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nonlinear systems with parametric uncertainties. We propose to use a modular adaptive
approach, where we first design a robust nonlinear state feedback which renders the closed
loop input-to-state stable (ISS). The input is considered to be the estimation error of the
uncertain parameters, and the state is considered to be the closed-loop output tracking error.
We augment this robust ISS controller with a model-free learning algorithm to estimate
the model uncertainties. We implement this method with a Bayesian optimization-based
method called Gaussian Process Upper Confidence Bound (GP-UCB). The combination of
the ISS feedback and the learning algorithms gives a learning-based modular indirect adaptive
controller. We test the efficiency of this approach on a two-link robot manipulator example,
under noisy measurements conditions.
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Abstract: We study in this paper the problem of adaptive trajectory tracking control for a
class of nonlinear systems with parametric uncertainties. We propose to use a modular adaptive
approach, where we first design a robust nonlinear state feedback which renders the closed
loop input-to-state stable (ISS). The input is considered to be the estimation error of the
uncertain parameters, and the state is considered to be the closed-loop output tracking error.
We augment this robust ISS controller with a model-free learning algorithm to estimate the
model uncertainties. We implement this method with a Bayesian optimization-based method
called Gaussian Process Upper Confidence Bound (GP-UCB). The combination of the ISS
feedback and the learning algorithms gives a learning-based modular indirect adaptive controller.
We test the efficiency of this approach on a two-link robot manipulator example, under noisy
measurements conditions.

1. INTRODUCTION

Many adaptive methods have been proposed over the years
for linear and nonlinear systems, e.g., Krstic et al. [1995].
In this work we focus on a specific type of adaptive control,
namely, the indirect modular approach to adaptive nonlin-
ear control, e.g., Krstic et al. [1995], Wang et al. [2006],
Benosman and Atinc [2013], Atinc and Benosman [2013],
Benosman [2014b,a], Xia and Benosman [2015], Lavretsky
[2009], Haghi and Ariyur [2011]. In the direct approach,
first a controller is designed by assuming that all the
parameters are known (certainly equivalence principle),
and then an identifier is used to estimate the unknown
parameters online. The identifier might be independent
of the designed controller, in which case the approach
is called ‘modular’. A modular approach has been pro-
posed in Wang et al. [2006] for adaptive neural control
of pure-feedback nonlinear systems, where the input-to-
state stability (ISS) modularity of the controller-estimator
is achieved and the closed-loop stability is guaranteed by
the small-gain theorem, e.g., Sontag [1989].

In this work, we present a modular adaptive design which
combines model-free learning methods and robust model-
based nonlinear control to propose a learning-based modu-
lar indirect adaptive controller. Here, a model-free learning
algorithm is used to estimate in closed-loop the uncertain
parameters of the model. The main difference with the
existing model-based indirect adaptive control methods, is
the fact that we do not use the model to design the parame-
ters estimation filters. Indeed, model-based indirect adap-
tive controllers are based on parameters’ estimators de-
signed using the model of the system, e.g., the X-swapping
methods presented in Krstic et al. [1995]. Here, because we
do not use the system dynamics to design the estimation
filters we can deal with a more general class of uncertain-
ties, e.g., nonlinear uncertainties can be estimated with
the proposed approach, see Atinc and Benosman [2013] for

some preliminary results. Furthermore, with the proposed
approach we can estimate a vector of linearly dependent
uncertainties, a case which cannot be solved using model-
based filters, e.g., in Benosman and Atinc [2015] it is shown
that the X-swapping model-based method fails to estimate
a vector of linearly dependent parameters.

In this work, we implement the proposed approach with
a Bayesian optimization-based method called GP-UCB.
The latter solves the exploration-exploitation problem in
the continuous armed bandit problem, which is a non-
associative reinforcement learning (RL) setting.

We want to underline here that compared to ‘pure’ model-
free controllers, e.g., pure RL algorithms, the proposed
control has a different goal. The available model-free con-
trollers are meant for output or state regulation. In the
contrary, here we propose to use model-free learning to
complement a model-based nonlinear control to estimate
the unknown parameters of the model. Here the control
goal, i.e., state or output trajectory tracking, is handled by
the model-based controller. The learning algorithm is used
to improve the tracking performance of the model-based
controller. Once the learning algorithm has converged, one
can carry on using the nonlinear model-based feedback
controller alone, without the need of the learning algo-
rithm. Moreover, we believe that this type of controller can
converge faster to an optimal performance, comparatively
to the pure model-free controller. The reason is that the
model-free algorithms assume no knowledge about the
system, and thus start the search for an optimal control
signal from scratch. On the other hand, by ‘partly’ using
a model-based controller we are taking advantage of the
partial information given by the physics of the system.

