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Abstract
Denoising filters, such as bilateral, guided, and total variation filters, applied to images on
general graphs may require repeated application if noise is not small enough. We formulate
two acceleration techniques of the resulted iterations: conjugate gradient method and Nes-
terov’s acceleration. We numerically show efficiency of the accelerated nonlinear filters for
image denoising and demonstrate 2-12 times speed-up, i.e., the acceleration techniques reduce
the number of iterations required to reach a given peak signal-to-noise ratio (PSNR) by the
above indicated factor of 2-12.
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Abstract

Denoising filters, such as bilateral, guided, and total variation filters, applied to images on general

graphs may require repeated application if noise is not small enough. We formulate two acceleration

techniques of the resulted iterations: conjugate gradient method and Nesterov’s acceleration. We

numerically show efficiency of the accelerated nonlinear filters for image denoising and demonstrate

2-12 times speed-up, i.e., the acceleration techniques reduce the number of iterations required to reach

a given peak signal-to-noise ratio (PSNR) by the above indicated factor of 2-12.

1 Introduction

Modern image denoising algorithms are edge preserving, i.e., they preserve important discon-
tinuities in an image while attenuating noise. Many of such algorithms are based on the
anisotropic diffusion idea, first formulated in [1, 2]. The idea consists in using diffusion co-
efficients depending on the local variance—the larger the variance the smaller the coefficient.

Popular denoising techniques, which implement the anisotropic diffusion, include the bilat-
eral filter [3, 4, 5, 6, 7], the guided image filter [10], and the total variation denoising [11]. The
fastest computer implementations of the bilateral filter are proposed in recent papers [8, 9].
The guided image filter has been included in the MATLAB Image Processing Toolbox. We
also remark that the total variation denoising can be formulated in the filter form; see Sec-
tion 2.3. All the three filters may be applied to images or signals on graphs; see, e.g., [12] on
the graph-based methods in signal and image processing.

More recent state-of-the-art denoising methods are patch-based such as those developed in
[13, 14, 15, 16, 17]. An improvement of these methods, based on a special truncation of high
frequency modes, is proposed in [18, 19]. Since the patch-based algorithms use geometrically
similar patches, they seem to be inconvenient for images or signals on general graphs. This
reason might partially justify a still active research interest in the basic imaging techniques
like the bilateral filter, guided image filter and total variation denoising. Moreover, the models
based on the total variation enjoy very rich variational properties.

In certain situations, a single application of a smoothing filter does not produce an acceptable
denoising result, and, therefore, the filter transform has to be applied repeatedly (or iteratively),
say 10-1000 times, depending on the filter type and level of noise. The repetitive application
procedure may be expensive even for images of moderate size. Our previous work in [22, 23] is
devoted to acceleration techniques for the iterative application of smoothing filters formulated
above. The results are based on the studies in [20, 21], where low-pass filters are constructed by
means of projection onto the leading invariant subspaces, corresponding to the modes of lowest
frequency, of a graph Laplacian matrix generated by a basic smoothing filter.
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The initial publications [20, 21, 22] consider iterative application of a fixed smoothing filter,
whose coefficients are defined by the input noisy image. Such a method is known under the
name of power iteration. The authors of [20] propose to accelerate the power iteration by the
aid of Chebyshev’s polynomials. The paper [21] additionally proposes to accelerate the power
iteration by the aid of the polynomials generated in the conjugate gradient method [25]. In
[22], we formulate a special variant of the preconditioned conjugate method, which accelerates
the power iteration for 1D and 2D signals on graphs, and demonstrate that similar acceleration
can be achieved with the LOBPCG method [26].

The subsequent works [23, 24] deal with a nonlinear iterative application of filters, where a
smoothing filter at each iteration is determined by the currently processed image. The resulting
transform yields a nonlinear smoothing filter in contrast to the linear smoothing filter given by
the power iteration with a fixed filter at each iteration. The paper [23] presents a special variant
of a nonlinear preconditioned conjugate gradient method and numerically demonstrates its high
efficiency for accelerated denoising of one-dimensional signals. The conference presentation [24]
shows how to accelerate the nonlinear iterative filters by means of the Chebyshev polynomials.

The present note continues the work in our previous papers [22, 23] about acceleration of
iterative smoothing filters and contains a number of new contributions listed below. In addition
to the bilateral and guided image filters, we consider the total variation denoising and formulate
it as a filter operator. In addition to the preconditioned conjugate gradient (PCG) acceleration
of nonlinear iterative smoothing filters, we propose to apply Nesterov’s acceleration, which is
commonly used in a totally different context of iterative solution of convex minimization prob-
lems. We numerically investigate performance of the PCG acceleration of nonlinear iterative
smoothing filters for two-dimensional images, which is not clear from the previous publications
at all. We also numerically investigate performance of Nesterov’s acceleration of nonlinear
iterative smoothing filters.

