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Abstract
We propose the coupled generative adversarial nets (CoGAN) framework for generating pairs
of corresponding images in two different domains. The framework consists of a pair of gener-
ative adversarial nets, each responsible for generating images in one domain. We show that
by enforcing a simple weight-sharing constraint, the CoGAN learns to generate pairs of cor-
responding images without existence of any pairs of corresponding images in the two domains
in the training set. In other words, the CoGAN learns a joint distribution of images in the
two domains from images drawn separately from the marginal distributions of the individual
domains. This is in contrast to the existing multi-modal generative models, which require
corresponding images for training. We apply the CoGAN to several pair image generation
tasks. For each task, the GoGAN learns to generate convincing pairs of corresponding images.
We further demonstrate the applications of the CoGAN framework for the domain adaptation
and cross-domain image generation tasks.
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Abstract

We propose the coupled generative adversarial nets (CoGAN) framework for gen-
erating pairs of corresponding images in two different domains. The framework
consists of a pair of generative adversarial nets, each responsible for generating im-
ages in one domain. We show that by enforcing a simple weight-sharing constraint,
the CoGAN learns to generate pairs of corresponding images without existence of
any pairs of corresponding images in the two domains in the training set. In other
words, the CoGAN learns a joint distribution of images in the two domains from
images drawn separately from the marginal distributions of the individual domains.
This is in contrast to the existing multi-modal generative models, which require
corresponding images for training. We apply the CoGAN to several pair image
generation tasks. For each task, the GoGAN learns to generate convincing pairs
of corresponding images. We further demonstrate the applications of the CoGAN
framework for the domain adaptation and cross-domain image generation tasks.

1 Introduction

The pair image generation problem concerns learning a generative model that can generate pairs of
corresponding images in two different domains such as the same character in different fonts, the
same face with different attributes, or the same scene in different modalities. In addition to movie
and game production, pair image generation finds applications in image transformation and domain
adaptation. When training samples are given as pairs of corresponding images in the two domains
(training samples are drawn from a joint distribution), several existing approaches [1, 2, 29, 30] can
be applied. However, building a dataset with the correspondence images is often difficult. This is
particularly true when the two domains are only related in an abstract sense. The dependency on
correspondence greatly limits the applicability of the existing approaches.

To overcome the limitation, we propose the coupled generative adversarial nets (CoGAN) framework,
which can learn a joint distribution of images for generating pairs of corresponding images in two
domains unsupervisedly. Existence of corresponding images in the two domains in the training set
is not required. It can learn the joint distribution from images drawn separately from the marginal
distributions of the individual domains. The CoGAN framework is based on the generative adversarial
nets (GAN) framework [3], which has been established as a viable solution for novel image generation.
The CoGAN framework extends the GAN framework to the unsupervised pair image generation task.

The CoGAN consists of a pair of GANs. Each generates images in one domain. When trained
separately, they generate unrelated images. We show that by enforcing a simple weight-sharing
constraint, the CoGAN learns to capture the correspondence in the two domains in an unsupervised
fashion. The CoGAN framework is inspired by the idea that deep neural networks learn a hierarchical
feature representation. By enforcing the layers that decode high-level concepts in the two GANs to
share the weights, it encourages the two GANs to decode the high-level semantics in the same way.
The layers that decode low-level details then map the shared representation to images in different
domains for fooling the respective discriminative models.



We apply the CoGAN framework to several pair image generation tasks. Through convincing visual-
ization results and quantitative evaluations, we verify the effectiveness of the CoGAN framework. We
also show its applications for the unsupervised domain adaptation and image transformation tasks.

2 Generative Adversarial Nets

The GAN framework consists of a generative model and a discriminative model. The objective
of the generative model is to synthesize images resembling real images, while the objective of the
discriminative model is to distinguish real images from synthesized ones. Both the generative and
discriminative models are realized as multilayer perceptrons.

Let x be a natural image drawn from a distribution, pX , and z be a random vector in Rd. Note that
we only consider that z is from a uniform distribution with a support of [−1 1] for each dimension,
but different distributions such as a multivariate normal distribution can be used as well. Let g and
f be the generative and discriminative models, respectively. The generative model takes z as input
and outputs an image, g(z), that has the same support as x. Denote the distribution of g(z) as pG.
The discriminative model estimates the probability that an input image is drawn from pX . Ideally,
f(x) = 1 if x ∼ pX and f(x) = 0 if x ∼ pG. The GAN framework corresponds to a minimax
two-player game, and the generative and discriminative models can be trained jointly via solving

max
g

min
f
V (f, g) ≡ Ex∼pX

[− log f(x)] + Ez∼pZ
[− log(1− f(g(z)))]. (1)

In practice (1) is solved by alternating the following two gradient update steps:

Step 1: θt+1
f = θt

f − λt∇θf
V (f t, gt), Step 2: θt+1

g = θt
g + λt∇θg

V (f t+1, gt)

where θf and θg are the parameters of f and g, λ is the learning rate, and t is the iteration number.

Goodfellow et al. [3] show that, given enough capacity to f and g and sufficient training iterations,
the distribution, pG, converges to pX . In other words, from a random vector, z, the network g can
synthesize an image, g(z), that resembles that drawn from the true distribution, pX .

