNNs) trained on stacked
optical flow and image frames have been successful for action recognition in videos. Our
system uses a tracking algorithm to locate a bounding box around the person, which provides a
frame of reference for appearance and motion and also suppresses background noise that is not
within the bounding box. We train two additional streams on motion and appearance cropped
to the tracked bounding box, along with full frame streams. Our motion streams use pixel
trajectories of a frame as raw features, in which the displacement values corresponding to a
moving scene point are at the same spatial position across several frames. To model long-term
temporal dynamics within and between actions, the multi-stream CNN is followed by a bi-
directional Long Short-Term Memory (LSTM) layer. We show that our bi-directional LSTM
network utilizes about 8 seconds of the video sequence to predict an action label. We test on
two action detection datasets: the MPII Cooking 2 Dataset, and a new Shopping Dataset that
we introduce and make available to the community with this paper. The results demonstrate
that our method significantly outperforms state-ofthe-art action detection methods on both
datasets.
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Abstract

We present a multi-stream bi-directional recurrent neu-
ral network for fine-grained action detection. Recently, two-
stream convolutional neural networks (CNNs) trained on
stacked optical flow and image frames have been successful
for action recognition in videos. Our system uses a track-
ing algorithm to locate a bounding box around the person,
which provides a frame of reference for appearance and
motion and also suppresses background noise that is not
within the bounding box. We train two additional streams
on motion and appearance cropped to the tracked bounding
box, along with full frame streams. Our motion streams use
pixel trajectories of a frame as raw features, in which the
displacement values corresponding to a moving scene point
are at the same spatial position across several frames. To
model long-term temporal dynamics within and between ac-
tions, the multi-stream CNN is followed by a bi-directional
Long Short-Term Memory (LSTM) layer. We show that our
bi-directional LSTM network utilizes about 8 seconds of the
video sequence to predict an action label. We test on two
action detection datasets: the MPII Cooking 2 Dataset, and
a new Shopping Dataset that we introduce and make avail-
able to the community with this paper. The results demon-
strate that our method significantly outperforms state-of-
the-art action detection methods on both datasets.

1. Introduction

In this paper, we present an approach for detecting ac-
tions in videos. Action detection refers to the problem of
localizing temporally and spatially every occurrence of each
action from a known set of action classes in a long video se-
quence. This is in contrast to most of the previous work in
video activity analysis, which has focused on the problem
of action recognition (also called action classification). In
action recognition, a temporally segmented clip of a video
is given as input, and the task is to classify it as one of N
known actions. For action recognition, temporal localiza-

tion is not required, as each video clip is trimmed to con-
tain precisely the full duration (from start to finish) of one
action. Furthermore, action recognition algorithms do not
need to consider the case that a presented clip might not
contain any of the known actions. In general, action detec-
tion is more difficult than action recognition. However, it is
worth overcoming that difficulty because action detection is
also much more relevant to real-world applications.

In this work, we focus on fine-grained action detection.
We use the term fine-grained in the same sense as [20] to
indicate that the differences among the classes of actions
to be detected are small. For example, in a cooking sce-
nario, detecting similar actions such as chopping, grating,
and peeling constitutes fine-grained action detection.

We propose a method for fine-grained action detection
in long video sequences, based on a Multi-Stream Bi-
Directional Recurrent Neural Network (MSB-RNN). We
call our neural network multi-stream because it begins
with a convolutional neural network (CNN) that has four
streams: two different streams of information (motion and
appearance) for each of two different spatial frames (full-
frame and person-centric). The video that is input to the net-
work is split into a sequence of brief (6-frame-long) chunks.
The multi-stream network output is a sequence of high-
level representations of these chunks. These are input to
bi-directional long short-term memory (LSTM) [8, 6] units
to analyze long-term temporal dynamics.