2 Smoothing filters

We consider only smoothing filters, which are represented in the matrix form x1 = D−1Wx0,
where the vectors x0 and x1 of length N are the input and output signals, respectively. The
entries wij of the symmetric N × N matrix W are determined by a guidance signal g, i.e.
W = W (g). When g = x0, the filter is nonlinear and called self-guided. The diagonal matrix

D has N positive diagonal entries di =
∑N
j=1 wij . The symmetric nonnegative definite matrix

L = D − W is commonly referred to as a graph Laplacian matrix. The spectrum of the
normalized Laplacian D−1/2LD−1/2 is nonnegative real, and its largest eigenvalues correspond
to the highest oscillation modes.

In this paper, we are interested in iterative application of the filter transform

xk+1 = D−1Wxk, k = 1, . . . , kmax,

where the number of iterations kmax needs to be chosen large enough for good denoising result
in xkmax , but small enough to prevent over-smoothing effect. Each iteration k is a self-guiding
filter, where the weights wij are determined by the guidance signal g = xk.
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2.1 Bilateral filter (BF)

Let us assume that a spatial distance ‖pi− pj‖ ∈ [0,∞] can be defined for all index pairs (i, j),
1 ≤ i, j ≤ N . The weights of the bilateral filter [5] equal

wij = exp

(
−‖pi − pj‖

2

2σ2
d

)
exp

(
−|gi − gj |

2

2σ2
r

)
,

where the constants σd and σr are filter parameters, and |gi− gj | is a suitable distance between
the components of a guidance signal g. The arithmetical complexity of a single application of
the bilateral filter to images on rectangular grids can be reduced to O(N); see [8].

2.2 Guided filter (GF)

The following algorithm, proposed in [10] and implemented in the MATLAB Image Processing
Toolbox, performs one application of the guided filter defined by a guidance signal g:

Algorithm Guided filter

Input: x, g, w, ε
Output: y
meang = fmean(g, w); meanx = fmean(x,w)
corrg = fmean(g. ∗ g, w); corrgx = fmean(g. ∗ x,w)
varg = corrg −meang. ∗meang; covgx = corrgx −meang. ∗meanx
a = covgx./(varg + ε); b = meanx − a. ∗meang
meana = fmean(a,w); meanb = fmean(b, w)
y = meana. ∗ g +meanb

The function fmean(·, w) denotes a mean filter with the window width w. The positive constant
ε determines the smoothness degree—the larger ε the larger smoothing effect. The dot preceded
operations .∗ and ./ denote the componentwise multiplication and division of vectors or matrices.
Special implementations of the guided filter applied to images on rectangular grids achieve an
O(N) arithmetical complexity; see [10].

The above algorithm does not explicitly build the matrices W and D for the filter transform
y = D−1Wx. Nevertheless, the transform is linear, and its matrix coincides with W , when
boundary padding for the mean filter fmean(·, w) is defined carefully so that the matrix W (g)
would be symmetric. Thus, the diagonal matrix D for the guided filter equals the identity
matrix I [10], and the graph Laplacian matrix is L = I −W .

2.3 Total Variation filter (TVF)

Let ∇ denote a gradient operator acting on signals. The classical Rudin-Osher-Fatemi (ROF)
denoising model [11] reads as follows:

min
x
‖∇x‖1 subject to ‖x− x0‖2 = σ,

where σ > 0 is given. Solution of ROF for a two-dimensional continuous image x0(x, y) is
approximated by the solution u(x, y, t) of the following boundary value problem for sufficiently
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large t > 0, a suitable constant λ > 0, and sufficiently small regularizing parameter ε > 0:

ut =
∂

∂x

 ux√
u2x + u2y + ε

+
∂

∂y

 uy√
u2x + u2y + ε

− λ(u− x0)

u(x, y, 0) = x0(x, y);
∂u

∂n
= 0 on the image boundary.

The value ‖∇u‖1 =
∫∫ √

u2x + u2ydxdy is called the total variation of u(x, y).

The graph Laplacian matrix associated with the ROF model is a suitable discretization of the

elliptic operator − ∂
∂x

(
ux√

u2
x+u

2
y+ε

)
− ∂
∂y

(
uy√

u2
x+u

2
y+ε

)
with the Neumann boundary conditions.

For a one-dimensional N × 1 array x, we can, e.g., define the gradient operator ∇x = Gx
by means of the bidiagonal N ×N matrix

G =


−1 1

. . .
. . .