A modular design merging model-based control and an
extremum seeker has been proposed in Haghi and Ariyur
[2011, 2013], Benosman and Atinc [2012, 2013], Atinc and
Benosman [2013], Benosman [2014b,a], Xia and Benosman



[2015]. In Haghi and Ariyur [2011, 2013], extremum seek-
ing is used to complement a model-based controller, under
linearity of the model assumption in Haghi and Ariyur
[2011], or under the assumption of linear parametrization
of the control in terms of the uncertainties in Haghi and
Ariyur [2013]. The modular design idea of using a model-
based controller with ISS guarantee, complemented with
an ES-based module can be found in Atinc and Benosman
[2013], Benosman [2014b,a], Xia and Benosman [2015],
where the ES was used to estimate the model parame-
ters, and in Benosman and Atinc [2013], Benosman [2015]
where feedback gains were tuned using ES algorithms.
The work of this paper falls in this class of ISS-based
modular indirect adaptive controllers. The difference with
other ES-based adaptive controllers is that, due to the ISS
modular design we can use any model-free learning algo-
rithm to estimate the model uncertainties, not necessarily
extremum seeking-based. To emphasize this we show here
the performance of the controller when using a type of
RL-based learning algorithm.

The rest of the paper is organized as follows. In Section
2, we formulate the problem. The nominal controller de-
sign are presented in Section 3. In Section 3.2, a robust
controller is designed which guarantees ISS from the esti-
mation error input to the tracking error state. In section
3.3, we introduce the RL GP-UCB algorithm as a model-
free learning to complement the ISS controller. Section
4 is dedicated to an application example and the paper
conclusion is given in Section 5.

Throughout the paper, we use ‖ · ‖ to denote the Eu-

clidean norm; i.e., for a vector x ∈ R
n, we have ‖x‖ ,

‖x‖2 =
√

xT x, where xT denotes the transpose of the
vector x. We denote by Card(S) the size of a finite set
S. The Frobenius norm of a matrix A ∈ R

m×n, with

elements aij , is defined as ‖A‖F ,

√∑n
i=1

∑n
j=1 |aij |2.

Given x ∈ R
m, the signum function is defined as

sign(x) , [sign(x1), sign(x2), · · · , sign(xm)]T , where
sign(.) denotes the classical signum function.

2. PROBLEM FORMULATION

We consider here affine uncertain nonlinear systems of the
form

ẋ = f(x) + ∆f(t, x) + g(x)u,
y = h(x),

(1)

where x ∈ R
n, u ∈ R

p, y ∈ R
m (p ≥ m), represent

the state, the input and the controlled output vectors,
respectively. ∆f(t, x) is a vector field representing additive
model uncertainties. The vector fields f , ∆f , columns of
g and function h satisfy the following assumptions.

Assumption A1 The function f : R
n → R

n and the
columns of g : R

n → R
p are C

∞ vector fields on a bounded
set X of R

n and h : R
n → R

m is a C
∞ vector on X. The

vector field ∆f(x) is C
1 on X.

Assumption A2 System (1) has a well-defined (vector)
relative degree {r1, r2, · · · , rm} at each point x0 ∈ X,
and the system is linearizable, i.e.,

∑m
i=1 ri = n.

Assumption A3 The desired output trajectories yid
(1 ≤ i ≤ m) are C∞ functions of time, relating desired
initial points yid(0) at t = 0 to desired final points yid(tf )
at t = tf .

Our objective is to design a state feedback adaptive con-
troller such that the output tracking error is uniformly

bounded, whereas the tracking error upper-bound is func-
tion of the uncertain parameters estimation error, which
can be decreased by the model-free learning. We stress
here that the goal of learning algorithm is not stabiliza-
tion but rather performance optimization, i.e., the learn-
ing improves the parameters’ estimation error, which in
turn improves the output tracking error. To achieve this
control objective, we proceed as follows: First, we design
a robust controller which can guarantee input-to-state
stability (ISS) of the tracking error dynamics w.r.t the
estimation errors input. Then, we combine this controller
with a model-free learning algorithm to iteratively esti-
mate the uncertain parameters, by optimizing online a
desired learning cost function.

