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Abstract. Methods are proposed for estimating real lifetimes and corre-
sponding coefficients from real-valued measurement data in logarithmic
scale, where the data are multi-exponential, i.e. represented by linear
combinations of decaying exponential functions with various lifetimes.
Initial approximations of lifetimes are obtained as peaks of the first
derivative of the data, where the first derivative can, e.g, be calculated
in the spectral domain using the cosine Fourier transform. The coef-
ficients corresponding to lifetimes are then estimated using the linear
least squares fitting. Finally, all the coefficients and the lifetimes are op-
timized using the values previously obtained as initial approximations in
the non-linear least squares fitting. We can fit both the data curve and
its first derivative and allow simultaneous analysis of multiple curves.
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1 Introduction

Separation of exponentials, i.e. lifetime extraction from multi-exponential mea-
surement data represented by linear combinations of decaying exponential func-
tions with various lifetimes, is a classical area of research, related to the inverse
Laplace transform and the problem of weighted moments, with numerous appli-
cations and a vast literature spreading over a century; see, e.g., [11, Chap. IV]
and references there. We are interested in a particular case, where the data, the
lifetimes, and the corresponding coefficients in the linear combinations are all
real-valued, in contrast to a typical scenario of multiple signal classification for
frequency estimation and emitter location. One additional assumption is that
the lifetimes are widely spread, by orders of magnitude, practically requiring a
time-logarithmic scale to represent the measurement data, which rules out tra-
ditional methods utilizing uniform time grid. Our particular application relates
to analyzing trapping and detrapping of charge carriers, i.e. electrons and elec-
tronic holes, in electronic devices, as in [7,8]. Trapping an electron means that
the electron is captured from the conduction band, while detrapping an electron
conversely means capturing a hole from the valence band; see [10, Chap. 11].
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In semiconductor devices, traps pertain to impurities or dislocations that
capture the charge carriers, and keep the carriers strongly localized; see, e.g.,
[1,13,15,16]. Effects of the traps on performance of the semiconductor devices
are temporal and eventually decay over time, i.e. the behavior of the device stabi-
lizes and the measured quantity, e.g., the ON resistance, approaches a constant.
Each trap can be assumed to behave exponentially decaying in time t with a
specific lifetime τ , such as a purely exponential process in time t described by a
function cτe

−t/τ , in a process reversed to a charge carrier avalanche. The param-
eter τ is commonly called the lifetime, and is inversely proportional to the decay
rate, since d(cτe

−t/τ )/dt = −cτe−t/τ/τ. The coefficient (also called the mag-
nitude) cτ expresses the magnitudes of the purely exponential process cτe

−t/τ ,
and represents the initial, at the time t = 0, contribution of the corresponding
process to the measured data. For semiconductor traps, the magnitude cτ may
be related to the total initial, at the time t = 0, number of charges participating
in the trap process for the fixed lifetime τ , described by the exponential process
cτe
−t/τ . Depending on the sign of the charge of the carrier and the measured

quantity, a single trapping process may lead to an increase with cτ < 0 , called
detrapping, or a decrease with cτ > 0 of the measured quantity.

Collectively, multiple traps are assumed to independently influence the op-
eration of the device in an additive fashion with possibly various lifetimes τ and
initial concentrations cτ of the carriers in every trap. Therefore, the measurement
data can be assumed to be multi-exponential in time,

Idata(t) ≈
n∑
i=1

cie
−t/τi + I∞, (1)

where one needs to determine the number n > 0 of terms in the sum, the positive
lifetimes τi and the corresponding nonzero coefficients ci, which can be positive
in trapping and negative in detrapping processes. In our application, device
recovery from the traps can take nano-seconds, minutes, or even days, therefore
both t and τ need to be presented in the time-logarithmic scale, e.g., in base 10
we substitute t = 10s and τ = 10σ. We thus need to determine the values of σi
and the corresponding nonzero coefficients ci such that

Idata(s) ≈
n∑
i=1

cie
−10s−σi + I∞, (2)

e.g., by minimizing the least squares fit.
Since the traps may act at the nano-scale and the measurements are per-

formed at the macro-scale, the number n of terms in the sum, if every single
trap is given its own index, is practically infinite, i.e. the sum mathematically
turns into the integral

