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Abstract
To understand speaker intentions accurately in a dialog, it is important to consider the
context of the surrounding sequence of dialog turns. Furthermore, each speaker may play
a different role in the conversation, such as agent versus client, and thus features related to
these roles may be important to the context. In previous work, we proposed context-sensitive
spoken language understanding (SLU) using role-dependent long short-term memory (LSTM)
recurrent neural networks (RNNs), and showed improved performance at predicting concept
tags representing the intentions of agent and client in a human-human hotel reservation task.
In the present study, we use bidirectional and attention-based LSTMs to train a roledependent
context-sensitive model to jointly represent both the local word-level context within each
utterance, and the left and right context within the dialog. The different roles of client and
agent are modeled by switching between role-dependent layers. We evaluated label accuracies
in the hotel reservation task using a variety of models, including logistic regression, RNNs,
LSTMs, and the proposed bidirectional and attentionbased LSTMs. The bidirectional and
attention-based LSTMs yield significantly better performance in this task.
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Abstract
To understand speaker intentions accurately in a dialog,

it is important to consider the context of the surrounding se-
quence of dialog turns. Furthermore, each speaker may play a
different role in the conversation, such as agent versus client,
and thus features related to these roles may be important to
the context. In previous work, we proposed context-sensitive
spoken language understanding (SLU) using role-dependent
long short-term memory (LSTM) recurrent neural networks
(RNNs), and showed improved performance at predicting con-
cept tags representing the intentions of agent and client in a
human-human hotel reservation task. In the present study, we
use bidirectional and attention-based LSTMs to train a role-
dependent context-sensitive model to jointly represent both the
local word-level context within each utterance, and the left and
right context within the dialog. The different roles of client
and agent are modeled by switching between role-dependent
layers. We evaluated label accuracies in the hotel reservation
task using a variety of models, including logistic regression,
RNNs, LSTMs, and the proposed bidirectional and attention-
based LSTMs. The bidirectional and attention-based LSTMs
yield significantly better performance in this task.
Index Terms: spoken language understanding, context sen-
sitive understanding, role-dependent model, Bidirectional
LSTMs, Attention LSTMs

1. Introduction
Spoken dialog systems for Human-machine interfaces have
been widely used for many applications such as smart phones
and car navigation systems nowadays. Spoken language under-
standing (SLU) technologies in dialog systems have been inten-
sively investigated to estimate the intention of user utterances
obtained from an automatic speech recognition (ASR) system
[1, 2]. Conventional intention estimation approaches for SLU
are either based on phrase matching, or traditional classification
methods such as boosting, support vector machines (SVM), and
logistic regression (LR), using bag of word (BoW) features as
inputs.

Recurrent neural networks (RNNs) have been more actively
applied to utterance classification to consider history of a word
sequence in each utterance [3, 4]. Furthermore, long short-term
memory (LSTM) RNNs were applied to spoken language un-
derstanding [5]. However, these models were only used for
word sequence context within an utterance without consider-
ing the broader context of the sequence of utterances. One
might expect that the speaker intentions of each utterance can
be more accurately inferred, especially in dialogs, if the con-
text of the utterance within the dialog is also taken into ac-
count. This hypothesis appears to be borne out in previous
work: context sensitive understanding using phrase matching,
weighted finite state transducer-based dialog management (WF-
STDM) was previously proposed [6]. More recently, conven-
tional RNNs considering contextual information were applied

to domain and intention classification [7], intention classifica-
tion, and goal estimation [8] and system response generation
[9]. LSTMs are a form of RNN designed to improve learning
of long-range context, and have been shown to be effective for
problems with complicated dependency like translation [10].