Previous deep learning approaches use features that are
computed over the full spatial extent of the video frame.
We show the importance of using a tracked bounding box
around the person to compute features relative to the loca-
tion of the person, in addition to full-frame features, to pro-
vide both location-independent and location-dependent in-
formation. Unlike some previous work that represents mo-
tion information using a sequence of flow fields [23], we in-
stead use a sequence of corresponding pixel displacements
that we call pixel trajectories, as illustrated in Figure 3. The
advantage of pixel trajectories is that the displacements for a
moving point in the scene are represented at the same pixel
location across several frames. We analyze the relative im-
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Figure 1. Framework for our approach. Short chunks of a video
are given to a multi-stream network (MSN) to create a representa-
tion for each chunk. The sequence of these representations is then
given to a bi-directional LSTM, which is used to predict the action
label, Ai. Two streams of the multi-stream network compute CNN
features on pixel trajectories (motion) and RGB channels (appear-
ance) of the full frame. Two additional streams of the multi-stream
network use a tracker to compute motion and appearance features
on a person-centric cropping of the video.

portance of each of these components using two different
datasets. The first is the MPII Cooking 2 Dataset [21], and
the second is a new dataset we introduce containing over-
head videos of people shopping from grocery-store shelves.
Our results on the MPII Cooking 2 Dataset represent a sig-
nificant improvement over the previous state of the art.

Our work includes the following novel contributions:

• We demonstrate the effectiveness of a bi-directional
LSTM for the action detection task. It should be noted
that although LSTMs have been used before for action
recognition and sentence generation, we are the first
to analyze the importance of LSTMs for action detec-
tion. Furthermore, since our LSTM layer is trained on
full-length videos containing multiple actions (not just
trimmed clips of individual actions), it can learn inter-
actions among temporally neighboring actions.
• We train a multi-stream convolutional network that

consists of two 2-stream networks, demonstrating the
importance of using both full-frame and person-centric
cropped video. We use pixel trajectories rather than
stacked optical flow as input to the motion streams,
leading to a significant improvement in results.
• We introduce a new action detection dataset, which we

release to the community with this publication.

2. Related Work
Early work that can be considered action detection in-

cludes methods that detect walking people by analyzing
simple appearance and motion patterns [28, 2]. Several al-
gorithms have been proposed since then for detecting ac-
tions using space time interest points [36], multiple instance
learning [9], or part-based models [26, 10]. By adding an-
other dimension (time) to object proposals, action proposals
have also been used for detection [11, 35].

Until recently, the standard pipeline for most video anal-
ysis tasks such as action recognition, event detection, and
video retrieval was to compute hand-crafted features such as
Histogram of Oriented Gradients (HOG), Motion Boundary
Histogram (MBH), and Histogram of Optical Flow (HOF)
along improved dense trajectories [30], create a Fisher vec-
tor for each video clip, then perform classification using
support vector machines. In fact, shallow architectures us-
ing Fisher vectors still give state-of-the-art results for ac-
tion/activity recognition [17, 31, 21]. Wang et al. [31]
showed that results improved when hand-crafted features
were replaced by deep features that were computed by con-
volutional neural networks whose inputs were images and
stacked optical flow along trajectories. In [23], a two-stream
network was proposed in which video frames and stacked
optical flow fields (computed over a few frames) were fed
to a deep neural network for action recognition. A similar
architecture was used for spatial localization of actions [5]
in short video clips. However, these networks did not learn
long-term sequence information from videos.

Since recurrent neural networks can learn long-term se-
quence information in a data-driven fashion, they have re-
cently gained traction in the action recognition community
[1, 3, 15]. In [1], a 3D convolutional neural network fol-
lowed by an LSTM classifier was successful at classify-
ing simple actions. LSTMs have shown improved perfor-
mance over a two-stream network for action recognition
[3, 15]. Recently, bi-directional LSTMs were also success-
ful in skeletal action recognition [4]. However, even after
using LSTMs, deep learning methods perform only slightly
better than fisher vectors built on hand-crafted features for
many action recognition tasks [15].

Although substantial progress has been made in action
recognition [17, 23, 31, 21], not as much work has been
done in action detection (spatio-temporal localization of ac-
tions in longer videos). The major focus in action detection
has been on using high level semantic information to im-
prove performance, rather than making use of bottom up
cues. Using annotations for the objects being interacted
with [16, 21] or enforcing the grammar of the high level ac-
tivity being performed [13, 18] is generally helpful, though
these approaches may require learning extra detectors for
objects and having prior knowledge about high-level activ-
ities. Sun et al. [25] used LSTMs for action detection al-



though their focus was on leveraging web images to help
with video action detection. Their paper did not analyze the
importance of LSTMs as we do here.