3 Coupled Generative Adversarial Nets

The CoGAN framework as illustrated in Figure 1 is designed for synthesizing pairs of corresponding
images in two different domains. It consists of a pair of GANs—GAN1 and GAN2; each is responsible
for synthesizing images in one domain. During training, we force them to share a subset of network
parameters. This weight-sharing constraint results in that the two GANs learn to synthesize pairs of
corresponding images in an unsupervised fashion. We note that the framework can be easily extended
to generating corresponding images in multiple domains by adding more GANs.

Generative Models: Let x1 be an image drawn from the distribution of the 1st domain, x1 ∼ pX1
.

Let x2 be an image drawn from the distribution of the 2nd domain, x2 ∼ pX2
. Let g1 and g2 be the

generative models of GAN1 and GAN2, which individually map a random vector input z to images
that have the same support as x1 and x2, respectively. Denote the distributions of g1(z) and g1(z) by
pG1 and pG2 . Similar to the GAN framework, both g1 and g2 are realized as multilayer perceptrons:

g1(z) = g
(m1)
1

(
g
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1

(
. . . g
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1 (z)

)))
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(
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where g(i)1 and g(i)2 are the ith layers of g1 and g2 and m1 and m2 are the numbers of layers in g1 and
g2. Note that m1 need not equal m2. Also note that the support of x1 need not equal to that of x2.

Through layers of perceptron operations, the generative models gradually decode information from
more abstract concepts to more material details. The bottom layers decode high-level semantics
and the top layers decode low-level details. Note that this information flow is opposite to that in a
discriminative deep neural network [4] where the bottom layers extract low-level features while the
top layers extract high-level features.

Based on the idea that a pair of corresponding images in two domains share the same high-level
semantics, we force the bottom layers of g1 and g2 to have identical structure and share the weights.
That is θ

g
(i)
1

= θ
g
(i)
2
, for i = 1, 2, ..., k where k is the number of shared layers, and θ

g
(i)
1

and θ
g
(i)
2

2
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Figure 1: The proposed CoGAN framework consists of a pair of generative adversarial nets (GAN): GAN1 and
GAN2. Each has a generative model that can synthesize realistic images in one domain and a discriminative
model that can classify whether an input image is a real image or a synthesized image in the domain. We tie
the weights of the first few layers (responsible for decoding high-level semantics) of the generative models,
g1 and g2. We also tie the weights of the last few layers (responsible for encoding high-level semantics) of
the discriminative models, f1 and f2. This weight-sharing constraint forces the GAN1 and GAN2 to learn to
synthesize pairs of corresponding images in the two domains, where the correspondence is defined in the sense
that the two images share the same high-level abstraction but have different low-level realizations.

are the parameters of g(i)1 and g(i)2 , respectively. This weight-sharing constraint forces the high-level
semantics are decoded in the same way in g1 and g2. No constraints are enforced on the top layers.
They can materialize the shared high-level representation differently in each domain.

Discriminative Models: Let f1 and f2 be the discriminative models of GAN1 and GAN2 given by

f1(x1) = f
(n1)
1
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f
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where f (i)1 and f (i)2 are the ith layers of f1 and f2 and n1 and n2 are the numbers of layers. The
discriminative models map an input image to a probability score, estimating the likelihood that
the input is drawn from a true data distribution. The bottom layers of the discriminative models
extract low-level features, while the top layers extract high-level features. Because the input images
are realizations of the same high-level semantics in two different domains, we force f1 and f2 to
have the same top layers, which is achieved by sharing the weights of the top layers via θ

f
(n1−i)
1

=

θ
f
(n2−i)
2

, for i = 0, 1, ..., l − 1 where l is the number of weight-sharing layers in the discriminative

models, and θ
f
(i)
1

and θ
f
(i)
2

are the network parameters of f (i)1 and f (i)2 , respectively..

Learning: The CoGAN framework corresponds to a constrained minimax game given by

max
g1,g2

min
f1,f2

V (f1, f2, g1, g2), subject to θ
g
(i)
1

= θ
g
(i)
2
, for i = 1, 2, ..., k (2)

θ
f
(n1−i)
1

= θ
f
(n2−i)
2

, for i = 0, 1, ..., l − 1

where the value function V is given by

V (f1, f2, g1, g2) = Ex1∼pX1
[− log f1(x1)] + Ez∼pZ

[− log(1− f1(g1(z)))]

+ Ex2∼pX2
[− log f2(x2)] + Ez∼pZ

[− log(1− f2(g2(z)))]. (3)

In the game, there are two teams and each team has two players. The generative models, g1 and
g2, form a team and work together for synthesizing a pair of images in two different domains for
confusing the discriminative models, f1 and f2. The discriminative models try to differentiate images
drawn from the training data distribution in the respective domains from those drawn from the
respective generative models. The collaboration is established from the weight-sharing constraint.
Similar to the GAN framework, the CoGAN learning can be achieved by the back-propagation
algorithm with the alternating gradient update scheme. The details of the learning algorithm are given
in the supplementary materials.