In the previous study, we applied LSTMs to capture long-
term characteristics over an entire dialog [11]. Each word is
input sequentially into a LSTM and concept tags are output at
the end of each utterance. To propagate contextual information
through a dialog, the activation vector of the LSTM for an ut-
terance serves as input to the LSTM for the next utterance. The
LSTMs were trained from a human-to-human dialog corpus an-
notated with concept tags which represent client and agent in-
tentions for hotel reservation. Furthermore, each utterance has
different expressions in terms of context of role-dependent fea-
tures such as for task-oriented roles like agents and clients. In
order to precisely model the role dependent expressions, we in-
troduce two parallel LSTM layers representing client and agent
expressions. We confirmed the LSTMs outperformed the other
models such as LR, RNNs by considering the context and the
proposed role-dependent context-sensitive LSTMs was better
than LSTMs w/o role-dependent layers.

In this study, we use bidirectional and attention LSTMs
to train role-dependent context-sensitive models for SLU. The
bidirectional model uses forward and backward features of di-
alog context. Moreover, the attention model introduces an at-
tention mechanism [12][13] to some specific portions in the
context and infers the most probable concept tag by taking the
utterance-level context into account. These extended models
can be better than models using only forward contextual fea-
tures if dialogs have relatively clear goals in a task-oriented sce-
nario.

2. Context-sensitive SLU using LSTMs
The model we use for context-sensitive spoken language under-
standing is a recurrent neural network depicted in Fig. 1. The
network has an input layer that takes each input word, a pro-
jection layer that reduces the word vector in a low-dimensional
space, a hidden layer with recurrent connections that keeps con-
text information, and an output layer that estimates posterior
probabilities of output labels. In the hidden layer, we use a set
of LSTM cells instead of regular network units. In theory, an
LSTM cell can remember a value for an arbitrary length of time
due to a system of gating. The LSTM cell contains input, forget,
and output gates which determine when the input is significant
enough to remember, when it should continue to remember or
forget the value, and when it should contribute to the output
value. An example of an LSTM cell is depicted in Fig. 1.

Suppose, given a sequence of M utterances,
u1, . . . , uτ , . . . , uM , each utterance consists of word se-
quence wτ,1, . . . , wτ,t, . . . , wτ,Tτ and its concept tag (or
dialog act) aτ . The input vector xτ,t is prepared as

xτ,t = OneHot(wτ,t), (1)



Figure 1: RNN (left) and LSTM cell (right).
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Figure 2: Propagation through time in context-sensitive SLU

where wordwτ,t in vocabulary V is converted by 1-of-N coding
using function OneHot(w), i.e. xτ,t ∈ {0, 1}|V|.

The input vector is projected to the D dimensional vector

x′τ,t =Wprxτ,t + bpr (2)

and fed to the recurrent hidden layer, where Wpr and bpr are
the projection matrix and the bias vector.

At the hidden layer, activation vector hτ,t is computed us-
ing the LSTM cells according to the way of [14][15], i.e.

iτ,t = σ(Wxix
′
τ,t +Whihτ,t−1 + bi) (3)

fτ,t = σ(Wxfx
′
τ,t +Whfhτ,t−1 + bf ) (4)

cτ,t = fτ,tcτ,t−1 + iτ,t tanh(Wxcx
′
τ,t +Whchτ,t−1 + bc) (5)

oτ,t = σ(Wxox
′
τ,t +Whohτ,t−1 + bo) (6)

hτ,t = oτ,t tanh(cτ,t), (7)

where σ() is the element-wise sigmoid function, and iτ,t, fτ,t,
oτ,t and cτ,t are the input gate, forget gate, output gate, and
cell activation vectors for the t-th input word in the τ -th utter-
ance, respectively. The weight matrices Wzz and the bias vec-
tors bz are identified by the subscript z ∈ {x, h, i, f, o, c}. For
example, Whi is the hidden-input gate matrix and Wxo is the
input-output gate matrix.

The output vector is computed at the end of each utterance
as

yτ = softmax(WHOhτ,Tτ + bO), (8)

where WHO and bO are the transformation matrix and the bias
vector to classify the input vector into different categories ac-
cording to the hidden vector. softmax() is an element-wise
softmax function that converts the classification result into la-
bel probabilities, i.e. yτ ∈ [0, 1]|L| for label set L.