3. ADAPTIVE CONTROLLER DESIGN

3.1 Nominal Controller

Let us first consider the system under nominal conditions,
i.e., when ∆f(t, x) = 0. In this case, it is well know, e.g.,
Khalil [2002], that system (1) can be written as

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t), (2)
where

y(r)(t) = [y
(r1)
1 (t), y

(r2)
2 (t), · · · , y(rm)

m (t)]T ,
ξ(t) = [ξ1(t), · · · , ξm(t)]T ,

ξi(t) = [yi(t), · · · , y
(ri−1)
i (t)], 1 ≤ i ≤ m

(3)

The functions b(ξ), A(ξ) can be written as functions of

f , g and h, and A(ξ) is non-singular in X̃, where X̃ is
the image of the set of X by the diffeomorphism x → ξ
between the states of system (1) and the linearized model
(2). Now, to deal with the uncertain model, we first need
to introduce one more assumption on system (1).

Assumption A4 The additive uncertainties ∆f(t, x) in
(1) appear as additive uncertainties in the input-output
linearized model (2)-(3) as follows:

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t) + ∆b(t, ξ(t)), (4)

where ∆b(t, ξ) is C
1 w.r.t. the state vector ξ ∈ X̃.

It is well known that the nominal model (2) can be easily
transformed into a linear input-output mapping. Indeed,
we can first define a virtual input vector v(t) as

v(t) = b(ξ(t)) + A(ξ(t))u(t). (5)

Combining (2) and (5), we can obtain the following input-
output mapping

y(r)(t) = v(t). (6)

Based on the linear system (6), it is straightforward to
design a stabilizing controller for the nominal system (2)
as

un = A−1(ξ) [vs(t, ξ)− b(ξ)] , (7)

where vs is a m×1 vector and the i-th (1 ≤ i ≤ m) element
vsi is given by

vsi = y
(ri)
id −Ki

ri
(y

(ri−1)
i − y

(ri−1)
id )− · · · −Ki

1(yi − yid).
(8)

If we denote the tracking error as ei(t) , yi(t) − yid(t),
we obtain the following tracking error dynamics

e
(ri)
i (t) + Ki

ri
e(ri−1)(t) + · · ·+ Ki

1ei(t) = 0, (9)

where i ∈ {1, 2, · · · , m}. By properly selecting the gains
Ki

j where i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}, we
can obtain global asymptotic stability of the tracking er-
rors ei(t). To formalize this condition, we add the following
assumption.



Assumption A5 There exists a non-empty set A where
Ki

j ∈ A such that the polynomials in (9) are Hurwitz,
where i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}.
To this end, we define z = [z1, z2, · · · , zm]T , where

zi = [ei, ėi, · · · , e
(ri−1)
i ] and i ∈ {1, 2, · · · , m}. Then,

from (9), we can obtain

ż = Ãz,

where Ã ∈ R
n×n is a diagonal block matrix given by

Ã = diag{Ã1, Ã2, · · · , Ãm}, (10)

and Ãi (1 ≤ i ≤ m) is a ri × ri matrix given by

Ãi =





0 1
0 1

0
. . .

..

. 1
−Ki

1
−Ki

2
· · · · · · −Ki

ri




.

As discussed above, the gains Ki
j can be chosen such

that the matrix Ã is Hurwitz. Thus, there exists a positive
definite matrix P > 0 such that (see e.g. Khalil [2002])

ÃT P + PÃ = − I. (11)

In the next section, we build upon the nominal controller
(7) to write a robust ISS controller.