Remarks: In the CoGAN learning, the training samples are from the marginal distributions, pX1 and
pX2 . It does not rely on samples from the joint distribution, pX1,X2 , where corresponding images
in the two domains would be available. Our main contribution is in showing that with just samples
separately drawn from the marginal distributions, the CoGAN learns a joint distribution that can
be used to generate pairs of corresponding images in the two domains. Both the weight-sharing
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Figure 2: Left: pair generation of digit and corresponding edge images (Task A). Right: pair generation of digit
and corresponding negative images (Task B). Each of the top and bottom pairs was generated using the same
input noise. We visualized the results by traversing in the input space.
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Task B: pair generation of digit and negative images
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Task A: pair generation of digit and edge images

Figure 3: The figures plot the avergae pixel agreement ratios of the CoGANs with different weight-sharing
configurations for Task A and B. The larger the pixel agreement ratio the better the pair generation performance.
We found that the performance was positively correlated with the number of weight-sharing layers in the
generative models but was uncorrelated to the number of weight-sharing layers in the discriminative models.

constraint and adversarial training are crucial for enabling this capability. Unlike the autoencoder
training [29], which encourages a generated pair of images to be identical to the target pair of
corresponding images in the two domains for minimizing the reconstruction loss1, the adversarial
training only encourages the generated pair of images to be individually resembling to the images
in the respective domains. With this more relaxed adversarial training objective, the weight-sharing
constraint can then kick in for the unsupervised learning task. The generative models must use
the capacity more efficiently for fooling the discriminative models, and the most efficient way of
using the capacity for generating a pair of realistic images in two domains is to generate a pair of
corresponding images since the neurons responsible for decoding high-level semantics can be shared.

4 Experiments

In the experiments, we emphasized that there were no correspondence annotations in the two domains
in the training sets. The CoGAN learned to generate pairs of corresponding images in a purely
unsupervised fashion. We were unaware of existing approaches with the same capability and hence
did not compare the CoGAN with prior works. Instead, we compared it to a conditional generative
model to demonstrate its advantage in learning the joint distribution. Recognizing that popular
performance metrics for evaluating generative models all subject to issues [5], we adopted a pair
image generation performance metric for comparison. Due to the page limit, many details including
the network architectures and additional experiment results are given in the supplementary materials.
We will make our implementation publicly available.

Digit Pair Generation: We used the MNIST training set to train CoGANs for the following two pair
generation tasks: Task A, generating a digit and its edge image, and Task B, generating a digit and its
negative image. In Task A, the 1st domain consisted of the original handwritten digit images, while
the 2nd domain consisted of their edge images. We used an edge detector to compute training edge
images for the 2nd domain. In Task B, the two domains were the digit images and their negatives.

The CoGANs were realized using deep convolutional networks. The two generative models had
an identical structure; both had 5 layers and were fully convolutional. The stride lengths of the
convolutional layers were fractional. The models also employed the batch normalization process-
ing [6] and the parameterized rectified linear unit processing [7]. We shared the parameters for all the

1This is also why [29] requires samples from the joint distribution for learning the joint distribution.
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layers except for the last convolutional layers that were responsible for generating outputs. For the
discriminative models, we used a variant of the LeNet [8]. The inputs to the discriminative models
were batches containing output images from the generative models and images from the two training
subsets (each pixel value is linearly scaled to [0 1]).

We divided the training set into two equal-size non-overlapping subsets. One was used to train GAN1
and the other was used to train GAN2. Due to lack of corresponding images in the two subsets, the
CoGAN learning was performed unsupervisedly. We used the ADAM algorithm [9] for training
and set the learning rate to 0.0002, the 1st momentum parameter to 0.5, and the 2nd momentum
parameter to 0.999 as suggested in [10]. The mini-batch size was 128. We trained the CoGAN for
25000 iterations. These hyperparameters were fixed for all the visualization experiments.

The CoGAN learning results are shown in Figure 2. We found that although the CoGAN was
trained without corresponding images, it learned to render corresponding ones for both Task A and
B. This was due to the weight-sharing constraint imposed to the layers that were responsible for
decoding high-level semantics. Exploiting the correspondence between the two domains allowed the
GAN1 and GAN2 to utilize more capacity in the networks to better fit the training data. Without the
weight-sharing constraint, the two GANs just generated two unrelated images in the two domains.

Weight Sharing: We varied the numbers of weight-sharing layers in the generative and discriminative
models to create different CoGANs for analyzing the weight-sharing effect for both Task A and B.
Due to lack of proper validation methods, we did a grid search on the training iteration hyperparameter
and reported the best performance achieved by each network. For quantifying the performance, we
transformed the image generated by the GAN1 to the 2nd domain using the same method employed
for generating the training images in the 2nd domain. We then compared the transformed image with
the image generated by the GAN2. A perfect pair image generation should result in two identical
images. Hence, we used the ratios of agreed pixels between 10K pairs of images generated by
each network (10K randomly sampled z) as the performance metric for the network. We trained
each network 5 times with different network initialization weights and reported the average pixel
agreement ratios over the 5 trials for each network. The results are shown in Figure 3. We observed
that the performance was positively correlated with the number of weight-sharing layers in the
generative models. With more sharing layers in the generative models, the rendered pairs of images
resembled true pairs drawn from the joint distribution more. We also noted that the performance was
uncorrelated to the number of weight-sharing layers in the discriminative models. However, we still
preferred discriminator weight-sharing because this reduces the total number of network parameters.