âτ = argmax
a∈L

yτ [a], (9)

where yτ [a] indicates the component of yτ for label a, which
corresponds to label probability P (a|hτ,Tτ ).

To inherit the context information from the previous utter-
ances, the hidden and cell activation vectors at the beginning of
each utterance are equivalent to those at the final position Tτ−1

in the previous utterance, i.e.,

Figure 3: Prediction process using Forward and backward prop-
agation through time in context-sensitive SLU

Figure 4: Prediction process using attention-based random ac-
cess propagation through time in context-sensitive SLU

hτ,0 = hτ−1,Tτ−1 , cτ,0 = cτ−1,Tτ−1 , (10)

where τ > 1 and h1,0 = c1,0 = 0.
Figure 2 illustrates a propagation process of our context-

sensitive SLU. Words are sequentially input to the LSTM and
an output label corresponding to the utterance concept at the
end of the utterance, where symbol “EOS” stands for a sentence
end. This model is similar to the LSTM used in [5] for SLU, but
it considers the entire context from the beginning of the dialog,
while the model in [5] considers each utterance independently.
Accordingly, the label probabilities can be inferred using not
only the sentence-level intentions but also the dialog-level con-
text.

Next, we extend the LSTM-based SLU models to bidirec-
tional networks. Figure 3 shows Prediction process using For-
ward and backward propagation. The backward propagation
can be performed in the same way as the forward propagation
through Eqs. (3)-(7) but in reverse order from the end of each
utterance or the dialog.

Let h′τ,t be the backward hidden activation vector. We
can consider the both context by concatenating the forward and
backward activation vectors as

h̃τ,t =

[
hτ,t
h′τ,t

]
, (11)

and infer the output label as

yτ,t = softmax(WHOh̃τ,t + bO). (12)

Unlike the case of uni-directional networks, bidirectional mod-
els can use the both contextual information at any position of



each utterance. Accordingly, it is desirable that the concept tag
for each utterance is decided based on the decision at every po-
sition in the utterance. To do this, we apply a majority voting
scheme [16], i.e., the output label is chosen by

âτ = argmax
a∈L

Tτ∑
t=1

δ(âτ,t, a), (13)

using individual decisions

âτ,t = argmax
a∈L

yτ,t[a], (14)

where δ(·) denotes Kronecker’s delta.
Additionally, we further extend the bidirectional model

with an attention mechanism [12][13]. With this extension, the
model can pay attention to any portion of the input sequence
by random access and use only important contextual informa-
tion to predict the output label. This mechanism is realized by
using attention weights to hidden activation vectors throughout
the input sequence. Accordingly, limited but important phrases
are emphasized with these weights.

Let ατ,t be an attention weight for the t-th word in the τ -th
utterance. A summary vector of the τ -th utterance is obtained
as a weighted sum of hidden activation vectors, i.e.

gτ =

Tτ∑
t=1

ατ,th̃τ,t, (15)

where h̃τ,t is the bidirectional hidden activation vector given by
Eq. (11). In this work, we limit the area of attention within each
utterance to reduce the computation for summing up the hidden
activations in Eq. (15).

As in [12], we prepare a decoder network that generates an
output label sequence with summary vector gτ . The decoder
network is also an LSTM-based RNN, where the decoder state
can be obtained as

sτ = lstm(sτ−1, yτ−1, gτ ), (16)

where lstm() represents a function of LSTM layer in the de-
coder network, which can be computed with the same way as
the process of Eqs. (3)-(7), where hτ,t and x′τ,t are replaced
with sτ and [yᵀτ−1, g

ᵀ
τ ]

ᵀ, respectively. Then, the output of the
network is computed as

yτ = softmax(WHOsτ + bO) (17)

and the output label is decided as in Eq. (9). Figure 4 illustrates
the SLU process using the attention-based model.