Idata(t) ≈
∫ τmax

τmin

cτe
−t/τdτ + I∞, (3)

where one needs to determine the interval of the lifetime values 0 < τmin < τmax

and the function cτ . Formula (3) clearly reminds us of the Laplace and the
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inverse Laplace transforms, leading to some exponentially ill-posed numerical
problems; see, e.g., [4]. Switching to the time-logarithmic scale, one can make a
formal substitution t = 10s and τ = 10σ in integral (3), or consider the integral
analog of the sum appearing in (2) as follows

Idata(c) ≈
∫ σmax

σmin

cσe
−10s−σdσ + I∞, (4)

where one needs to determine the function cτ , while the interval of the lifetime
logarithm values [σmin, σmax] can in practice be often selected a priori.

The analysis of the recovery is extremely important as the traps severely
degrade the performance and reliability of semiconductor devices. Trap analysis
is also important for characterizing the formation and behavior of the traps so
that the devices can be modeled, designed, and manufactured with improved
performance and reliability. The lifetimes are affected by material temperatures
and activation energies of the traps. The captured or released coefficient could
be a function of the initial number of the traps to be filled or number of carriers
in the traps to be released, respectively. Methods that can extract the lifetimes
of the trapping and detrapping processes from the measurement data allow de-
tecting and analyzing the traps. The measured data, e.g., the ON resistances, are
undoubtedly noisy. The noise distribution function over time is unclear, except
that measuring in a short time range is practically difficult, so one may expect
larger measurement errors, compared to a long time range.

Having the transient data, measured as a function Idata(t) of time t, one goal
can be to determine the constant I∞, the total number n of purely exponential
components present, and numerical values of the lifetimes τi and the correspond-
ing magnitudes ci for every exponential component in (1), wherein the value n
is chosen as small as possible while fitting the data within a given tolerance. In
the time-logarithmic scale, we determine σi in (2), having the data measured for
some values of s. Such a problem can be called a “discrete lifetime extraction,“
where the extracted lifetimes represent the dominating lifetimes, averaged over
all actual physical traps at the nano-scale.

An alternative goal can be to determine the constant I∞, the interval of the
lifetime values [τmin, τmax], and the function cτ , describing the distribution of
the lifetimes in (3). In the time-logarithmic scale, instead of cτ we determine
the function cσ in (4) describing the distribution of the logarithms of the life-
times, having the data measured as a function of s. Such problems can be called
“continuous lifetime extraction.“ Computationally, continuous lifetime extrac-
tion problem (4) can be approached by introducing some grids for the s and the
σ in the time-logarithmic scale, approximating the integral (4) using a quadra-
ture rule, and solving for cσ on the grid for the σ.

We note that the problem of multi-exponential extraction is key in many
applications, e.g., fluorescence imaging and magnetic resonance tomography, but
common ranges of the exponents and measurement times may not be nearly as
large as in our application of analyzing traps in semiconductors that requires
using the logarithmic scale, both for the exponents and the measurement times.
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2 Differentiating exponential functions in the
time-logarithmic scale

— I differentiate you!
— I am et...

What possibly exciting would one find by looking at the first derivative of
exponential functions? The answer is surprising, if the time-logarithmic scale
is used. In Fig. 1, several basis functions from the linear combination (1) with
τi = 1, 10, 100, 1000 and their corresponding derivatives are plotted in the time-
logarithmic scale.
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Fig. 1: The exponential basis functions and their analytic derivatives in the time-
logarithmic scale

We notice in Fig. 1(b) that the peaks of the absolute values of the first
derivatives of the basis function show us the locations of the lifetime constants τ !
This can also be proved analytically using the following expression for the first
derivative the time-logarithmic scale

d
(
e−t/τ

)
ds

= − log(10) 10s−σe−t/τ , where t = 10s and τ = 10σ (5)

by direct calculation of one more derivative, which we leave as an exercise for
the reader. Formula (5) gets simplified to d

(
e−t/τ

)
/ds = −es−σe−t/τ , if t = es

and τ = eσ, but we use base 10 to follow the original format of the measurement
data. Therefore, for a purely exponential, i.e. with n = 1, data curve (1), its
only lifetime τ1 can be easily and quickly determined by locating the point of
the maximum of the first derivative.