For fine-grained action detection, extracting trajectories
from spatio-temporal regions of interest or using hand-
trajectories has shown significantly improved performance
[16, 21]. In recent work in generating sentences from im-
ages, LSTM networks with attention models [34, 14] learn
to focus on salient regions in an image to generate captions
for the image. Since motion and actor location are impor-
tant clues for knowing where an action is happening, we
were inspired by these methods to add our network’s two
person-centric streams, which capture information from re-
gions of video that are salient due to actor motion.

3. Approach
Our framework is shown in Fig. 1. First, we train 4 inde-

pendent convolutional neural networks, each based on the
VGG architecture [24], to perform the task of action clas-
sification when given as input a single small chunk (6 con-
secutive frames) of video. Two networks (one each for im-
ages and motion) are trained on chunks of full-frame video,
so that the spatial context of the action being performed is
preserved. The other two networks (one each for images
and motion) are trained on frames that have been cropped
to a tracked bounding box. These cropped frames provide
actions with a reference frame, which helps in classifying
them. After these four networks have been trained, we learn
a fully-connected projection layer on top of all four fc7
layer outputs, to create a joint representation for these in-
dependent streams. This multi-stream network is shown in
Figure 2. The multi-stream network is provided with full-
length video (arranged as a temporal sequence of 6-frame
chunks), and the corresponding temporal sequence of out-
puts of the projection layer is then fed into an LSTM net-
work running in two directions. We use a fully-connected
layer on top of each directional LSTM’s hidden states, fol-
lowed by a softmax layer, to obtain an intermediate score
corresponding to each action. Finally, the scores for the two
LSTMs are averaged to get action-specific scores.

There are multiple components in an action detection
pipeline that are critical for achieving good performance.
In this task, we need a model that captures both spatial and
long-term temporal information that are present in a video.
Person tracks (bounding boxes) provide a reference frame
that make many actions easier to learn by removing location
variation from the input representation. Some actions, how-
ever, are location dependent. For scenes shot using a static
camera, as in our test datasets, these actions always occur
at the same image location. For example, washing/rinsing
are almost always done near the sink, and opening a door
would most likely be performed near a refrigerator or a
cupboard. For these reasons, we train two separate deep

Figure 2. Figure depicting our multi-stream network. The multi-
stream network uses two different streams of information (motion
and appearance) for each of two different spatial croppings (full-
frame and person-centric) to analyze short chunks of video. One
network (CNN-T) computes features on pixel trajectories, while
the other one computes features on RGB channels (appearance).

networks each on pixel trajectories and image appearance.
The first network is trained on the entire frame to preserve
the global spatial context. The second network is trained
on cropped boxes from the tracker to reduce background
noise and to provide a person-centric reference frame for
trajectories and image regions. To capture short-term tem-
poral information, we use pixel trajectories, in which each
moving scene point is in positional correspondence with it-
self across several frames. This alignment enables pixel tra-
jectories to capture much richer motion information than
stacked optical flow fields. Since actions can be of any du-
ration, our method uses LSTMs to learn the duration and
long-term temporal context of actions in a data-driven fash-
ion. Our results demonstrate that LSTMs are quite effective
in learning long-term temporal context for fine-grained ac-
tion detection.

3.1. Tracking for Fine-Grained Action Detection

To provide a bounding box around the person for the
location-independent appearance and motion streams, any
good person-tracking algorithm could be used. In this pa-
per, we use a simple state-based tracker to spatially local-
ize actions in a video with a sigle actor. Keeping the size
(chosen manually) of the tracked bounding box fixed, we
update its position so that the magnitude of flow inside the
box is maximized. If the magnitude is below a threshold,
the location is not updated (when the person is not mov-
ing, the bounding box is stationary). Initially, if no actor is
present, the bounding box is arbitrarily placed. The location
of the bounding box is updated only after a video chunk (6