Comparison with Conditional Generative Models: We compared the CoGAN with the conditional
generative adversarial nets [11, 12] for the pair digit generation tasks. We designed a conditional GAN
with the generative and discriminative models identical to those in the CoGAN. The only difference
was the conditional GAN took an additional binary variable as input, which controlled the domain of
the output image. When the binary variable was 0, it generated an image resembling images in the 1st
domain; otherwise, it generated an image resembling images in the 2nd domain. Similarly, no pairs of
corresponding images were given during the conditional GAN learning. We applied the conditional
GAN to the two pair digit generation tasks and hoped to empirically answer whether a conditional
model can be used to learn to render corresponding images in an unsupervised fashion. The pixel
agreement ratio was used as the performance metric. The experiment results showed that for Task A,
the CoGAN achieved an average ratio of 0.952, outperforming 0.909 achieved by the conditional
GAN. For Task B, the CoGAN achieved a score of 0.967, which was much better than 0.778 achieved
by the conditional GAN. The conditional GAN just generated two different digits with the same
randon noise input but different binary variable values. These results showed that the conditional
model failed to learn a joint distribution from samples drawn from the marginal distributions. We
note that for the case that the supports of the two domains are different such as the color and depth
image domains, the conditional model cannot even be applied.

Pair Face Generation: We applied the CoGAN to the task of generation of faces with different
attributes. We trained a couple of CoGANs, each for generating a face with an attribute and a
corresponding face without the attribute. We used the CelebFaces Attributes dataset [13] for the
experiments. The dataset covered large pose variations and background clutters. Each face image
had several attributes, including blond hair, smiling, and eyeglasses. The face images with an
attribute constituted the 1st domain; and those without the attribute constituted the 2nd domain.
No correspondence information between the two domains was given. We resized the images to a
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Figure 4: Pair face image generation with different attributes. From top to bottom, the figure shows pair face
generation results for the blond-hair, smiling, and eyeglasses attributes. For each pair, the 1st row contains faces
with the attribute, while the 2nd row contains faces without the attribute. The CoGAN learned to generate pari
of faces with and without an attribute in an unsupervised fashion.

resolution of 132×132 and randomly sampled 128×128 regions for training. The training procedure
and hyperparameters were the same as those used in the digit experiments. The generative and
discriminative models were both 7 layer deep convolutional neural networks.

The experiment results are visualized in Figure 4. We randomly sampled two points in the 100-
dimensional input noise space and visualized the rendered faces as traveling from one pint to the
other point. We found the CoGAN generated pairs of corresponding faces, resembling those from
the same person with and without an attribute. As traveling in the space, the faces gradually change
from one person to another. Such deformations were consistent for both domains, which verified
the CoGAN framework. Note that it is often difficult to create a dataset with correspondences for
some attribute such as blond hair since the subjects have to have their hair colored. It is more ideal to
have an unsupervised approach. We also noted that the number of faces with an attribute was often
several times smaller than that without the attribute in the CelebFaces dataset. However, despite the
unbalance, the CoGAN still learned to synthesize pairs of corresponding images in the two domains.

RGB and Depth Image Generation: We used the RGBD dataset [14] and NYU dataset [15] for the
experiments. The RGBD dataset contains registered color and depth images of 300 objects captured
by the Kinect sensor from different view points. We partitioned the dataset into two equal-size
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Figure 5: Generation of RGB and depth images. The top figure shows the CoGAN results for the RGBD dataset:
the 1st row contains the color images, the 2nd row contains the depth images, and the 3rd and 4th rows visualized
the depth profile under different view points. The bottom figure shows the CoGAN results for the NYU dataset.
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Figure 6: Cross-domain image transformation results.
Table 1: Achieved classification accuracies of the methods for the unsupervised domain adaptation tasks.

Task \ Method [16] [17] [18] [19] CoGAN
MNIST→USPS 0.408 0.467 0.478 0.607 0.912 ±0.008
USPS→MNIST 0.274 0.355 0.631 0.673 0.891 ±0.008

Average 0.341 0.411 0.554 0.640 0.902

non-overlapping subsets. The color images in the 1st subset were used for training the GAN1, while
the depth images in the 2nd subset were used for training the GAN2. There were no corresponding
depth and color images in the two subsets. The images in the RGBD dataset have different resolutions.
We resized them to a fixed resolution of 64× 64. The NYU dataset contains color and depth images
captured from indoor scenes using the Kinect sensor. We used the 1449 processed depth images for
the depth domain. The training images for the color domain were from all the color images in the raw
dataset except for those registered with the processed depth images. We resized both the depth and
color images to a resolution of 176× 132 and randomly cropped 128× 128 patches for training. We
used the same training hyperparameters in the digit experiments.

Figure 5 showed the learning results. We found the rendered color and depth images resembled
corresponding RGB and depth image pairs despite of no registered images existed in the two domains
in the training set. The CoGAN recovered the appearance–depth correspondence unsupervisedly.

5 Applications

In addition to rendering novel pairs of corresponding images for movie and game production, the
CoGAN finds applications in the unsupervised domain adaptation and image transformation tasks.

