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Abstract: In this paper we present some results on partial differential equations (PDEs)
parametric identification. We follow a deterministic approach and formulate the identification
problem as an optimization with respect to unknown parameters of the PDE. We use proper
orthogonal decomposition (POD) model reduction theory together with a model free multi-
parametric extremum seeking (MES) approach, to solve the identification problem. Finally, the
well known Burgers’ equation test-bed is used to validate our approach.

1. INTRODUCTION

System identification can be defined as the problem of
estimating the best possible model of a system, given a
set of experimental data. System identification can be
classified as linear vs. nonlinear model identification, time-
domain based vs. frequency-domain based, open-loop vs.
closed-loop identification, etc. We refer the reader to some
outstanding surveys of the field, e.g., Astrom and Eykhoff
[1971], Ljung and Vicino [2005], Gevers [2006], Ljung
[2010], Pillonetto et al. [2014].

Our focus in this paper is on a specific part of system
identification, namely, identification for systems described
by PDEs. In this subarea of system identification, we will
present some results on a deterministic approach for open-
loop parametric identification in the time domain.

PDEs are valuable mathematical models, which are used
to describe a large class of systems. For instance, they
are used to model fluid dynamics Rowley [2005], Li et al.
[2013], MacKunis et al. [2011], Cordier et al. [2013], Bala-
jewicz et al. [2013], or flexible beams and ropes Montseny
et al. [1997], Barkana [2014], crowd dynamics Huges [2003],
Colombo and Rosini [2005], etc. However, PDEs being
infinite dimension systems, are almost impossible to solve
in closed-form (except for some exceptions), and are hard
to solve numerically, i.e., require a large computation time.
Due to this complexity, it is often hard to use PDEs
directly to analyze, predict or control systems in real-time.
Instead, one viable approach often used in real applica-
tions, is to first reduce the PDE model to an ordinary
differential equation (ODE) model, which has a finite di-
mension and then use the obtained ODE to analyze predict
or control the system. The step of obtaining an ODE which
represents the original PDE as close as possible is known
as model reduction, and the obtained ODE is called a
reduced order model (ROM). One of the main problems
in model reduction is the identification of some unknown
parameters of the ROM which also appear in the original
PDE, i.e., physical parameters of the system.

Many results have been proposed for PDEs identification.
For instance in Xun et al. [2013], the authors proposed
two methods to estimate parameters in PDE models: a
parameter cascading method and a Bayesian approach.
Both methods rely on decomposing the PDE solutions in
a linear basis function and then solving an optimization

problem in the coefficients of the basis function as well
as the PDE parameters to be identified. In Muller and
Timmer [2004], two approaches have been investigated,
one classified as a regression-based method, where all the
terms of the PDE are computed based on measured data,
and then the unknown coefficients of the PDE are obtained
by solving an algebraic optimization problem, i.e, equaling
both sides of the PDE equation. The second method can be
classified as a dynamical approaches, in the sense that the
unknown parameters of the PDE are obtained by solving
an optimization problem which minimizes the distance
between the measured data and the solutions of the PDE
over time. Many other work on PDE identification fall
into one of these two categories, e.g., refer to Parlitz and
C.Merkwirth [2000], Voss et al. [1999] for some regression-
based identification techniques, and Baake et al. [1992],
Muller and Timmer [2002] for a dynamical approach for
PDEs identification.

In this paper, we propose an alternative method, which
might be classified as a dynamical approach. Indeed, we
follow here the deterministic identification formulation of
Ljung and Glad [1994], in the sense that we deal with
nonlinear infinite dimensional models in the deterministic
time domain. We use POD model reduction theory to-
gether with a model-free optimization approach to solve
the identification problem. We formulate the identification
problem as a minimization of a performance cost func-
tion, and use the extremum seeking theory to solve the
optimization problem online, leading to a simple real-time
solution for open-loop parametric identification for PDEs.

This paper is organized as follows: we first introduce
some notations and definitions in Section 2. Section 3 is
dedicated to the problem formulation and the presentation
of the proposed solution. The case of the Burgers’ equation
is studied in Section 4. Finally, a conclusion is presented
in Section 5.