3.2 Lyapunov reconstruction-based ISS Controller

We now consider the uncertain model (1), i.e., when
∆f(t, x) 6= 0. The corresponding exact linearized model is
given by (4) where ∆b(t, ξ(t)) 6= 0. The global asymptotic
stability of the error dynamics (9) cannot be guaranteed
anymore due to the additive uncertainty ∆b(t, ξ(t)). We
use Lyapunov reconstruction techniques to design a new
controller so that the tracking error is guaranteed to be
bounded given that the estimate error of ∆b(t, ξ(t)) is
bounded. The new controller for the uncertain model (4)
is defined as

uf = un + ur, (12)

where the nominal controller un is given by (7) and the
robust controller ur will be given later. By using the
controller (12), and (4) we obtain

y(r)(t) = b(ξ(t)) + A(ξ(t))uf + ∆b(t, ξ(t)),

= b(ξ(t)) + A(ξ(t))un + A(ξ(t))ur + ∆b(t, ξ(t)),

= vs(t, ξ) + A(ξ(t))ur + ∆b(t, ξ(t)), (13)

where (13) holds from (7). Which leads to the following
error dynamics

ż = Ãz + B̃δ, (14)

where Ã is defined in (10), δ is a m× 1 vector given by
δ = A(ξ(t))ur + ∆b(t, ξ(t)), (15)

and the matrix B̃ ∈ R
n×m is given by

B̃ =





B̃1

B̃2
...

B̃m




, (16)

where each B̃i (1 ≤ i ≤ m) is given by a ri × m matrix
such that

B̃i(l, q) =

{
1 for l = ri, q = i
0 otherwise.

If we choose V (z) = zT Pz as a Lyapunov function for the
dynamics (14), where P is the solution of the Lyapunov
equation (11), we obtain

V̇ (t) =
∂V

∂z
ż,

= zT (ÃT P + PÃ)z + 2zT PB̃δ,

= − ‖z‖2 + 2zT PB̃δ, (17)

where δ given by (15) depends on the robust controller ur.

Next, we design the controller ur based on the form of
the uncertainties ∆b(t, ξ(t)). More specifically, we consider
here the case when ∆b(t, ξ(t)) is of the following form

∆b(t, ξ(t)) = E Q(ξ, t), (18)

where E ∈ R
m×m is a matrix of unknown constant param-

eters, and Q(ξ, t) : R
n × R → R

m is a known bounded
function of sate and time variables. For notational con-
venience, we denote by Ê(t) the estimate of E, and by

eE = E − Ê, the estimate error. We define the unknown

parameter vector ∆ = [E(1, 1), ..., E(m,m)]T ∈ R
m2

, i.e.,
concatenation of all elements of E, its estimate is denoted

by ∆̂(t) = [Ê(1, 1), ..., Ê(m,m)]T , and the estimation error

vector is given by e∆(t) = ∆− ∆̂(t).

Next, we propose the following robust controller

ur = −A−1(ξ)[B̃T Pz‖Q(ξ, t)‖2 + Ê(t)Q(ξ, t)]. (19)

The closed-loop error dynamics can be written as

ż = f̃(t, z, e∆), (20)

where e∆(t) is considered to be an input to the system
(20).

Theorem 1. Consider the system (1), under Assumptions
A1-A5, where ∆b(t, ξ(t)) satisfies (18). If we apply to (1)
the feedback controller (12), where un is given by (7) and
ur is given by (19). Then, the closed-loop system (20) is

ISS from the estimation errors input e∆(t) ∈ R
m2

to the
tracking errors state z(t) ∈ R

n.

Proof: Please refer to Xia and Benosman [2015] for a
similar proof.

3.3 GP-UCB based parametric uncertainties estimation

In this section we propose to use Gaussian Process Upper
Confidence Bound (GP-UCB) algorithm to find the un-
certain parameter ∆ vector Srinivas et al. [2010], Srinivas
et al. [2012]. GP-UCB is a Bayesian optimization algo-
rithm for stochastic optimization, i.e., the task of finding
the global optimum of an unknown function when the
evaluations are potentially contaminated with noise. The
underlying working assumption for Bayesian optimization
algorithms, including GP-UCB, is that the function eval-
uation is costly, so we would like to minimize the number
of evaluations while having as accurate estimate of the
minimizer (or maximizer) as possible Brochu et al. [2010].
For GP-UCB, this goal is guaranteed by having an upper
bound on the regret of the algorithm – to be defined
precisely later.