We also observe in Fig. 1(b) that the first derivative of every basis func-
tion is reasonably well localized around the corresponding value of the lifetime
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constant τ , quite quickly vanishing away from τ , especially to the right. The van-
ishing can be explained analytically by the behaviors of the multiplier 10s−σ if
t = 10s < τ = 10σ and the multiplier e−t/τ if t = 10s > τ = 10σ in formula (5)
of the first derivative. This crucial observation has three important implications
for designing the lifetime extraction methods in the time-logarithmic scale.

First, in the multi-exponential case n > 1 in (1), assuming discrete lifetimes,
as in Section 5, the local picks of the absolute of the first derivative of the data
curve can reveal the total number n of dominant lifetimes and their approximate
locations. Multi-exponential transient spectroscopy (METS) in [14,12] is based
on multiple differentiation in the time-logarithmic scale to approximate the dom-
inant lifetimes. However, already even the second order numerical derivative is
found to be too sensitive to measurement noise and inexact computer arith-
metic in our numerical tests and unable to provide reliable lifetime estimates,
even combined with low-pass filtering. Thus, we identify the number of the domi-
nant lifetimes and their approximate values to be used as initial approximations
for the nonlinear least squares method described in Section 5 typically using
only the first derivative. We note that Pade-like approximations to the lifetimes
are shown in [17] to include classical Prony’s method [3] and advocated in [5]
as being more robust compared to METS, but use the uniform, rather than
logarithmic, time scale, unsuitable for our needs.

Second, in the derivative space, the basis of the first derivatives of the func-
tions, plotted in Fig. 1(b), compared to the basis of the functions themselves,
may behave better, having a bit smaller condition number of a Gram matrix,
which implicitly appears in the linear least squares fit method in the derivative
space. Thus, the linear least squares fit of the first derivative of the data curve
using the first derivatives of the basis function in the derivative space may ex-
pected to be more numerically stable and can be performed on a computer with
the standard double precision floating point arithmetic with larger n, in con-
trast to the linear least squares fit of the the data curve itself using the original
basis function, descried in Section 3 following [7,8,9]. The continuous lifetime
extraction in the logarithmic scale using dense, e.g., uniform, grids in the loga-
rithmic scale is somewhat more numerically feasible in the first derivative space,
as we mention in Section 4. We can also take advantage of the first derivatives
of the basis functions by adding a weighted quadratic term containing the first
derivatives to the function minimized by the nonlinear least squares fitting.

3 Continuous lifetime extraction on a uniform lifetime
grid in the time-logarithmic scale by del Alamo et al.

The methodology of [7,8,9] to extract time constants of the dominant traps is
essentially based on an assumption of a continuous distribution of lifetimes, ap-
proximating the integral in (4) by a sum in (2) with a large number n using
uniformly spaced grid on a given interval [σmin, σmax] of the logarithms σi of the
lifetimes τi with unknown coefficients ci. The trapping and detrapping transient
data, Idata(t), is analyzed by fitting the data to a weighted sum of pure expo-
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nentials in (1) using the linear least squares method. The fitting is performed to
minimize the sum of |Idata − Ifitted|2 at the measured points, where the magni-
tudes ci are the fitting parameters to be computed, whereas the lifetimes τi are
predefined. For the fitting functions in [7,8,9], n = 100 exponentials are typically
used with the lifetimes τi that are equally spaced logarithmically in time. Pos-
itive (negative) values of ci correspond to the trapping (detrapping) processes
and each ci represents the magnitude of a trapping (detrapping) process with
respect to the lifetime τi. The extracted values of the magnitudes ci can be used
to construct a time-constants spectrum by plotting them as a function of τ . The
vertical axis is in terms of arbitrary units (A.U.).

Fig. 2: Examples from [9]. (a) Time-domain signal of a synthetic current transient
(red:data, blue:fitted curve). (b) Time constant spectrum extracted from the
fitting of the time-domain signal with various numbers of exponentials (n =
20, 50, 100, 500).

In [9], the synthetic data curve y = 3 − 2e−t/1 − e−t/10 is used to demon-
strate the methodology as shown in Fig. 2(a). The time domain signal in this
example is composed of two pure exponential detrapping components with life-
time constants τ1 = 1 and τ2 = 10. The corresponding coefficient for the life-
time constants are -2 and -1, correspondingly. Various numbers of exponentials,
n = 20, 50, 100, and 500, are tested to perform the linear least squares fitting.
The calculated amplitudes are plotted in the time-constant spectrum in [9, Fig. 2]
and reproduced here in Fig. 2(b). The time-constant spectrum lifetime distri-
bution reveals the two exponential components and their relative amplitudes.
With n = 20, the maximum errors in the lifetime and amplitude are 11% and
5%, correspondingly. As the number n of the grid points for τ increases, the time
constants and amplitudes may become more accurate, but at the cost of more
computing time for the fitting process, according to [9].