2. BASIC NOTATIONS AND DEFINITIONS

Throughout the paper we will use N to denote the set of
natural numbers, ‖.‖ to denote the Euclidean vector norm;

i.e., for x ∈ R
n we have ‖x‖ =

√
xT x. The Kronecker delta

function is defined as: δij = 0, for i 6= j and δii = 1. We

will use ḟ for the short notation of time derivative of f ,
and xT for the transpose of a vector x. A function is said



analytic in a given set, if it admits a convergent Taylor
series approximation in some neighborhood of every point
of the set. We consider the Hilbert space Z = L2([0, 1]),
which is the space of Lebesgue square integrable functions,

i.e., f ∈ Z, iff
∫ 1

0
|f(x)|2dx < ∞. We define on Z the inner

product 〈·, ·〉Z and the associated norm ‖.‖Z , as 〈f, g〉Z =
∫ 1

0
f(x)g(x)dx, for f, g ∈ Z, and ‖f‖2

Z =
∫ 1

0
|f(x)|2dx. A

function ω(t, x) is in L2([0, T ];Z) if for each 0 ≤ t ≤ T ,

ω(t, ·) ∈ Z, and
∫ T

0
‖ω(t, ·)‖2

Zdt ≤ ∞.

Definition 1. (Haddad and Chellaboina [2008]). A system
ẋ = f(t, x) is said to be Lagrange stable if for every initial
condition x0 associated with the time instant t0, there
exists ε(x0), such that ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0.

3. IDENTIFICATION OF PDE MODELS BY
EXTREMUM SEEKING

3.1 MES-based ROM parameters identification

Consider a stable dynamical system modelled by a nonlin-
ear PDE of the form

ż = F(z, p) ∈ Z, (1)

where Z is an infinite-dimension Hilbert space, and p ∈
R

m represents the vector of physical parameters to be
identified. While solutions to this PDE can be obtained
through numerical discretization, e.g., finite elements, fi-
nite volumes, finite differences, etc., these computations
are often very expensive and not suitable for online appli-
cations, e.g., airflow analysis, prediction and control. How-
ever, solutions of the original PDE often exhibit low rank
representations in an ‘optimal’ basis, which is exploited to
reduce the PDE to a finite dimension ODE.
The general idea is as follows: one first finds a set of
‘optimal’ (spatial) basis vectors φi ∈ R

n (the dimension
n is generally very large and comes form a ‘brut-force’ dis-
cretization of the PDE, e.g., finite element discretization),
and then approximates the PDE solution as

z(t) ≈ Φzr(t) =
r

∑

i=1

qi(t)φi, (2)

where Φ is a n × r matrix containing the basis vectors φi

as column vectors. Next, the PDE equation is projected
into the finite r-dimensional space via classical nonlinear
model reduction techniques, e.g., Galerkin projection, to
obtain a ROM of the form

q̇(t) = F (q(t), p) ∈ R
r, (3)

where F : R
r → R

r is obtained from the original
PDE structure, through the model reduction technique,
e.g., the Galerkin projection. Clearly, the problem lies
in the selection of this ‘optimal’ basis matrix Φ. There
are many model reduction methods to find the projec-
tion basis functions for nonlinear systems. For example
proper orthogonal decomposition (POD), dynamic mode
decomposition (DMD), and reduced basis (RB) are some
of the most used methods. We will recall hereafter the
POD method, however, we believe that the MES-based
identification results are independent of the type of model
reduction approach, and the results of this paper remain
valid regardless of the selected model reduction method.

POD model reduction: We give here a brief recall of
POD basis functions computation, the interested reader
can refer to Kunisch and Volkwein [2007], Gunzburger
et al. [2007] for a more complete presentation about POD
theory.

We consider here the case where the POD basis are
computed mathematically from approximation solutions
snapshot of the PDE. The general idea behind POD
is to select a set of basis functions that capture an
optimal amount of energy of the original PDE. The POD
basis are obtained from a collection of snapshots over a
finite time support of the PDE solutions. In the context
of this work, these snapshots are obtained by solving
an approximation (discretization) of the PDE equation,
e.g., using finite element method (FEM). The POD basis
functions computation steps are presented below in more
details.