Figure 3. The middle row of squares represent a sequence of
frames, and the arrows indicate the pairs of frames between which
optical flow is computed for both pixel trajectories (arrows above
the frames) and stacked flow (arrows below the frames). The top
and bottom rows show the y-component of optical flow computed
for pixel trajectories (top row) and stacked flow (bottom row). In
pixel trajectories, note that only the intensity changes, while the
spatial layout of the image stays the same. Thus, only a single
convolution layer in time is sufficient for learning motion features
for a pixel. In stacked optical flow, however, the spatial correspon-
dence between pixels is lost. For example, the back of the head
(lowest point of the silhouette) moves up and to the left in subse-
quent images of stacked optical flow.

frames) is processed and flow/appearance features are com-
puted relative to it, to ensure that the bounding box is sta-
tionary over the 6 frames of a chunk. Our simple tracking
method can be effectively applied when the camera is sta-
tionary and we have a reasonable estimate about the size of
the actor. This is a practical assumption for many videos
taken at retail stores, individual homes, or in a surveillance
setting where fine-grained action detection is likely to be
used. For more difficult tracking situations, a more sophis-
ticated tracker would be needed.

3.2. Training of Flow Networks

Stacking optical flow as an input to the deep network has
been a standard practice in the literature to train motion-
based networks [23, 31, 32]. However, in stacked optical
flow, the motion vectors corresponding to a particular mov-
ing point in the scene (e.g., the tip of a finger) change their
pixel location from one frame to the next. Thus, the convo-
lutional neural network needs to learn the spatial movement
of optical flow for classifying an action. The complete mo-
tion information could be learned by the network at a higher
layer, but that would require more parameters and data to
learn. An alternate representation for motion in a sequence
of frames is to compute flow from a central frame, t, to
each of the K previous and K subsequent frames (we use
K = 3). This representation, which we call pixel trajecto-
ries, is illustrated and compared with stacked optical flow
in Figure 3. In all 2K frames of a pixel trajectory, the flow
values from each point to the corresponding point in frame

Figure 4. Connections depicting architecture of a bi-directional
LSTM [7]. The circular nodes represent LSTM cells.

t are all located at the point’s location in frame t. As shown
in Figure 3, in pixel trajectories, only the intensity of the
optical flow image changes (its location is fixed). Thus, the
network can learn a temporal filter for each pixel more eas-
ily than from stacked flow fields.

Now, for each pixel in frame t, we have the complete
motion information in a short window of time. To learn mo-
tion patterns for each pixel, a 1×2K convolutional kernel
can produce a feature map for the movement of each pixel.
In contrast, a network layer that inputs stacked optical flow
(using, e.g., a 3×3×2K kernel on stacked optical flow)
will not be able to learn motion patterns using the first con-
volutional layer for pixels that have a displacement of more
than 3 pixels over 2K frames. A similar method to pixel tra-
jectories was mentioned in [23], but there it yielded slightly
worse performance than stacked optical flow, likely because
it was applied on moving camera videos where trajectories
are less reliable. For fine-grained action detection with a
stationary camera, however, we demonstrate that pixel tra-
jectories perform better than stacked flow for both datasets
(see Table 2).

3.3. Training on Long Sequences using a
Bi-Directional LSTM Network

We now provide a brief background of Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM)
cells [8]. Given an input sequence, x = (x1, . . . , xT ) , an
RNN uses a hidden state representation h = (h1, . . . , hT )
so that it can map the input x to the output sequence
y = (y1, . . . , yT ). To compute this representation, it iter-
ates through the following recurrence equations:

ht = g(Wxhxt +Whhht−1 + bh), yt = g(Whyht + bz),

where g is an activation function, Wxh is the weight ma-
trix which maps the input to the hidden state, Whh is the
transition matrix between hidden states at two adjacent time
steps, Why is a matrix which maps the hidden state h to the
output y, and bh and bz are bias terms.



Figure 5. Output of a method which produces contiguous segments
is shown below. Another method which generates equal propor-
tion of non-contiguous segments is shown above.