Unsupervised Domain Adaptation (UDA): It concerns adapting a classifier trained in one domain
to classify samples in a new domain where there is no labeled sample in the new domain for re-training
the classifier. Early works have explored ideas from subspace learning [16, 17] to deep discriminative
network learning [18, 19]. Here, we show that the CoGAN can be extended to dealing with the
UDA problem. We studied adapting the digit classifier from the MNIST dataset to the USPS dataset.
Due to domain shift, a classifier trained using one dataset achieves poor performance in the other.
We followed the experiment protocol in [16, 19], which randomly samples 2000 images from the
MNIST dataset, denoted as D1, and 1800 images from the USPS dataset, denoted as D2, to define
an UDA problem. The USPS digits have a different resolution. We resized them to have the same
resolution as the MNIST digits. We employed the CoGAN used for the digit generation task. For
digit classification, we attached a softmax layer to the last hidden layer of the discriminative models.
We trained the CoGAN by jointly solving the digit classification problem in the MNIST domain
which used the images and labels in D1 and the CoGAN learning problem which used the images
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in both D1 and D2. This produced two classifiers: c1(x1) ≡ c(f
(3)
1 (f

(2)
1 (f

(1)
1 (x1)))) for MNIST

and c2(x2) ≡ c(f
(3)
2 (f

(2)
2 (f

(1)
2 (x2)))) for USPS. No label information in D2 was used. Note that

f
(2)
1 ≡ f (2)2 and f (3)1 ≡ f (3)2 due to weight sharing and c denotes the softmax layer. We then applied
c2 to classify digits in the USPS dataset. The classifier adaptation from USPS to MNIST can be
achieved in the same way. The learning hyperparameters was determined via a validation set. We
reported the average accuracy over 5 trails with different randomly selected D1 and D2.

Table 1 reports the performance of the proposed CoGAN approach with comparison to the state-
of-the-art methods for the UDA task. The results for the other methods were duplicated from [19].
From the table, we observed that the proposed method significantly outperformed the state-of-the-art
methods. It improved the accuracy from 0.64 to 0.90, which translates to a 72% error reduction rate.

Cross-domain Image Transformation: Let x1 be an image in the 1st domain. The cross-domain
transformation task aims at finding the corresponding image in the 2nd domain, x2, such that the
joint probability density, p(x1,x2), is maximized. Let L be a loss function measuring difference
between two images. Given g1 and g2, the transformation can be achieved by first solving z∗ =
argminz L(g1(z),x1). After finding z∗, one can apply g2 to obtain the transformed image, x2 =
g2(z∗). In Figure 6, we show several CoGAN cross-domain transformation results, computed by using
the Euclidean loss function and the L-BFGS optimization algorithm. We found the transformation
was successful when the input image was covered by g1 (or the input image can be generated by g1)
but generated a blurry image when it was not covered. To improve the coverage, we hypothesize that
more training images and a better objective function are required, which are left as future work.

6 Related Work

Neural image generation has recently received an increasing attention. Several approaches, including
generative adversarial nets[3], variational autoencoders (VAE)[20], attention models[21], moment
matching[22], stochastic back-propagation[23], and diffusion processes[24], have recently shown that
a deep network can learn to generate realistic images. It can learn to model an image distribution from
samples drawn from the distribution. Our work was built on the earlier works, particularly [3]. But
we studied a different problem—the unsupervised pair image generation problem. We were interested
in whether the joint distribution of images in different domains can be learned from samples drawn
separately from the marginal distributions of the individual domains (correspondence information
unavailable). Our work is different to the Attribute2Image work[25], which is based on a conditional
VAE model [26]. The conditional model can be used to generate images of different styles, but they
are unsuitable for generating images in two different domains such as color and depth image domains.

Following [3], several works improved the image generation quality of GAN, including a Laplacian
pyramid implementation[27], a deeper architecture[10], and conditional models[11, 12]. Our work
extended the GAN to dealing with the pair image generation problem.

Our work is related to the multi-modal learning works, including the joint embedding space learning
work[28] and the multi-modal Boltzmann machine works[1, 29]. These approaches can be used
for generating corresponding samples in different domains only when correspondence annotations
are available during training. The same limitation is also applied to dictionary learning-based
approaches [2, 30]. Our work is also related to the cross-domain image generation works[31, 32, 33],
which studied transforming an image in one style to the corresponding images in another style. Our
work focus on learning the joint distribution in an unsupervised fashion, while [31, 32, 33] focus on
learning a transformation function directly in a supervised fashion.

7 Conclusion

We presented the CoGAN framework for learning to generate corresponding images in two different
domains. We showed that via enforcing a simple weight-sharing constraint to the layers that are
responsible for decoding abstract semantics, the CoGAN learned to generate pairs of corresponding
images in an unsupervised fashion. This proved that the joint distribution of images in two different
domains can be learned via samples drawn from the marginal distributions. In addition to convincing
image generation results on faces and RGBD images, we also showed promising results of the
CoGAN framework for the image transformation and unsupervised domain adaptation tasks.
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Coupled Generative Adversarial Nets Learning Algorithm

We present the learning algorithm for the coupled generative adversarial nets in Algorithm 1. The algorithm
is an extension of the learning algorithm for the generative adversarial nets (GAN) to the case of training two
GANs with weight sharing constraints. The convergence property follows the results shown in [3].

Algorithm 1 Mini-batch stochastic gradient descent for training coupled generative adversarial nets.

1: Initialize the network parameters θ
f
(i)
1

’s θ
f
(i)
2

’s θ
g
(i)
1

’s and θ
g
(i)
2

’s with the shared network
connection weights set to the same values.