First, the original PDE is discretized using any finite
element basis functions, e.g., piecewise linear functions
or spline functions, etc. (we are not presenting here any
FEM method, instead we refer the reader to the numerous
manuscripts in the field of FEM, e.g., Sordalen [1997],
Fletcher [1983]). Let us denote the associated PDE solu-
tions approximation by zfem(t, x), where t stands for the
scalar time variable, and x stands for the space variable.
We consider here (for simplicity of the notations) the case
of one dimension where x is a scalar in a finite interval,
which we consider, without loss of generality, to be [0, 1].
Next, we compute a set of s snapshots of approximates
solutions as

Sz = {zfem(t1, .), ..., zfem(ts, .)} ⊂ R
n, (4)

where n is the selected number of FEM basis functions.
Now we define the so called correlation matrix Kz elements
as

Kz
ij =

1

s
< zfem(ti, .), zfem(tj , .) >, i, j = 1, ..., s. (5)

We then compute the normalized eigenvalues and eigen-
vectors of Kz, denoted as λz, and vz. Note that λz are
also referred to as the POD eigenvalues. Eventually, the
ith POD basis function is given by

φpod
i (x) =

1√
s
√

λz
i

j=s
∑

j=1

vz
i (j)zfem(tj , x), i = 1, ..., npod,

(6)
where npod ≤ s is the number of retained POD basis
functions, which depends on the application.
One of the main properties of the POD basis functions
is orthonormality, which means that the basis satisfy the
following equalities

< φpod
i , φpod

j >=

∫ 1

0

φpod
i (x)φpod

j (x)dx = δij , (7)

where δij denotes the Kronecker delta function. The solu-
tion of the PDE (1) can then be approximated as

zpod(t, x) =

i=npod
∑

i=1

φpod
i (x)qpod

i (t), (8)

where qpod
i , i = 1, ..., npod are the POD projection co-

efficients (which play the role of the zr in the ROM
(3)). Finally, the PDE (1) is projected on the reduced
dimension POD space using a Galerkin projection, i.e.,
both sides of equation (1) are multiplied by the POD basis
functions, where z is substituted by zpod, and then both
sides are integrated over the space interval [0, 1], which
using the orthonormality constraints (7) and the boundary
constraints of the original PDE, leads to an ODE of the
form

q̇pod(t) = F (qpod(t), p) ∈ R
npod , (9)

where the structure (in terms of nonlinearities) of the vec-
tor field F is related to the structure of the original PDE,



and where p ∈ R
m represents the vector of parametric

uncertainties to be identified.

We can now proceed with the MES-based identification
of the parametric uncertainties.

MES-based PDEs open-loop parameters estimation: We
will use here an MES algorithm to estimate the PDE’s
parametric uncertainties, using its reduced order model;
the POD ROM. First, we need to introduce some basic
stability assumptions.
Assumption 1. The solutions of the original PDE model
(1) are assumed to be in L2([0,∞);Z), and the associated
POD reduced order model (8), (9) is Lagrange stable.
Remark 1. Assumption 1 is needed to be able to perform
open-loop identification of the system, without the need
for any feedback stabilization.

Now, to be able to use the MES framework to identify
the parameters vector p, we define an identification cost
function as

Q(p̂) = H(ez(p̂)), (10)
where p̂ denotes the estimate of p, H is a positive definite
function of ez, and ez represents the error between the
ROM model (8),(9) and the system’s measurements zm,
defined as

ez(t) = zpod(t, xm) − zm(t, xm, ς), (11)
xm being the points in space where the measurements are
obtained, and ς represents additive white measurement
noise.
To derive an upper bound on the estimation error norm,
we add the following assumptions of the cost function Q
and its variation with respect to the parameters p̂.
Assumption 2. The cost function Q has a local minimum
at p̂∗ = p.
Assumption 3. The original parameters estimates vector
p̂, i.e., the nominal parameters value, is close enough to
the actual parameters vector p.
Assumption 4. The cost function is analytic and its varia-
tion with respect to the uncertain variables is bounded in
the neighborhood of p∗, i.e., ‖∂Q

∂p
(p̃)‖ ≤ ξ2, ξ2 > 0, p̃ ∈

V(p∗), where V(p∗) denotes a compact neighborhood of p∗.