Locating the actual values τ1 = 1 and τ2 = 10 by checking the peaks of
the computed time-constant spectrum lifetime distribution in Fig. 2(b) requires
some educated guessing and multiple calculations with various n, since a few
evidently erroneous distortions clearly appear in the time-constant spectrum
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in Fig. 2(b). These errors are explained in reference [9, p. 134] by the following
two reasons. First, the number n of exponential components is used for the
fitting may be not large enough. Second, the basis functions used in the sum
(1) are not orthogonal to each other. The least squares fitting as formulated
in [7,9] is a simple quadratic minimization problem. However, in order to prevent
over-fitting that makes the time-constant τ spectrum numerically unstable, some
constraints, such as lower and upper bounds or smoothness in the spectrum, have
been added. Due to such constraints, the numerical minimization takes especially
long time to be performed as the dimensionality n of the minimization problem
increases. The typically chosen n = 100 number of terms in (1) represents a
practical compromise between the computation time and the meaningfulness of
the computed result, according to [9].

Computer codes used in [7,8,9] are not publicly available, so we are not able
to calculate ourselves the numerical results presented in [7,8,9] and reproduced in
the present paper. Our theoretical explanation of the computational difficulties
of the methodology proposed and used in [7,8,9] is based on the following numer-
ical analysis arguments. On the one hand, a good fitting requires the number n
of the basis functions to be large enough. On the other hand, the exponential
basis functions in (1) are not just non-orthogonal, but in reality nearly linearly
dependent for large n. A numerically invalid basis thus may be formed for large
n, leading to an extremely poorly conditioned least squares problem, resulting in
erroneous lifetime computations due to unavoidable computer round-off errors
and the measurement noise in the data. Applying the proposed constraints to
numerically stabilize the least squares minimization may dramatically increase
the computational time, while still cannot satisfactory resolve the inaccuracy
in the lifetime calculations. In the next section, we summarize our own experi-
ence extracting the continuous lifetimes on a dense grid using the least squares,
without any constraints.

4 Continuous lifetime extraction in the time-logarithmic
scale revisited and regularized

The case of the time-logarithmic scale is not common in the literature, so in
this section we present our heuristic experience making a naive version of the
continuous lifetime extraction in the time-logarithmic scale to work using the
linear least squares applied to (2) without any constraints for reasonably large
values of n for several representative examples of synthetic data, using standard
double precision computer arithmetic and off-the-shelf software libraries. It is
important to realize that solving the integral equation of the first kind, given
by (4), using its approximation (2) with a large number n on a dense grid on
an interval [σmin, σmax] of the logarithms σi of the lifetimes τi with unknown
coefficients ci and utilizing a dense grid of the logarithms s of the times t of
data measurements, is clearly an ill-posed problem, possibly extremely sensitive
to details of its setup and numerical procedures.
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The first choice that needs to be made is related to an experiment design.
We conjecture that an optimal grid for the measurements is a uniform grid of
the logarithms s of the times t of data measurements on an interval [smin, smax]
that needs not only include all the values of σi corresponding to significantly
nonzero coefficients ci in the synthetic data, but in fact also have some more
room, so that at the both end points of the interval [smin, smax] the measurement
data Idata(s) behaves like a constant, having a small absolute value of the first
derivative I ′data(s) with respect to s. For example, if the synthetic data curve
is generated by a Gaussian function cσ centered at the mean point 0 with the
standard deviation 1, a good smallest interval [smin, smax] can be [−4, 4] for the
regularized (described later) linear least squares or [−5, 5] for the standard linear
least squares, to be reasonably numerically stable.