One difficulty of stochastic optimization is that since we
only observe noisy samples from the function, we cannot
really be sure about the exact value of the function at any
given point. One may try to query a single point many
times in order to have an accurate estimate of the function.
This, however, may lead to excessive number of samples,



and can be wasteful way of assigning samples when the
true value of the function at that point is actually far
from optimal. The Upper Confidence Bound (UCB) family
of algorithms provides a principled approach to guide
the search Auer et al. [2002]. These algorithms, which
are not necessarily formulated in a Bayesian framework,
automatically balance the exploration (i.e., finding regions
of the parameter space that might be promising) and
the exploration (i.e., focusing on the regions that are
known to be the best based on the current available
knowledge) using the principle of optimism in the face
of uncertainty. These algorithms often come with strong
theoretical guarantee about their performance. For more
information about the UCB class of algorithms, refer
to Bubeck et al. [2011], Bubeck and Cesa-Bianchi [2012],
Munos [2014]. GP-UCB is a particular UCB algorithms
that is suitable to deal with continuous domains. It uses
a Gaussian Process (GP) to maintain the mean and
confidence information about the unknown function.

We briefly discuss GP-UCB in our context following the
discussion of the original papers Srinivas et al. [2010, 2012].
Consider the cost function J : D → R to be minimized.
This function depends on the dynamics of the closed-loop

system, which itself depends on the parameters ∆̂ used in
the controller design. So we may consider it as an unknown

function of ∆̂.

For the moment, let us assume that J is a func-
tion sampled from a Gaussian Process (GP) Rasmussen
and Williams [2006]. Recall that a GP is a stochas-
tic process indexed by the set D that has the prop-
erty that for any finite subset of the evaluation points,

that is {∆̂1, ∆̂2, . . . , ∆̂t} ⊂ D, the joint distribution

of
(
J(∆̂i)

)t

i=1
is a multivariate Gaussian distribution.

GP is defined by a mean function µ(∆̂) = E

[
J(∆̂)

]

and its covariance function (or kernel) k(∆̂, ∆̂′) =

Cov(J(∆̂), J(∆̂′)) = E

[(
J(∆̂)− µ(∆̂)

) (
J(∆̂′)− µ(∆̂′)

)T
]
.

The kernel k of a GP determines the behavior of a typical
function sampled from the GP. For instance, if we choose

k(∆̂, ∆̂′) = exp

(
−‖∆̂−∆̂′‖2

2l2

)
, the squared exponential

kernel with length scale l > 0, it implies that the GP
is mean square differentiable of all orders. We write J ∼
GP(µ,k).

Let us first briefly describe how we can find the posterior
distribution of a GP(0,k), a GP with zero prior mean.

Suppose that for ∆̂t−1 , {∆̂1, ∆̂2, . . . , ∆̂t−1} ⊂ D, we

have observed the noisy evaluation yi = J(∆̂i) + ηi with
ηi ∼ N(0, σ2) being i.i.d. Gaussian noise. We can find the

posterior mean and variance for a new point ∆̂∗ ∈ D as
follows: Denote the vector of observed values by yt−1 =
[y1, . . . , yt−1]

⊤ ∈ R
t−1, and define the Grammian matrix

K ∈ R
t−1×t−1 with [K]i,j = k(∆̂i, ∆̂j), and the vector

k∗ = [k(∆̂1, ∆̂
∗), . . . ,k(∆̂t−1, ∆̂

∗)]. The expected mean

µt(∆̂
∗) and the variance σt(∆̂

∗) of the posterior of the

GP evaluated at ∆̂∗ are (cf. Section 2.2 of Rasmussen and
Williams [2006])

µt(∆̂
∗) = k∗

[
K + σ2I

]−1
yt−1,

σ2
t (∆̂∗) = k(∆̂∗, ∆̂∗)− k

⊤
∗

[
K + σ2I

]−1
k∗.

At round t, the GP-UCB algorithm selects the next query

point ∆̂t by solving the following optimization problem:

∆̂t ← argmin
∆̂∈D

µt−1(∆̂)− β
1/2
t σt−1(∆̂). (21)

Where βt depends on the choice of kernel among other
parameters of the problem.

The optimization problem (21) is often nonlinear and non-
convex. Nonetheless solving it only requires querying the
GP, which in general is much faster than querying the
original dynamical system. This is important when the
dynamical system is a physical system and we would like
to minimize the number of interactions with it before
finding a ∆̂ with small J(∆̂). One practically easy way to
approximately solve (21) is to restrict the search to a finite
subset D′ of D. The finite subset can be a uniform grid
structure over D, or it might consist of randomly selected
members of D.