Based on the above assumptions, we can summarize the
open-loop identification result in the following Lemma.
Lemma 1. Consider the system (1), then under Assump-
tions 2, 3, and 4, the uncertain parameters vector p can
be estimated online using the algorithm

p̂(t) = pnom + ∆p(t), (12)

where pnom is the nominal value of p, ∆p = [δp1, ..., δpm]T

is computed using the MES algorithm

ẏi = aisin(ωit +
π

2
)Q(p̂),

δpi = yi + aisin(ωit −
π

2
), i ∈ {1, ...,m}

(13)

with ωi 6= ωj , ωi + ωj 6= ωk, i, j, k ∈ {1, ...,m}, and
ωi > ω∗, ∀i ∈ {1, ...,m}, with ω∗ large enough, and Q
given by (10), (11), with the estimate upper-bound

‖ep(t)‖ = ‖p̂ − p‖ ≤ ξ1

ω0
+

√

√

√

√

i=m
∑

i=1

a2
i , t → ∞, (14)

where ξ1 > 0, and ω0 = maxi∈{1,...,m} ωi.

Proof 1. First, based on Assumptions 2, 3 and 4, the
extremum seeking nonlinear dynamics (13), can be ap-
proximated by a linear averaged dynamic (using averaging

approximation over time, [Rotea, 2000, p. 435, Defini-
tion 1]). Furthermore, ∃ξ1, ω∗, such that for all ω0 =
maxi∈{1,...,m} ωi > ω∗, the solution of the averaged model
∆paver(t) is locally close to the solution of the original
MES dynamics, and satisfies [Rotea, 2000, p. 436]

‖∆p(t) − d(t) − ∆paver(t)‖ ≤ ξ1

ω0
, ξ1 > 0, ∀t ≥ 0,

with d(t) = (a1sin(ω1t− π
2 ), ..., amsin(ωmt− π

2 ))T . More-
over, since Q is analytic it can be approximated locally in
V(β∗) with a quadratic function, e.g., Taylor series up to
second order, which leads to [Rotea, 2000, p. 437]

limt→∞∆paver(t) = ∆p∗,

such that
∆p∗ + pnom = p,

which together with the previous inequality leads to

‖∆p(t) − ∆p∗‖ − ‖d(t)‖ ≤ |∆p(t) − ∆p∗ − d(t)‖ ≤ ξ1

ω0
,

ξ1 > 0, t → ∞,

⇒ ‖∆p(t) − ∆p∗‖ ≤ ξ1

ω0
+ ‖d(t)‖, t → ∞.

This finally implies that

‖∆p(t) − ∆p∗‖ ≤ ξ1

ω0
+

√

√

√

√

i=m
∑

i=1

a2
i , ξ1 > 0, t → ∞.

2

Remark 2. One of the main advantages of using MES to
solve the identification optimal problem, is that it is a
model-free optimization algorithm which needs only one
measurement at a time to direct the search of the optimal
parameter. Furthermore, dither-based MES is well known
to be robust to measurement noise, e.g., Calli et al. [2012],
which makes it a good candidate for solving identification
problems, where measurements are often contaminated
with noise, e.g., Ljung and Vicino [2005].

4. THE COUPLED BURGERS PDE EQUATION

We consider here the case of the coupled Burgers’ equation,
e.g., Kramer [2011]











∂ω(t, x)

∂t
+ ω(t, x)

ω(t, x)

∂x
= µ

∂2ω(t, x)

∂x2 − κT (t, x),

∂T (t, x)

∂t
+ ω(t, x)

∂T (t, x)

∂x
= c

∂2T (t, x)

∂x2 + f(t, x),

(15)
where T represents the temperature and ω represents the
velocity field, κ is the coefficient of the thermal expansion,
c the heat diffusion coefficient, µ the viscosity coefficient
(inverse of the Reynolds number Re), x is the one dimen-
sional space variable x ∈ [0, 1], t > 0, and f is the external
forcing term such that f ∈ L2((0,∞), X), X = L2([0, 1]).
The previous equation is associated with the following
boundary conditions

ω(t, 0) = δ1,
∂ω(t, 1)

∂x
= δ2,

T (t, 0) = T1, T (t, 1) = T2,
(16)

where δ1, δ2, T1, T2 ∈ R≥0.
We consider here the following general initial conditions

ω(0, x) = ω0(x) ∈ L2([0, 1]),
T (0, x) = T0(x) ∈ L2([0, 1]).