The second choice is the type of the grid for σ, where we advocate again
using a uniform grid of the logarithms σ of the lifetimes τ on an [σmin, σmax].
Interestingly, the interval [σmin, σmax] cannot be chosen seemingly naturally to
be the same as the already decided interval [smin, smax]. The reason becomes

clear from Fig. 1. The basis function e−10
s−σ

in Fig. 1(a) and its derivative in
Fig. 1(b) can get chopped being restricted to the interval [smin, smax], no longer
representing a desired shape. If the σ is chosen to be within a smaller interval,
approximately [σmin, σmax] = [smin + 2, smax − 1], for most of the shape of the

basis function e−10
s−σ

to fit the interval [smin, smax], then we may have not
enough range in σ to approximate the actual values of the logarithms σ of the
lifetimes τ present in the data. Alternatively, we can choose a larger interval,
approximately, e.g., [σmin, σmax] = [smin − 1, smax + 1], but then we run into
a different trouble of having nearly constant restrictions of the basis function
e−10

s−σ
and its first derivative. The latter trouble, however, can be detected and

the enlarged interval [σmin, σmax] gets the final tuning by chopping at both ends.
In our tests, the tuned enlargement of the interval [σmin, σmax] appears to be
more numerically stable, compared to making the interval smaller.

Finally, we need to decide the grid size, which can be different for s and σ.
The balanced choice, i.e. the same step lengths of the grids for s and σ, appears to
be most numerically stable. Since the suggested interval [σmin, σmax] is only a bit
longer, if enlarged, compared to the interval [smin, smax], this translates in about
the same number of grid points for s and σ. For example, for [smin, smax] = [−5, 5]
we numerically get reasonably robust results for up to values 200.

However, if the measurements have been already made, it is the number of
the measurements that can determine the number of grid points for s on the
interval [smin, smax]. If this number is greater than the largest possible balanced
value 200, the number of the grid points for σ has to be correspondingly reduced,
to keep the computations numerically stable. Interpolating the measured data
to a uniform grid with a smaller number of grid points may create distortions.

To that end, let us describe the actually used standard and regularized linear
least squares computational procedures. Using the already decided grids S for s
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and Σ for σ, correspondingly, two matrices are calculated,

F0 = e−10
S−Σ

and F1 = − log(10)10S−Σ e−10
S−Σ

. (6)

The numerical sanity of calculations is checked by computing the condition num-
bers of the matrices F0 and F1. The column vector C, formed by the coefficients
ci is determined by the linear least squares fit of F0C to Idata(s) (assuming for
simplicity of presentation that I∞ = 0) or by fitting F1C to I ′data(s).

The matrices F0 and F1 have a special structure of a Toeplitz (diagonal-
constant) matrix. Thus, the linear least squares fit can be performed using
specialized methods for Toeplitz matrices. Numerous known fast methods for
Toeplitz matrices are often unsuitable for ill-conditioned systems like ours. Since
the sizes of Toeplitz matrices of practical importance for our application cannot
be that large, the considerations of performance are secondary for us, compared
to accuracy. We have implemented an SVD-based Tikhonov regularization and
smooth thresh-holding as in, e.g., [6], although it does not actually take ad-
vantage of the Toeplitz structure. The choice of the regularization parameter
can be done by hand (especially well for synthetic data, where the answer is
known!). The Tikhonov regularization stabilizes the computation and typically
may accurately determine the general shape of the distribution cτ , but often
gives inaccurate amplitudes, smoothing down the peaks.

Overall, under the assumptions and with the suggestions described in this
section, we are able to use our linear least squares computational procedures
to solve reasonably challenging synthetic data problems in negligible computer
time with good accuracy in the “eye-ball norm”. The computational results using
the derivative-based fit matrix F1 may be more numerically stable for noiseless
synthetic data curves, compared to original data based matrix F0. The code
performs especially well for smooth distributions cτ , but can also handle purely
discrete cases although resulting in some artifacts near the discontinuity points
of the function cτ . However, the accuracy of the solution in not that good on
our actual practical data sets, resulting in noisy without the regularization or
strongly depending on the choice of the regularization parameter lifetime distri-
butions, without an evident protocol on choosing the regularization parameter.