The weight update equations for an LSTM cell are as
follows:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxcxt +Whcht−1 + bc)

ct = ftct−1 + it gt

ht = ot tanh(ct)

where σ is a sigmoid function, tanh is the hyperbolic tan-
gent function, and it, ft, ot, and ct are the input gate, for-
get gate, output gate, and memory cell activation vectors,
respectively. The forget gate ft decides when (and which)
information should be cleared from the memory cell ct. The
input gate it decides when (and which) new information
should be incorporated into the memory. The tanh layer
gt generates a candidate set of values which will be added
to the memory cell if the input gate allows it. Based on
the output of the forget gate ft, input gate it, and the new
candidate values gt, the memory cell ct is updated. The out-
put gate ot controls which information in the memory cell
should be used as a representation for the hidden state. Fi-
nally, the hidden state is represented as a product between a
function of the memory cell state and the output gate.

In action recognition datatsets (e.g., UCF 101), video
clips are temporally trimmed to start and end at the start and
end times of each action, and are generally short in length
(e.g., from 2–20 seconds). Hence, in the action recognition
task, there is not enough long-term context to be learned in
a data-driven fashion. This long-term context could include
properties such as the expected duration of an action, which
action follows or precedes an action, or long-term motion
patterns that extend beyond action boundaries. In an action
recognition setting, an LSTM network has little access to
the longer-term temporal context. However, in fine-grained
action detection, videos are typically on the order of min-
utes or hours. Thus, LSTM networks are more suited to
this task as they are designed to model long-term temporal
dynamics in a sequence.

Action recognition involves assigning a single label to a
video sequence, while in detection we need to assign a la-
bel per frame. Consider a video sequence consisting of 100
frames where each frame has the same label. Even if a 2-
stream network predicts correct labels only for 50 frames, it

is likely that it would assign the correct label for the com-
plete video sequence. However, for action detection, if the
50 correctly predicted frames are not contiguous, it would
generate many action segments, and all but one of them
would be assigned as false positives. A B-LSTM on top
of a 2-stream network is more likely to produce contigu-
ous action segments and would thus have fewer false posi-
tives when compared to a 2-stream network (see Figure 5).
However, in such cases, B-LSTM would not show any im-
provement over a 2-stream network for action recognition,
because recognition performance does not change even if
the predicted labels are fragmented.

Bi-directional LSTM networks [6], illustrated in Fig-
ure 4, integrate information from the future as well as the
past to make a prediction for each chunk in the video se-
quence. Therefore, they are expected to be better at predict-
ing the temporal boundaries of an action as compared to a
unidirectional LSTM. In this work, the forward and back-
ward LSTM networks each give softmax scores for each
action class, and we average the softmax predictions of the
two LSTM networks to obtain the score for each action.
While training these networks on long sequences, back-
propagation through time can only be done up to a fixed
number of steps, using a short sequence of chunks. To pre-
serve long-term context, we retain the hidden state of the
last element in the previous sequence when training on the
subsequent sequence.

4. Results

4.1. Datasets

We evaluate our method on two datasets: the MPII Cook-
ing 2 Dataset [21], and a Shopping Dataset that we collected
and are releasing to the community. The MPII Cooking 2
Dataset consists of 273 video sequences that vary in length
from 40 seconds to 40 minutes, with a total of 2.8 million
frames. The videos are labeled with the start and end times
of fine-grained actions from 67 action classes (6 of them
are not part of the test set). Actions such as “smell,” “screw
open,” and “take out” may be as brief as one-half of a sec-
ond, while other actions such as “grate,” “peel,” and “stir”
can last as long as a few minutes. There is also significant
intra-class variation in the duration of an action.

Our new Shopping Dataset consists of 96 two-minute
videos, shot by a static overhead HD camera, of people
shopping from grocery-store shelving units that we set up
in a lab space. There are 32 subjects, each of whom is in 3
videos collected on different days. Videos are labeled with
the start and end times of fine-grained actions from 5 differ-
ent action classes: “Reach to Shelf,” “Retract from Shelf,”
“Hand in Shelf,” “Inspect Product,” and “Inspect Shelf.” We
divide this dataset into three partitions: 60 training videos,
9 validation videos, and 27 test videos. For each subject,



Figure 6. Images for various actions in the Shopping Dataset. We show images corresponding to different actions such as “retract from
shelf,” “inspect product,” “hand in shelf,” and “inspect shelf.”

all three videos of that subject are in only one of the three
partitions. Although the number of videos in this dataset
is less than in MPII Cooking 2, there are many action in-
stances per video, so the number of frames per action class
is high (∼ 30,000). In this dataset, the duration of an action
ranges from one-half of a second to on the order of a minute.
We show examples of frames from this dataset in Figure 6.
The version we make public will have more videos, as well
as revised labels for existing videos. We will include our
results for the larger version along with the dataset.