Remark 1. It is well know in classical adaptive control
that a persistent excitation (PE) condition is needed for
the controller to recover the true values of the estimated
parameters. In the context of the work presented here, the
PE condition is satisfied by the exploration part of the GP-
UCB algorithm. Indeed, the GP-UCB estimator is based
on regular (possibly random) selection of exploration areas
within the search set, formulated in the choice of the
function βt. This function satisfies a PE condition.

4. TWO-LINK MANIPULATOR EXAMPLE

We consider a two-link robot manipulator with the follow-
ing dynamics

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (22)

where q , [q1, q2]
T denotes the joint angles, and τ ,

[τ1, τ2]
T denotes the joint torques. The symmetric matrix

H ∈ R
4×4 is assumed to be non-singular and its ele-

ments are given by: H11 = m1ℓ
2
c1

+ I1 + m2[ℓ
2
1 + ℓ2c2

+

2ℓ1ℓc2
cos(q2)] + I2, H12 = m2ℓ1ℓc2

cos(q2) + m2ℓ
2
c2

+ I2,

H22 = m2ℓ
2
c2

+ I2. The matrix C(q, q̇) is given by: C11 =
−hq̇2, C12 = −hq̇1 − hq̇2, C21 = hq̇1, C44 = 0, where
h = m2ℓ1ℓc2

sin(q2). The vector G = [G1, G2]
T is given

by: G1 = m1ℓc1
g cos(q1)+m2g[ℓ2 cos(q1 +q2)+ ℓ1 cos(q1)],

G2 = m2ℓc2
g cos(q1 + q2), where, ℓ1, ℓ2 are the lengths

of the first and second link, respectively, ℓc1
, ℓc2

are the
distances between the rotation center and the center of
mass of the first and second link, respectively. m1, m2 are
the masses of the first and second link, respectively, I1 is
the moment of inertia of the first link and I2 the moment
of inertia of the second link, respectively, and g denotes
the earth gravitational constant.

Here, we assume that the parameters take the following
values: I2 = 5.5

12 kg · m2, m1 = 10.5 kg, m2 = 5.5 kg,
ℓ1 = 1.1 m, ℓ2 = 1.1 m, ℓc1

= 0.5 m, ℓc2
= 0.5 m,

I1 = 11
12 kg · m2, g = 9.8 m/s2. The system dynamics

(22) can be rewritten as

q̈ = H−1(q)τ −H−1(q) [C(q, q̇)q̇ + G(q)] . (23)

The nominal controller is given by

τn = [C(q, q̇)q̇ + G(q)]

+ H(q) [q̈d −Kd(q̇ − q̇d)−Kp(q − qd)] , (24)

where qd = [q1d, q2d]
T , denotes the desired trajectory and

the diagonal gain matrices Kp > 0, Kd > 0, are chosen



such that the linear error dynamics (as in (9)) are asymp-
totically stable. We choose as output references the 5th
order polynomials q1ref (t) = q2ref (t) =

∑5
i=0 ai(t/tf )i,

where the ai’s have been computed to satisfy the bound-
ary constraints qiref (0) = 0, qiref (tf ) = qf , q̇iref (0) =
q̇iref (tf ) = 0, q̈iref (0) = q̈iref (tf ) = 0, i = 1, 2, with
tf = 2 sec, qf = 1.5 rad. In these tests, we assume that the
nonlinear model (22) is uncertain. In particular, we assume
that there exist additive uncertainties in the model (23),
i.e.,

q̈ = H−1(q)τ −H−1(q) [C(q, q̇)q̇ + G(q)]−E G(q).
(25)

Where, E is a matrix of constant uncertain parameters.
Following (19), the robust-part of the control writes as

τr = −H(B̃T Pz‖G‖2 − Ê G(q)), (26)
where

B̃T =

[
0 1 0 0
0 0 0 1

]
,

P is solution of the Lyapunov equation (11), with

Ã =




0 1 0 0

−K1

p −K1

d 0 0
0 0 0 1
0 0 −K2

p −K2

d



 ,

z = [q1 − q1d, q̇1 − q̇1d, q2 − q2d, q̇2 − q̇2d]
T , and Ê is the

matrix of the parameters’ estimates. The final feedback
controller writes as

τ = τn + τr. (27)
We consider here the challenging case where the uncer-
tain parameters are linearly dependent, and where the
measurements are corrupted with non-negligible additive
noise. Due to the linearity-dependence, the uncertainties
might not observable from the measured output.