−1 1
0

 .
Given a one-dimensional guidance signal g and regularization parameter ε > 0, we introduce
a diagonal diffusion N × N matrix diag(C) with the diagonal C = 1

4 [ε./(ε+ |∇g|)]. The TV
filter y = D−1Wx is then defined by the N ×N matrices L(g) = ∇Tdiag(C)∇ = GTdiag(C)G,
D(g) = I, W (g) = D − L.

The gradient operator applied to a two-dimensional M ×M array x can be defined by the

formula ∇x =

[
p1
p2

]
=

[
Gx
xGT

]
with the bidiagonal M ×M matrix G. The transposed gradient

is the operator ∇T
[
p1
p2

]
= GT p1 + p2G. For an M ×M guidance array g, we use the coefficient

matrix

C =
1

8

[
ε./

(
ε+

√
|Gg|. ∗ |Gg|+ |gGT |. ∗ |gGT |

)]
,

which is rotation invariant. Then the Laplacian operator is L(g)x = ∇T
([
C
C

]
. ∗ ∇x

)
=

GT (C. ∗Gx) + (xGT . ∗ C)G, D(g) = I, and W (g) = D − L.

In the case of general graph-based signal x and guidance g, one can use the above formulas
for the one-dimensional case with a problem specific gradient operator.

3 Acceleration of iterations

In this section, we provide two algorithms for acceleration of the non-linear filtering iteration
x0 = x, xk+1 = D−1(xk)W (xk)xk = xk − D−1(xk)L(xk)xk, k = 0, 1, . . . , kmax, where the
symmetric matrices W (g) and D(g) are defined in Section 2, and L(g) = D(g) −W (g). In
both algorithms, the total running time is determined by the number of calls to the basic filter
xk+1 = D−1(xk)W (xk)xk. The overhead due to the auxiliary computations for the accelerations
is marginal with respect to the application of the basic filters to images on general graphs.
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3.1 Acceleration by the Preconditioned Conjugate Gradient (PCG)
method

Formally applying the classical preconditioned conjugate gradient method [25] with a precon-
ditioner D to the system of linear equations Lu = 0, and choosing D and W depending on the
current approximation y to the solution, we arrive at the following algorithm, proposed and
partially tested in [21, 22, 23]. We draw attention to the necessity of restarts in the algorithm
due to the nonlinearity of power iterations. We also emphasize that convergence theory of PCG
in the considered context does not exist.

Algorithm PCG(kmax) with lmax restarts

Input: x, kmax, lmax
Output: y
y = x
for l = 1, . . . , lmax do
r = W (y)y −D(y)y
for k = 1, . . . , kmax − 1 do
s = D−1(y)r
γ = sT r
if k = 1 then p = s
else β = γ/γold; p = s+ βp
endif
q = D(y)p−W (y)p
α = γ/(pT q)
y = y + αp
r = r − αq
γold = γ

endfor
endfor

3.2 Nesterov’s acceleration

Nesterov’s acceleration is suggested in [28]. The choice of β in the following algorithm has been
adopted from [29]. To our best knowledge, convergence theory of Nesterov’s acceleration in the
present context is not available.

Algorithm Nesterov(kmax)

Input: x, kmax

Output: y
y = x; yold = y
for k = 1, . . . , kmax do
β = (k − 1)/(k + 2)
t = y + β(y − yold)
yold = y
y = D−1(t)W (t)t

endfor
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a b

Figure 1: Clean image vs. noisy image,
PSNR = 21.72

a b

Figure 2: A single application of the guided
filter with ε = 0.01. (a) window width 5,
PSNR=26.16 vs. (b) window width 30,
PSNR=24.84

4 Numerical study

From the mathematical point of view, application of the smoothing filter transform x1 =
D−1Wx0 to images on general graphs does not differ from the case of images on rectangu-
lar grids, if specific geometric properties of the rectangular grid on the plane are not taken
into account. Therefore, in order to facilitate programming efforts in our numerical tests, we
carry out numerical experiments with images on standard rectangular grids instead of images
on general graphs. We use a gray-scale 512 × 512-image created by the MATLAB command
clean = phantom(’Modified Shepp-Logan’,512). The image is piecewise constant, and its
intensity levels span the range [0, 1]. A noisy image, generated by the MATLAB command
noisy = imnoise(clean), is corrupted by Gaussian white noise with zero mean and variance
equal to 0.01. The peak signal-to-noise ratio (PSNR) of the noisy image is 21.7. In order to
show smaller details, we display the zoomed image patches consisting of the rows 211:420 and
columns 201:300 instead of full 512×512-images. But the filters are applied to full images, and
the reported PSNR values are also computed for full images.