On the other hand, the attention weights can be obtained as
the same manner in [12]

ατ,t =
exp(eτ,t)∑Tτ
k=1 exp(eτ,k)

(18)

and
eτ,t = wᵀ tanh(Usτ−1 + V h̃τ,t + b), (19)

where w and b are vectors, U and V are matrices, and eτ,t is a
scalar.

3. Role-dependent LSTM layers
In this study, the LSTMs were trained from a human-to-human
dialog corpus annotated with concept tags which represent
client and agent intentions for hotel reservation. The expres-
sions are characterized by each role of agent and client. In order
to precisely model the role dependent expressions, two parallel

Figure 5: Upper: LSTM with role-dependent layers. Lower:
Propagation through time in context-sensitive role-dependent
SLU. The blue boxes correspond to client and the red boxes
correspond to agent. Role gates control which role is active.

LSTM layers representing client and agent expressions are in-
corporated in the model as shown in Fig. 5.

The two LSTM layers have different parameters depending
on the speaker roles. The input vector is thus processed differ-
ently by the left layer for the client’s utterances, and by the right
layer for the agent’s utterances. The active role for a given ut-
terance is controlled by a role variableR, which is used to gate
the output of each LSTM layer. The gated output then passes
both to the recurrent LSTM inputs and to the output layer. The
recurrent LSTM inputs thus receive the output from the role-
dependent layer active at the previous frame, allowing for tran-
sitions between roles. Error signals in the training phase are
also back-propagated through the corresponding layers. Here,
we assume that the role of each speaker does not change during
a dialog and it is known which speaker uttered which utterance.
However, the model structure leaves open the possibility of dy-
namically inferring the roles. Accordingly, we can compute the
activation at the output layer as

yτ = softmax
(
δR,Rτ (WHOh

(R)
τ,Tτ

+ bO)
)
, (20)

where h(R)
τ,Tτ

is the hidden activation vector given by the LSTM
layer of role R, and δR,Rτ is Kronecker’s delta, i.e. if Rτ the
role of the τ -th utterance equals role R, it takes 1, otherwise
takes 0. Furthermore, at the beginning of each utterance, the
hidden and cell activation vectors of the role-dependent layer
are given as

h
(Rτ )
τ,0 = h

(Rτ−1)

τ−1,Tτ−1
, c

(Rτ )
τ,0 = c

(Rτ−1)

τ−1,Tτ−1
. (21)

Figure 5 shows the temporal process of the role-dependent
SLU. For each utterance in a given role, only the LSTM layer
for that role is active, and the hidden activation and the cell
memory are propagated over dialog turns. In the figure, the blue
boxes correspond to client utterance states and the red boxes
correspond to agent utterance states. With this architecture, the
both layers can be trained considering a long context of each



Table 1: Label Accuracies. The numbers listed as w/ and w/o show the results of role-dependent and role-independent, respectively.

Dialog Act (DA) Dialog Act + Slot type (DA+ST)
Dev. set Test set Dev. set Test set

Role-dependent layers w/ w/o w/ w/o w/ w/o w/ w/o
LR – 69.8 – 70.8 – 61.4 – 61.6
LR + word2vec – 71.1 – 72.4 – 62.1 – 62.3
Utterance-based LSTM – 73.3 – 69.8 – 59.5 – 56.2
LSTM 84.6 80.2 84.0 78.5 69.4 64.7 70.3 64.5
Online-BLSTM 83.7 83.3 86.9 82.8 72.6 68.8 72.6 69.1
BLSTM 85.8 83.5 86.8 84.2 72.6 72.6 72.0 72.0
Online-Attention 85.5 82.7 86.4 82.5 68.4 65.8 69.4 65.3
Attention 86.0 84.0 84.7 84.7 67.2 65.4 66.8 63.8

dialog, and the model can predict role-dependent concept labels
more accurately.