One possibly most important apparent reason for such a drop in accuracy for
practical measurements is that the range for the measurement time in logarith-
mic scale [smin, smax] is not large enough for the measured quantity to become
stabilized on both ends of the interval and to include the range of the present
lifetimes somewhat extended, as required for numerical stability of calculations.
On the right end smax of the interval, if the data curve has already approached
a constant and no lifetimes are anticipated with σ > smax it is easy to extend
the interval [smin, smax] to the right, substituting a larger value for smax and
extending the data curve using the constant at smax. This approach works well
on synthetic data, but does not improve the situation much with the practical
data available to us. The main difficulty is with the data at the left end smin

of the interval, where the data curve apparently cannot approach a constant
for physical reasons in our application. Indeed, our measurement data represent
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the influence of the traps in semiconductors. The value of smin is determined
by limitations of existing sensor technologies, the smallest being approximately
10−7 in our data. There are no physical reasons to expect an absence of the
traps with lifetimes τ < 10smin ≈ 10−7. However, as we have discussed above,
due to numerical stability issues of the basis of the exponents, there are limita-
tions on how small σmin can be, given smin. Traps with log10 τ in the interval
(smin − 2, σmin), if present, affect the measurement data strong enough to make
the outcome of the exact linear least squares fit wrong.

Our main contribution is changing the paradigm of the continuous lifetime ex-
traction to the discrete one, eliminating the difficulties of the linear least squares
fit, described in this section, as well as faced in [7,8,9]. Next, we present our two
independent key ideas reformulating the fitting problem to make the numerical
solution quick and reasonably accurate for synthetic and practical data.

5 Discrete lifetime extraction: brief description and
advantages

Using non-orthogonal basis functions (1) would be numerically more stable in
the least squares fitting if the lifetimes τi in (1) were discrete, i.e. if n was small
and the lifetime values τi were sparsely distributed separated enough from each
other. Both these requirements are violated in the methodology of [9], enforcing
the uniform placement of the lifetimes τi, essentially assuming a continuous
distribution of lifetimes τ in the integral in (3) approximated by a sum in (1).
In contrast, for the purpose of computational stability and efficiency, let us
assume the discrete distribution of the lifetimes τi in (1), and consider possible
approaches to the computational lifetime extraction.

We note that the discrete lifetime extraction problem is a particular case
of a standard parameter estimation problem, with vast literature. The classical
Prony method and its numerous extensions require a constant time sampling
interval leading to an equidistant grid in time t, which is impractical for our
application, where the time t can range from 10−7 to 104 seconds and the mea-
surements are given in the time-logarithmic scale. Another classical approach,
the exponential peeling method, does not technically require the measurement
points in time to be equidistant and can extract the lifetimes one after the other,
having thus a disadvantage of an increasing and unrecoverable error after every
performed extraction. Many methods, especially in audio-related applications,
such as multiple signal classification for frequency estimation and emitter loca-
tion, are specifically aimed at the case, where the data and all parameters in (1)
are complex-valued, not taking advantage of our purely real case. Some recent
approaches, popular in compressed sensing, minimize the sparsity of the lifetimes
at the costs of heavy computations, allowing an optimal resolution determining
closely located discrete lifetimes, which is irrelevant in our application.

We choose a generic minimization software, e.g., available in Octave and
MATLAB, performing the iterative nonlinear least squares fit of the data to the
sum (1), varying all parameters in (1) using real computer arithmetic. Speed up
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convergence of the iterations of the minimizer, we explicitly derive the Jacobian
of the minimized least squares fit function and provide it to the minimization
software. Any iterative nonlinear least squares method is more computationally
difficult, compared to the linear least squares, and typically requires reasonable
initial approximations for all the parameters in (1) for fast and accurate compu-
tations. We discuss our choice of the initial approximations in the next section.

In Fig. 3, we demonstrate an application of our fitting algorithm to the same
synthetic data curve as in Fig. 2 to illustrate our methodology. The comparison
between the fitting curve and the synthetic data is shown in Fig. 3(a); the error
between them is also shown to be bounded by 7 × 10−6. The time-constant
spectrum from our algorithm are shown in Fig. 3(b). Our time-constant spectrum
clearly and accurately demonstrate the two exponential components (1 and 10)
with their absolute values of corresponding coefficient (-2 and -1). There are no
undesirable false lifetimes in our time-constant spectrum. Therefore, no extra
effort is required to further process the time-constant spectrum, which might
be needed in [9]. The maximum error in our time constant and corresponding
coefficient fitting is 6× 10−6 in this example.
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Fig. 3: Our discrete time-constant analysis: (a) Time domain signal of the same
synthetic current transient (Blue:data, red:fitted curve, black:error). (b) Time
constant spectrum extracted by our method.