2: for t = 0, 1, 2, ...,maximum number of iterations do
3: Draw N samples from pZ , {z1, z2, ..., zN}
4: Draw N samples from pX1 , {x1

1,x
2
1, ...,x

N
1 }

5: Draw N samples from pX2 , {x1
2,x

2
2, ...,x

N
2 }

6: Compute the gradients of the parameters of the discriminative model, f t1, ∆θ
f
(i)
1

;

∇θ
f
(i)
1

1

N

N∑
j=1

− log f t1(xj
1)− log

(
1− f t1

(
gt1(zj)

))
7: Compute the gradients of the parameters of the discriminative model, f t2, ∆θ

f
(i)
2

;

∇θ
f
(i)
2

1

N

N∑
j=1

− log f t2(xj
2)− log

(
1− f t2

(
gt2(zj)

))
8: Average the gradients of the shared parameters of the discriminative models.
9: Compute f t+1

1 and f t+1
2 according to the gradients.

10: Compute the gradients of the parameters of the generative model, gt1, ∆θ
g
(i)
1

;

∇θ
g
(i)
1

1

N

N∑
j=1

− log
(

1− f t+1
1

(
gt1(zj)

))
11: Compute the gradients of the network parameters of the generative model, g2, ∆θ

g
(i)
2

;

∇θ
g
(i)
2

1

N

N∑
j=1

− log
(

1− f t+1
2

(
gt2(zj)

))
12: Average the gradients of the shared parameters of the generative models.
13: Compute gt+1

1 and gt+1
2 according to the gradients.

14: end for
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8 Training Datasets

In Figure 7, Figure 8, Figure 9, and Figure 10, we show several example images of the training images used for
the pair image generation tasks in the experiment section. Table 2, Table 3, Table 4, and Table 5 contain the
statistics of the training datasets for the experiments.

Figure 7: Training images for the digit experiments. Left (Task A): The images in the first row are from the
original MNIST digit domain, while those in the second row are from the edge image domain. Right (Task B):
The images in the first row are from the original MNIST digit domain, while those in the second row are from
the negative image domain.

Figure 8: Training images from the Celeba dataset [13].

Figure 9: Training images from the RGBD dataset [14].

Figure 10: Training images from the RGBD dataset [15].

Table 2: Numbers of training images in Domain 1 and Domain 2 in the MNIST experiments.
Task A Task B

Pair generation of digits and Pair generation of digits and
corresponding edge images corresponding negative images

# of images in Domain 1 30,000 30,000
# of images in Domain 2 30,000 30,000

Table 3: Numbers of training images of different attributes in the pair face generation experiments.

Attribute Smiling Blond hair Glasses
# of images with the attribute 97,669 29,983 13,193

# of images without the attribute 104,930 172,616 189,406

Table 4: Numbers of RGB and depth training images in the RGBD experiments.

# of RGB images 125,000
# of depth images 125,000

Table 5: Numbers of RGB and depth training images in the NYU experiments.

# of RGB images 514,192
# of depth images 1,449

9 Networks

We present the details of the network architectures used in the experiments. In the CoGAN design, the generative
models are based on the fractional length convolutional (FCONV) layers, while the discriminative models are
based on the standard convolutional (CONV) layers with the exceptions that the last two layers are based on the
fully-connected (FC) layers. The batch normalization (BN) layers [6] are applied after each convolutional layer,
which are followed by the parameterized rectified linear unit (PReLU) processing [7]. The sigmoid units and the
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hyperbolic tangent units are applied to the output layers of the generative models for generating images with
desired pixel range values.

Table 6 shows the CoGAN architecture for the pair digit generation experiments. Table 7 shows the CoGAN
architecture for the pair face generation experiments [13]. Table 8 shows the CoGAN architecture for the
generation of RGB and depth images experiments trained with the RGBD object dataset [14]. Table 9 shows the
CoGAN architecture for the generation of RGB and depth images experiments trained with the NYU indoor
scene dataset [15]. The triplets followed the FCONV or CONV denote the parameters of the convolutional
layers. In each triplet, the first number denotes the number of neurons, the second number denotes the kernel
size of each filter in the layer, and the third number denotes the stride length of each filter in the layer.

Table 6: The CoGAN architecture for the pair generation of digits.

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K3x3,S2), BN, PReLU FCONV-(N512,K3x3,S2), BN, PReLU Yes
3 FCONV-(N256,K3x3,S2), BN, PReLU FCONV-(N256,K3x3,S2), BN, PReLU Yes
4 FCONV-(N128,K3x3,S2), BN, PReLU FCONV-(N128,K3x3,S2), BN, PReLU Yes
5 FCONV-(N1,K6x6,S1), Sigmoid FCONV-(N1,K6x6,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N20,K5x5,S1), POOL-(MAX,2) CONV-(N20,K5x5,S1), POOL-(MAX,2) No
2 CONV-(N50,K5x5,S1), POOL-(MAX,2) CONV-(N50,K5x5,S1), POOL-(MAX,2) Yes
3 FC-(N500), PReLU FC-(N500), PReLU Yes
4 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Table 7: The CoGAN architecture for the pair generation of faces.

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K4x4,S2), BN, PReLU FCONV-(N32,K4x4,S2), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N3,K3x3,S1), TanH No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes
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Table 8: The CoGAN architecture for the pair generation of RGB and depth images trained with the RGBD
object dataset.

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K3x3,S1), BN, PReLU FCONV-(N32,K3x3,S1), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N1,K3x3,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Table 9: The CoGAN architecture for the pair generation of RGB and depth images trained with the NYU indoor
scene dataset.