This role-dependent extension can also be applied to the
bidirectional LSTM networks and attention-based models de-
scribed in the previous section. In the case of bidirectional
LSTMs, output for each t-th word is given by

yτ,t = softmax
(
δR,Rτ (WHOh̃

(R)
τ,t + bO)

)
. (22)

In the case of attention models, a summary vector is obtained
based on role-dependent hidden activations, i.e

g(R)
τ =

Tτ∑
t=1

α
(R)
τ,t h̃

(R)
τ,t , (23)

where α(R)
τ,t is determined by Eqs. (18) and (19) using the role-

dependent activation h̃(R)
τ,t .

4. Experiments
4.1. Dialog Data

We trained models using a human-to-human dialog data anno-
tated with concept tags representing client and agent intentions
for hotel reservation [11]. In the experiments, Japanese utter-
ances were used. 131 dialogs were split into 97 dialogs (5213
utterances) for training, 17 dialogs (1006 utterances) for devel-
opment sets and 17 dialogs (1134 utterances) for test sets. The
vocabulary size of the training data is 1550. The concept tags
are based on Interchange Format (IF) which is an Interlingua for
speech translation systems. The original tags indicate a combi-
nation of dialog acts, slot types and slot values. To model di-
alog discourses, two different layers of tags are used. One is
a combination of dialog acts and slot types such as ”request-
information+room”. The total number of the tags is 419 con-
sisting of 186 client and 233 agent tags. The other one is dialog
acts layer only such as ”request-information” in which consists
of 65 tags including 29 client and 36 agent tags.

4.2. Classifiers

We compared label accuracies using Logistic Regression (LR),
LSTMs, BLSTMs, and attention models with and without the
role-dependent LSTM layers. The conditions of LR and LR
using the word2vec were described in [11]. The real-time dia-
log systems cannot use the future information and thus the pa-
rameters of Online-BLSTM and Online-Attention models were
trained using backward activation vectors propagated within
each utterance. All the models including speaker role based
LSTM layers were trained on the platform of Chainer [17].

All LSTM-based models had one projection layer of 100
units. The LSTM model had one LSTM layer with 100 cells.
The BLSTM model had forward and backward LSTM layers,
each of which had 50 cells. The attention model had BLSTM
layers of 50 cells in the encoder network and a LSTM layer
with 50 cells in the decoder network. U and V in Eq. (19) were
100 × 50 and 100 × 100 matrices, respectively, and w and b
were 100 dimensional vectors. In the case of role-dependent
models, each role-dependent LSTM layer had the same number
of cells as that of its role-independent model. These model sizes
were basically selected using the development set. We used the
cross-entropy criterion to train all the models, where we applied
stochastic gradient descent (SGD) for the LSTM and BLSTM
models and AdaDelta [18] for the attention models.

4.3. Evaluation Results
The experimental results are shown in Table 1. We confirmed
the BLSTMs and attention models outperformed the other mod-
els such as LR, RNNs, LSTMs due to the forward and backward
features of context of dialogs. In addition, the proposed role-
dependent context-sensitive models were better than the models
w/o role-dependent layers. The online models of BLSTMs and
attention were comparable with the original models even using
only the backward features within each utterance. The attention
models were not always better than the BLSTMs and worse es-
pecially for the precise tags of DA+ST. The data size of this
study might be insufficient to train attention models.

5. Conclusion
We proposed an efficient context-sensitive SLU approaches us-
ing role-based LSTM layers. In order to capture long-term
characteristics over an entire dialog, we implemented bidirec-
tional and attention LSTMs representing intention using con-
sequent word sequences of each concept tag and concept tag
sequence of each dialog. We evaluated the performance of im-
porting contextual information of an entire dialog for SLU and
the effectiveness of the speaker role based LSTM layers. The
proposed role-dependent context-sensitive models were better
than the models w/o role-dependent layers. The BLSTMs out-
perform LSTMs and improves the SLU baseline by 2.9% and
2.3% (absolute) for the layer of DA and DA+ST, respectively.
Future work will test the proposed models trained using much
large scale data.
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