The advantages of our methodology to extract the discrete lifetimes in this
example, as seen in Fig. 3, are as follows.

o The time-constant spectrum of our method clearly and accurately demon-
strates the two lifetimes and their corresponding coefficients as appears in
the synthetic function, in contrast to the time-constant spectrum of [9] as
shown in Fig. 2. It is difficult to determine whether the small peak as shown
in Fig. 2(b) is an actual lifetime constant or an error.
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o The magnitudes corresponding to lifetimes are the actual coefficients’ values
whereas the magnitudes in [9] only reflect the ratio between the actual values
of coefficients.

o Our method is numerically stable and no constraint is applied during the
optimization. In contrast, constraints such as lower and upper bounds or
smoothness in the spectrum have been added in [9] in order to prevent over-
fitting. Determining reasonable constraints may be difficult. Constrained
minimization can be slow.

o Our method is highly computationally efficient. It takes less than a second
to calculate the time-constant spectrum for the synthetic function as shown
in Fig. 2(a) while the code in [9] takes hours.

6 Discrete lifetime extraction: detailed description

The details of our algorithm are as follows.

1 In Fig. 4 101, interpolate the data using a dense uniform logarithmic grid in
time domain with the grid size of 2n. The measurement data are usually not
measured uniformly in log scale. This step is a preparation for the following
steps because discrete Fourier transform will be used to handle the measure-
ment noise and a uniform grid is needed. Grid size of 2n will improve the FFT
from O(N2) to O(NlogN) by utilizing the well-known radix-2 Cooley-Tukey
algorithm [2].

2 In Fig. 4 102, filter out the noise in the measurement data. There are two
alternative approaches to accomplish this in our algorithm. First one, per-
form a cosine Fourier transform to obtain the cosine Fourier spectrum. By
analyzing the cosine Fourier spectrum and applying a proper filter in fre-
quency spectrum, the noise in the measurement data can be filtered. Second
one, apply smoothing to the data curve with measurement noise to obtain a
smooth data curve.

3 In Fig. 4 103, obtain the derivative of the data curve. We implement two
alternative approaches to accomplish this. First one, we transform the data
into Frequency domain utilizing the Fast Fourier Transform (FFT), obtain
the derivative using the Fourier spectral method, and perform inverse FFT
to find the derivative in real time domain. Second one, numerically calculate
the derivative using the finite difference method.

4 In Fig. 4 104, identify the nearby positions of the dominant trap lifetimes
τi in time-constant spectrum by finding the maxima of the absolution value
of derivative. Each maximum in the absolute value of derivative corresponds
to an exponential component with the lifetime constant near that location.
This step will give good initial approximation for the values of trap lifetimes
(not only the locations, but also the number of trap lifetimes).

5 In Fig. 4 105, use linear least squares method to find the values of the
coefficients ci corresponding to the trap lifetime. This step will give a good
initial approximation for the coefficients ci.
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6 In Fig. 4 106, use all the above lifetimes and coefficients as the initial approx-
imation and employ the non-linear least squares method to optimize both ci
and τi simultaneously for all i = 1, . . . , n. This step will improve our results
in the previous few steps for τi and ci.

The flowchart of our algorithm is shown in Fig. 4.
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Fig. 4: The flowchart of our algorithm

We can also perform simultaneous analysis of multiple data curves, with
the same lifetimes, but various coefficients, which is beneficial, e.g., if the same
device is tested multiple times under slightly different conditions. The derivative
of every data curve separately is used to determine potential lifetimes, that
are then consolidated into a single set for all curves, using thresh-holding and
averaging of nearby values. The remaining steps perform the least squares fits
for all curves together, increasing robustness of calculations.
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7 Application on experimental data representing
dynamic ON-resistance

We finally test our algorithm on experimental data from [8, Fig. 2]. We obtain
in Fig. 5 a similar data fit and the envelop shape of our discrete time-constant
spectrum agrees with the continuous one obtained in [8, Fig. 2].
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Fig. 5: The original data, the fitted curve, and error (top) and time-constant
spectrum (bottom) using continuous [8] (left) vs. our discrete (right) fit.

Conclusion

We extract trap lifetimes and corresponding coefficients from experimental data,
in time logarithmic scale, of dynamic ON-resistance for semiconductors. The pro-
posed methods are numerically stable, extremely computationally efficient, and
result in high quality fitting of noisy synthetic and experimental data.
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