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K4x4,S2), BN, PReLU FCONV-(N32,K4x4,S2), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N1,K3x3,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes
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10 Visualization

Figure 11 illustrates additional visualization results for the pair digit generation experiments. Figure 12, Figure 13,
and Figure 14 present additional visualization results of the pair generation of faces with the blond-hair attribute
and without the blond-hair attribute. Figure 15, Figure 16, and Figure 17 present additional visualization
results of the pair generation of faces with the smiling attribute and without the smiling attribute. Figure 18,
Figure 19, and Figure 20 present additional visualization results of the Pair generation of faces with the eyeglasses
attribute and without the eyeglasses attribute. Figure 21, Figure 22, Figure 23, and Figure 24 present additional
visualization results of the pair generation of RGB and depth image experiments.

Figure 11: Left: pair generation of digit and corresponding edge images. Right: pair generation of digit and
corresponding negative images. We visualized the CoGAN results by rendering pairs of images, using the
vectors that corresponded to paths connecting two pints in the input noise space. For each of the sub-figures, the
top row was from the GAN1 and the bottom row was from the GAN2. Each of the top and bottom pairs was
rendered using the same input noise vector. We observed that for both tasks the CoGAN learned to synthesized
corresponding images in the two domains. This was interesting because there were no corresponding images in
the training datasets. The correspondences were figured out during training in an unsupervised fashion.
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Figure 12: Pair generation of faces with blond hair and without blond hair.
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Figure 13: Pair generation of faces with blond hair and without blond hair.
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Figure 14: Pair generation of faces with blond hair and without blond hair.
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Figure 15: Pair generation of smiling and non-smiling faces.
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Figure 16: Pair generation of smiling and non-smiling faces.
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Figure 17: Pair generation of smiling and non-smiling faces.
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Figure 18: Pair generation of faces with eyeglasses and without eyeglasses.
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Figure 19: Pair generation of faces with eyeglasses and without eyeglasses.
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Figure 20: Pair generation of faces with eyeglasses and without eyeglasses.
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Figure 21: Pair generation of RGB and depth images of objects. The 1st row contains the color images. The 2nd
row contains the depth images. The 3rd and 4th rows visualized the point clouds under different view points.
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Figure 22: Pair generation of RGB and depth images of objects. The 1st row contains the color images. The 2nd
row contains the depth images. The 3rd and 4th rows visualized the point clouds under different view points.

25



Figure 23: Pair generation of RGB and depth images of indoor scenes.
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Figure 24: Pair generation of RGB and depth images of indoor scenes.
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11 Additional Quantitative Evaluation Discussions

11.1 Weight Sharing

We analyzed the effect of weight sharing in the CoGAN framework. We conducted an experiment where we
varied the numbers of weight-sharing layers in the generative and discriminative models to create different
CoGAN architectures and trained them with the same hyperparameters. Due to lack of proper validation methods,
we did a grid search on the training iteration and reported the best performance achieved by each network
configuration for both Task A and B2. For each network architecture, we run 5 trails with different random
network initialization weights. We then rendered 10000 pairs of images for each learned network. A pair of
images consisted of an image in the first domain (generated by GAN1) and an image in the second domain
(generated by GAN2), which were rendered using the same z.

For quantifying the performance of each CoGAN architecture, we transformed the images generated by the
GAN1 to the second domain by using the same method employed for generating the training images in the
second domain. We then compared the transformed images with the images generated by the GAN2. The
performance was measured by the average of the ratios of agreed pixels between the transformed image and
the corresponding image in the other domain. Specifically, we rounded the transformed digit image to a binary
image and we also rounded the rendered image in the second domain to a binary image. We then compared the
pixel agreement ratio—the number of corresponding pixels that have the same value in the two images divided
by the total image size. The performance of a trail was given by the pixel agreement ratio of the 10000 pairs of
images. The performance of a network configuration was given by the average pixel agreement ratio over the 5
trails. We reported the performance results for Task A in Table 10 and the performance results for Task B in
Table 11.

From the tables, we observed that the pair image generation performance was positively correlated with the
number of weight-sharing layers in the generative models. With more shared layers in the generative models, the
rendered pairs of images were resembling more to true pairs drawn from the joint distribution. We noted that the
pair image generation performance was uncorrelated to the number of weight-sharing layers in the discriminative
models. However, we still preferred applying discriminator weight sharing because this reduces the total number
of parameters.

Table 10: The table shows the performance of pair generation of digits and corresponding edge images (Task A)
with different CoGAN weight-sharing configurations. The results were the average pixel agreement ratios over
10000 images over 5 trials.

Avg. pixel agreement ratio Weight-sharing layers in the generative models
5 5,4 5,4,3 5,4,3,2

Weight-sharing 0.894 ± 0.020 0.937 ± 0.004 0.943 ± 0.003 0.951 ± 0.004
layers in the 4 0.904 ± 0.018 0.939 ± 0.002 0.943 ± 0.005 0.950 ± 0.003
discriminative 4,3 0.888 ± 0.036 0.934 ± 0.005 0.946 ± 0.003 0.941 ± 0.024
models 4,3,2 0.903 ± 0.009 0.925 ± 0.021 0.944 ± 0.006 0.952 ± 0.002

Table 11: The table shows the performance of pair generation of digits and corresponding negative images (Task
B) with different CoGAN weight-sharing configurations. The results were the average pixel agreement ratios
over 10000 images over 5 trials.