Although our algorithm does both temporal and spatial
localization of actions, only temporal accuracy is evaluated
in order to be consistent with the MPII Cooking 2 evaluation
protocol.

4.2. Implementation Details

We sample each video at 15 frames per second. We then
extract optical flow between each frame (sampled every 6
frames) and its 6 neighboring frames (K = 3 each to the left
and right). This provides pixel trajectories for each pixel.
Epic flow is used to compute optical flow [19], as it gives
reliable flow even for large movements. We then use our
tracker to obtain bounding boxes for each video. Finally,
all full-size image frames and cropped frames are resized to
256×256. Pixel trajectories are resized to 224×224. For
training of frame-based networks (the appearance stream),
we fine-tune VGG net [24] using Caffe [12]. From each
6-frame chunk of video, we use a single image frame for
the appearance streams. We encode two sets of 6 opti-
cal flow fields (one stack each for x- and y-direction) as
pixel trajectories for the motion stream. While training mo-
tion networks, we change the conv 1 filter of VGG to a
1×2K kernel, which only performs convolution in time.
We project the four fc7 layers of the multi-stream network
using a fully connected layer to a 200-dimensional vector.
This 200-dimensional vector is given to two LSTM layers
(one forward and one backward in time) with 60 hidden
units each. Finally, a softmax classifier is trained on each
LSTM’s hidden units, and the softmax predictions of both
LSTM networks are averaged to get the action scores for
each class. While training LSTMs for detection, we use the

entire video sequence, so this also includes a background
class. We use the same architecture for both datasets. Since
the four networks that make up our multi-stream network
cannot all fit in GPU (Tesla K40) memory at once, we train
each network independently. To train the LSTM networks,
we use the implementation provided in [3].

Since mean Average Precision (mAP) is the standard
measure used to evaluate action detection in past work, we
need to produce a ranked list of action clips, along with a
start frame, an end frame, and a score associated with each
clip. Mid-point hit criterion is used to evaluate detection
as done in [21]. This means that the mid-point of the de-
tected interval should lie within the ground-truth interval in
the test video. If a second detection fires within the same
ground-truth interval, that second detection is considered a
false positive. We use the evaluation code used in [20].

To obtain segments for each action class, we start with
an initial threshold. We apply this threshold to the output
score (average of the two LSTM softmax outputs) that was
assigned to each 6-frame chunk of video by our MSB-RNN
network. We group the above-threshold chunks into con-
nected components, each of which represents one detec-
tion, which we refer to as a clip (defined by its start and
end time). The initial threshold will give us some num-
ber of detections. If the number of detections is less than
m for a class, we lower the threshold further until we get
m unique clips. To get the next set of clips, we lower the
threshold until we get 2m unique clips. If a new action clip
intersects with any clip in the previous set, we discard the
new clip. We keep on doubling the size of the next set un-
til we obtain 2500 unique clips. In our experiments, we set
m = 5. Each clip consists of some number of consecutive
6-frame chunks of video, each of which is assigned an out-
put score (average of the two LSTM softmax outputs) by
our MSB-RNN system. We assign a score to each clip by
max-pooling the output scores of all of the chunks in the
clip. Since the validation set in the MPII Cooking 2 Dataset
does not contain every action class in the dataset, we adopt
this method because it enables us to obtain a ranked list of
detections without requiring us to select detection thresh-
olds for each action class. We use the same process on



Method mAP
Hand-cSIFT [21] 10.5%

Hand-trajectories [21] 21.3%
Hand-cSIFT+Hand-trajectories [21] 26.0%

Dense Trajectories [29, 21] 29.5%
Two-Stream Network [23] 30.18%

DT+Hand-trajectories+cSIFT [21] 34.5%
MSB-RNN 41.2%

Table 1. Comparison of performance of our MSB-RNN system
with previous action detection methods on the MPII Cooking 2
dataset. Mean Average Precision (mAP) is reported.

the Shopping Dataset. Since labels are available at a per-
frame level, we replicate the output labels for each chunk 6
times, to get per-frame labels. The above process is similar
to non-maximal suppression, as we rank confident detec-
tions at the top and do not include less confident detections
in the ranked list whose subsets have already been detected.