Our simple implementation of the bilateral filter has the the following parameters: the
window width equals 5, σd = 1, and σr = 0.2. As the guided image filter, we use the function
imguidedfilter from MATLAB with the window width 5 and the smoothness parameter
ε = 0.0001. The regularization parameter in our implementation of the total variation filter
equals ε = 0.001. The restart parameter in the preconditioned conjugate gradient acceleration
is kmax = 3. According to our experience, the PCG acceleration of self-guided smoothing filters
with kmax > 5 does not work well. We count the total number of iterations in the iterative
filters as the number of calls of a basic filter. Therefore, the number of iterations in the PCG
method equals kmax × lmax.

Figure 1 displays zooms of the clean and noisy images. Figure 2 shows the denoising result
of a single application of the guided image filter with the default MATLAB’s value of the
smoothness parameter ε = 0.01. The image on the left has been processed with the window
width 5, which is the MATLAB’s default value. The image on the right has been processed
with the window width 30.
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a b c

Figure 3: (a) 70 iterations of the repeated guided filter, PSNR=29.13,
(b) 30 iterations of the PCG accelerated guided filter, PSNR=28.76,
(c) 23 iterations of the Nesterov accelerated guided filter, PSNR=29.01

a b c

Figure 4: (a) 10 iterations of the repeated bilateral filter, PSNR=29.69,
(b) 6 iterations of the PCG accelerated bilateral filter, PSNR=29.82,
(c) 5 iterations of the Nesterov accelerated bilateral filter, PSNR=29.85

Figures 3–5 illustrate the repeated application, the PCG accelerated iteration, and the
Nesterov accelerated iteration, of the guided filter, the bilateral filter, and the total variation
filter, respectively. We have chosen the filter parameters and number of iterations in order to
reach sufficiently good visual quality of output images. We remark that selection of output
results with the highest possible PSNR values is not always the best strategy for achieving the
best visual quality.

The results in Figures 3 and 4 show 2-3x speedup for the accelerated guided image and
bilateral filters. The speedup for the accelerated total variation filter shown in Figure 5 is
8-12x. The visual quality of the images 5(a) and 5(b) is slightly better than that of 5(c). As
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a b c

Figure 5: (a) 1000 iterations of the repeated TV filter, PSNR=28.50,
(b) 135 iterations of the PCG accelerated TV filter, PSNR=28.48,
(c) 80 iterations of the Nesterov accelerated TV filter, PSNR=28.31

a b c

Figure 6: (a) clean image, (b) 800 iterations of the repeated TV filter, PSNR=33.18,
(c) 45 iterations of the PCG accelerated TV filter, PSNR=33.02

concerns comparison of the two acceleration techniques by the preconditioned conjugate gradi-
ent method and by Nesterov’s acceleration, both methods usually possess similar speedup and
output quality. However, sometimes Nesterov’s method behaves stabler in the acceleration of
nonlinear iterations. The PCG acceleration is more efficient for acceleration of linear iterations.

The preconditioned conjugate gradient acceleration may work especially well for the total
variation denoising, when the graph Laplacian matrix is not properly scaled. Figure 6 shows
results of the PCG accelerated TV denoising for the 512 × 512-image liftingbody.png from
MATLAB, corrupted by Gaussian noise with zero mean and variance 0.01. The PSNR value of
the noisy image is 20.06.

There exists a variant of acceleration proposed in [27], which is often called the heavy ball
method. According to our numerical experience, we can conclude that the acceleration based
on the heavy ball method is inferior to Nesterov’s acceleration.
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We have also carried out extensive experiments with the BM3D code, developed by the
authors of the BM3D method [15] and currently considered as one of the best patch-based
denoising codes. BM3D with the default parameters usually requires only one application to
reach the best possible quality. With other acceptable parameter choices, BM3D produces the
best quality after 1 or 2 iterations. It means that our accelerations techniques are of no use for
the BM3D code. However, we believe that our accelerations may be very useful for denoising
signals and images on general graphs, where the patch-based methods do not work.

5 Conclusion

We have numerically demonstrated that acceleration by the preconditioned conjugate gradient
and Nesterov’s methods works for the iterative self-guided smoothing filters in the 2D case.
Both acceleration methods demonstrate similar efficiency. The accelerated filters achieve ap-
proximately the same denoising quality, e.g. in terms of PSNR, as the non-accelerated iterative
application of basic filters such as the bilateral, guided, and total variation filters. The ac-
celeration speedup, measured by the number of calls to basic smoothing filters, on images of
moderate size, say 512×512, can be in the range 2-12x. We remark that mathematical theory of
the proposed accelerations of nonlinear smoothing filters is not developed yet. The accelerated
filters may be especially useful for processing images and signals on general graphs.
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