Avg. pixel agreement ratio Weight-sharing layers in the generative models
5 5,4 5,4,3 5,4,3,2

Weight-sharing 0.932 ± 0.011 0.946 ± 0.013 0.970 ± 0.002 0.979 ± 0.001
layers in the 4 0.906 ± 0.066 0.953 ± 0.008 0.970 ± 0.003 0.978 ± 0.001
discriminative 4,3 0.908 ± 0.028 0.944 ± 0.012 0.965 ± 0.009 0.976 ± 0.001
models 4,3,2 0.917 ± 0.022 0.934 ± 0.011 0.955 ± 0.010 0.969 ± 0.008

2We noted that the performances were not sensitive to the number of training iterations.
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11.2 Comparison with the Conditional Generative Adversarial Nets

We compared the CoGAN framework with the conditional generative adversarial nets (GAN) framework for
the pair image generation task. We designed a conditional GAN whose generative and discriminative models
were almost identical to those used in the CoGAN in the digit experiments. The only difference was that the
conditional GAN took an additional binary variable as input, which controlled the domain of the output image.
The binary variable acted as a switch. When the value of the binary variable was zero, it generated images
resembling images in the first domain. Otherwise, it generated images resembling those in the second domain.
The output layer of the discriminative model was a softmax layer with three neurons. If the first neuron was on,
it meant the input to the discriminative model was a synthesized image from the generative model. If the second
neuron was on, it meant the input was a real image from the first domain. If the third neuron was on, it meant
the input was a real image from the second domain. The goal of the generative model was to render images
resembling those from the first domain when the binary variable was zero and to render images resembling
those from the second domain when the binary variable was one. The details of the conditional GAN network
architecture is shown in Table 12.

Table 12: Network architecture of the conditional GAN
Layer Generative models
input z and conditional variable c ∈ {0, 1}

1 FCONV-(N1024,K4x4,S1), BN, PReLU
2 FCONV-(N512,K3x3,S2), BN, PReLU
3 FCONV-(N256,K3x3,S2), BN, PReLU
4 FCONV-(N128,K3x3,S2), BN, PReLU
5 FCONV-(N1,K6x6,S1), Sigmoid

Layer Discriminative models
1 CONV-(N20,K5x5,S1), POOL-(MAX,2)
2 CONV-(N50,K5x5,S1), POOL-(MAX,2)
3 FC-(N500), PReLU
4 FC-(N3), Softmax

Table 13: Pair Generation Performance Comparison. For each task, we reported the average pixel agreement
ratio scores and standard deviations over 5 trails, each trained with a different random initialization of the
network connection weights.

Experiment Task A: Digit and Edge Images Task B: Digit and Negative Images
Conditional GAN 0.909 ± 0.003 0.778 ± 0.021

CoGAN 0.952 ± 0.002 0.967 ± 0.008

Similarly to the CoGAN learning, no correspondence was given during the conditional GAN learning. We
applied the conditional GAN to the two digit generation tasks and hoped to answer whether a conditional model
can be used to render corresponding images in two different domains without pairs of corresponding images
in the training set. We used the same training data and hyperparameters as those used in the CoGAN learning.
We trained the CoGAN for 25000 iterations3 and used the trained network to render 10000 pairs of images in
the two domains. Specifically, each pair of images was rendered with the same z but with different conditional
variable values. These images were used to compute the pair image generation performance of the conditional
GAN measured by the average of the pixel agreement ratios. For each task, we trained the conditional GAN for
5 times, each with a different random initialization of the network weights. We reported the average scores and
the standard deviations.

The performance results are reported in Table 13. It can be seen that the conditional GAN achieved 0.909 for
Task A and 0.778 for Task B, respectively. They were much lower than the scores of 0.952 and 0.967 achieved
by the CoGAN. Figure 25 visualized the conditional GAN’s pair generation results, which suggested that the
conditional GAN had difficulties in learning to render corresponding images in two different domains without
pairs of corresponding images in the training set. We then conclude that the conditional model is unable to learn
a joint distribution from samples drawn separately from the marginal distributions of the individual domains.

3 We note that the pair image generation performance of the conditional GAN did not change much after
5000 iterations.
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Figure 25: Digit Generation with Conditional Generative Adversarial Nets. Left: pair generation of digit and
corresponding edge images. Right: pair generation of digit and corresponding negative images. We visualized
the conditional GAN results by rendering pairs of images, using the vectors that corresponded to paths connecting
two pints in the input space. For each of the sub-figures, the top row was from the conditional GAN with the
conditional variable set to 0, and the bottom row was from the conditional GAN with the conditional variable set
to 1. That is each of the top and bottom pairs was rendered using the same input vector except for the conditional
variable value. The conditional variable value was used to control the domain of the output images. From the
figure, we observed that, although the conditional GAN learned to generate realistic digit images, it failed to
learn the correspondence in the two domains. For the edge task, the conditional GAN rendered images of the
same digits with a similar font. The edge style was not well-captured. For the negative image generation task,
the conditional GAN simply failed to capture any correspondence. The rendered digits with the same input
vector but different conditional variable values were not related. This showed that the conditional GAN is not
suited for learning to render corresponding images in a unsupervised fashion. On the contrary, the proposed
CoGAN framework can learn to generate pairs of corresponding images without pairs of corresponding images
in the training dataset as shown in Figure 11.
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