4.3. Experiments

In Table 1 we show that our MSB-RNN obtains an mAP
of 41.2% on the MPII Cooking 2 Dataset, outperforming
the previous state of the art’s mAP of 34.5%. Note that the
34.5% reported in [21] is a very strong baseline. Dense tra-
jectories are still known to give state-of-the-art performance
in fine-grained action recognition and detection, and [21]
uses a combination of dense trajectories along with the ad-
ditional hand-centric color-SIFT and Hand-trajectories fea-
tures. Our implementation of the two-stream network [23]
(just our two full-frame streams, without our person-centric
streams, and without the LSTMs) yields an mAP of 30.18%
on this dataset, which is only slightly better than the perfor-
mance of using improved dense trajectories alone.

Pixel Trajectories
In Table 2, we compare the effectiveness of variations of

the person-centric (cropped) appearance stream (“Frame”),
and the person-centric motion stream using either pixel tra-
jectories (“Trajectories”) or stacked optical flow (“Stacked
OF”). We evaluate mAP for two versions of each net-
work: when the stream is followed by a unidirectional
LSTM layer, and when the LSTM is omitted and replaced
by a softmax layer. Using pixel trajectories instead of
stacked flow improves performance both with and without
LSTM, on both the MPII Cooking 2 (MPII 2) and Shop-
ping (Shop) datasets, making pixel trajectories a clear win-
ner over stacked flow for this task. For all three types of
streams on both datasets, the LSTM layer produces a large
improvement.

Multi-Stream Network
In Table 3 we compare the performance of our multi-

stream network (using both full-frame and person-centric
bounding boxes) with that of a two-stream network (full-

Method MPII2
MPII2
LSTM Shop

Shop
LSTM

Stacked OF 21.31% 27.36% 55.29% 71.70%
Trajectories 22.35% 29.51% 57.88% 73.06%

Frame 24.72% 28.77% 40.02% 63.26%
Table 2. Evaluating individual components of our MSB-RNN sys-
tem. Mean average Precision (mAP) is reported. For both datasets,
MPII Cooking 2 and Shopping dataset, pixel trajectories outper-
form stacked flow (both with and without a subsequent LSTM
layer). For all three stream types and both datasets, incorporat-
ing the LSTM layer greatly improves performance.

Method MPII 2 Shop
Two-Stream [23] 30.18% 65.21%

Multi-Stream 33.38% 69.08%
Multi-Stream LSTM→ 38.03% 77.24%
Multi-Stream LSTM← 37.43% 75.08%

MSB-RNN 41.22% 80.31%
Table 3. Performance comparison of multi-stream vs. two-stream
network. Performance when multi-stream network is followed by
each unidirectional LSTM or by their bi-directional combination
(MSB-RNN). mAP is reported.
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Figure 7. Mean Average Precision (mAP) for pixel trajectory net-
work (left) and frame network (right) on the Shopping Dataset,
when followed by a unidirectional LSTM layer with restricted
memory duration. LSTM memory duration (x-axis) is expressed
as a number of 6-frame chunks. Note that the LSTM network can
effectively remember as far as 10 chunks (4 seconds) into the past.

frame only). Including a person-centric reference frame im-
proves performance on both datasets. We report results for
individual actions of the Shopping dataset in Table 4. If we
use B-LSTM only on full frame features, the performance
drops by 3.4% on the Shopping dataset and 1.8% on the
MPII Cooking 2 dataset compared to MSB-RNN.