Indeed, in the case where the uncertainties enter the
model in a linearly dependent function, e.g., when the
matrix ∆ has only one non-zero line, some of the classical
available modular model-based adaptive controllers, like
for instance X-swapping controllers, cannot be used to
estimate all the uncertain parameters simultaneously. For
example, it has been shown in Benosman and Atinc [2015],
that the model-based gradient descent filters failed to
estimate simultaneously multiple parameters in the case
of the electromagnetic actuators example. In comparison
with the ES-based indirect adaptive controller of Haghi
and Ariyur [2013], the modular approach does not rely
on the parameters mutual exhaustive assumption, i.e.,
each element of the control vector needs to be linearly
dependent on at least one element of the uncertainties
vector. More specifically, we consider here the following
case: E(1, 1) = 1, E(1, 2) = 0.5, and E(2, i) = 0, i = 1, 2.
In this case, the uncertainties’ effect on the acceleration q̈1
cannot be differentiated, and thus the application of the
model-based X-swapping method to estimate the actual
values of both uncertainties at the same time is challeng-
ing. Similarly, the method of Haghi and Ariyur [2013],
cannot be readily applied because the second control τ2 is
not linearly depend on the uncertainties, which only affects
τ1. However, we show next that that by using the modular
ISS-based controller we manage to estimate the actual
values of the uncertainties simultaneously, and improve
the tracking performance. First, we see the effect of the
uncertainties in figure 1, where the ISS controller is ap-
plied without the parameters learning. We can see a clear
degradation of the tracking performance. Next, we apply
the GP-UCB learning algorithm 3.3, with the following

parameters: σ = 0.1, l = 0.2, and βt = 2 log(Card(D′)t2π2

6δ ),
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(a) Obtained vs. desired first angular trajectory (No-
learning)
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(b) Obtained vs. desired first angular velocity trajec-
tory (No-learning)

Fig. 1. Obtained vs. desired trajectories (No-learning)

with δ = 0.05. We test the GP-UCB algorithm under noisy
measurements conditions, where we assume uniformly dis-
tributed additive noises on the angles measurements, with
maximal excursion of 0.1 rad. The obtained parameters
and tracking results are reported on figures 2(a), 2(b),
2(c), 3(a), 3(b). We can see on these figures that the
uncertainties are well estimated despite the high measure-
ments noise, as observed on the angular trajectory in figure
3(a). Furthermore, due to the ISS guarantee, the tracking
performance is clearly improved, as seen in figures 3(a),
3(b).

5. CONCLUSION

We have studied the problem of adaptive control for
nonlinear systems which are affine in the control with
parametric uncertainties. For this class of systems, we have
proposed the following controller: We use a modular ap-
proach, where we first design a robust nonlinear controller
based on the model (assuming knowledge of the uncertain
parameters), and then complement this controller with
an estimation module to estimate the actual values of
the uncertain parameters. We propose to use a GP-UCB
algorithm to learn in realtime the uncertainties of the
model. We have guaranteed the stability (while learning) of
the proposed approach by ensuring that the model-based
robust controller leads to an ISS results, which guarantees
boundedness of the states of the closed-loop system even
during the learning phase. The ISS result together with a
convergent GP-UCB learning-algorithm eventually leads
to a bounded output tracking-error, which decreases with
the decrease of the estimation error. We believe that one of
the main advantages of the proposed controller, compara-
tively to the existing model-based adaptive controllers, is
that we can learn (estimate) multiple uncertainties at the
same time even if they appear in the model equation in a
challenging structure, e.g., linearly dependent uncertain-
ties affecting only one output, or uncertainties appearing
in a nonlinear term of the model, which are well known
limitations of the model-based estimation approaches. An-
other advantage of the proposed approach, is that due to
its modular design, one could easily change the learning
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Fig. 2. Cost function and uncertainties estimates- (GP-
UCB) algorithm
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(a) Obtained vs. desired first angular trajectory (GP-
UCB)
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(b) Obtained vs. desired first angular velocity trajec-
tory (GP-UCB)

Fig. 3. Obtained vs. desired trajectories (GP-UCB)

algorithm without having to change the model-based part
of the controller.
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