LSTM
Tables 3 and 4 also compare the performance of our

multi-stream network when followed by a forward unidi-
rectional LSTM, a backward unidirectional LSTM, or the
bi-directional LSTM (which is our complete MSB-RNN
system). Each unidirectional LSTM provides a significant
boost, and including bi-directional LSTMs (MSB-RNN)
yields an even larger improvement, because it provides



Action Two Stream MSN LSTM← LSTM→ MSB-RNN
Reach To Shelf 75.95% 80.8% 84.39% 84.86% 89.74%

Retract From Shelf 74.53% 77.71% 81.45% 84.61% 90.47%
Hand In Shelf 52.48% 54.13% 59.69% 68.73% 65.56%

Inspect Product 67.56% 75.68% 79.29% 78.6% 82.7%
Inspect Shelf 55.52% 57.09% 70.57% 70.31% 73.09%

Mean 65.21% 69.08% 75.08% 77.42% 80.31%
Table 4. Results for each action class in the Shopping Dataset using various network configurations.

more temporal context than a unidirectional LSTM. The re-
sults in these tables and Table 2 clearly show that the LSTM
layer is the most important factor contributing to our sys-
tem’s improved performance over previous methods.

These observations led us to explore in more detail why
using an LSTM layer improves performance by such a large
margin. We conducted two experiments to analyze the con-
tributions of an LSTM layer to our system.

How long does the LSTM remember?
In the first experiment, we use the trained model and

analyse the effective temporal duration of the LSTM layer’s
memory. For this experiment, we clear the memory of the
LSTM layer at different time steps using a continuation se-
quence indicator. A continuation sequence indicator is 0 at
the beginning of a sequence and 1 otherwise. Thus, we can
set every kth indicator to 0 for clearing the memory, if we
are interested in an LSTM which remembers history from
the past k chunks in the sequence. However, this would
abruptly reduce the memory of the element at the beginning
of the sequence to zero. To avoid this problem, we gener-
ate k different continuation indicator sequences, shifted by
one element, to limit the memory of the LSTM layer to k
time steps. Thus, when a prediction is made for an element,
we choose the output from the sequence whose continuation
indicator was set to zero k time steps before. In Figure 7,
we plot the mAP when an LSTM is used on top of frame
or pixel trajectory features on the Shopping Dataset. We
observe that performance increases as we reduce the mem-
ory duration limit for LSTM. It is quite encouraging that
the unidirectional LSTM layer can make effective use of as
many as 10 preceding chunks in a sequence. Thus, a bi-
directional LSTM would use a context of 20 chunks in a se-
quence while making a prediction. In the context of a video,
where each chunk comprises 6 frames of a video (sampled
at 15 frames per second), this sequence length would cor-
respond to 8 seconds. Thus, the bi-directional LSTM im-
proves action detection performance by a large margin, by
incorporating information from about 8 seconds of temporal
context. Many actions last less than 8 seconds, and actions
that last longer than that are likely to have a recurring pat-
tern that can be captured in 8 seconds.

Learning transitions between actions
The first experiment (above) demonstrates that an LSTM

can remember long-term temporal information. In the sec-
ond experiment, we explore whether the LSTM can also
learn information from the transitions between different ac-
tions in a video sequence. Recent works train an LSTM
network on trimmed video sequences [3, 15]. Thus, they
cannot learn long-term context that extends beyond the start
or end of an action. Therefore, we conducted our second
experiment, in which the continuation indicators are set to
0 (while training only) whenever an action starts or ends.
This simulates training on trimmed video sequences, in-
stead of a continuous video sequence that includes many
actions. We observe that training on trimmed clips drops
the performance from 77.24% to 75.51% on the Shopping
Dataset and from 38.03% to 36.22% on the MPII Cooking
2 dataset (using a unidirectional LSTM). This confirms our
hypothesis that training networks on long video sequences
is beneficial as compared to training on temporally clipped
videos of individual actions.

5. Conclusion

In this paper, we showed that using a multi-stream net-
work that augments full-frame image features with features
from a bounding box surrounding the actor is useful in fine-
grained action detection. We show that for this task, pixel
trajectories give better results compared to stacked opti-
cal flow due to their location correspondence. We showed
that to capture long-term temporal dynamics within and be-
tween actions, a bi-directional LSTM is highly effective.
We also provided an analysis of how long an LSTM net-
work can remember information in the action detection sce-
nario. Finally, our results represent a significant step for-
ward in accuracy on a difficult publicly available dataset
(MPII Cooking 2), as well as on a new Shopping Dataset
that we are releasing with the publication of this paper.
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