(17)

Following a Galerkin-type projection into POD basis func-
tions, e.g., Kramer [2011], the coupled Burgers’ equation
is reduced to a POD ROM with the following structure



(

q̇pod
ω

q̇pod
T

)

= B1 + µB2 + µ D qpod + D̃qpod + [Cqpod]qpod,

ωROM (x, t) = ω0(x) +

i=Npodω
∑

i=1

φ(x)pod
ωi qpod

ωi (t),

TROM (x, t) = T0(x) +

i=NpodT
∑

i=1

φ(x)pod
Ti qpod

Ti (t),

(18)
where matrix B1 is due to the projection of the forc-
ing term f , matrix B2 is due to the projection of the
boundary conditions, matrix D is due to the projection

of the viscosity damping term µ ∂2ω(t,x)
∂x2 , matrix D̃ is due

to the projection of the thermal coupling and the heat

diffusion terms −κT (t, x), c ∂2T (t,x)
∂x2 , and the matrix C

is a three-dimensional tensor due to the projection of

the gradient-based terms ω ω(t,x)
∂x

, and ω ∂T (t,x)
∂x

. The nota-

tions φpod
ωi (x), qpod

ωi (t) (i = 1, ..., Npodω), φpod
Ti (x), qpod

Ti (t)
(i = 1, ..., npodT ), stand for the space basis functions
and the time projection coordinates, for the velocity and
the temperature, respectively. ω0(x), T0(x) represent the
mean values (over time) of ω and T , respectively.

To illustrate the MES-based PDEs parameters estimation
results presented in Section 3, we consider here the case of
the Burgers’ equation with an uncertainty on the Reynolds
number Re (other cases with uncertainties on c, and κ
have testes as well, but could not be reported here due
to number of pages limitations, we will however report
them in a longer journal version of this work). We consider
the coupled Burgers’ equation (15), with the parameters
Re = 1000, κ = −1, c = 0.01, the boundary conditions
δ1 = 0, δ2 = 5, T1 = 0, T2 = 0.1sin(0.5πt), the initial
conditions ω0(x) = 2(x2(0.5 − x)2), T0(x) = 0.5sin(πx)5,
and a zero forcing term f . We assume a large uncertainty
on Re, and consider that its known value is Re−nom = 50.
We apply the discrete version of the estimation algorithm
of Lemma 1. We estimate the value of Re, as follows

R̂e(t) = Re−nom + δRe(t),

δRe(t) = ˆδRe((I − 1)tf ), (I − 1)tf ≤ t < Itf , I ∈ N,
(19)

where I is the learning iteration number, tf = 50 sec

the time horizon of one learning iteration, and δ̂Re is
computed using the iterative MES algorithm

ẏ = asin(ωt +
π

2
)Q(R̂e),

ˆδRe = yi + asin(ωt − π

2
).

(20)

We choose the learning cost function as

Q = Q1

∫ tf

0

< eT , eT > dt + Q2

∫ tf

0

< eω, eω > dt, (21)

with Q1, Q2 > 0, eT = T − TROM , eω = ω − ωROM

define the errors between the measurements and the POD
ROM solution for temperature and velocity, respectively.
We assume that the measurements are corrupted with
additive white noise with standard deviation σ = 10−2. We
applied the ES algorithm (20), (21), with a = 0.0178, ω =
10 rad/sec, Q1 = Q2 = 1. For the evaluation of the
cost function in (21), in this paper, we simulate the
case of limited number of sensors, where we assume that
we only have 10 measurements for the velocity and 10
measurements for the temperature, uniformly distributed
over [0, 1].

(a) True velocity profile

(b) True temperature profile

Fig. 1. True solutions of (15)

We first show in Figure 1, the plots of the true (obtained
by solving the Burgers’ PDE with finite elements method,
with a uniform grid of 100 elements in time and space 1 ).
Next, we show in Figure 2, the velocity and temperature
profiles, obtained by the nominal, i.e., learning-free POD
ROM with 4 POD modes for the velocity and 4 modes for
the temperature, considering the incorrect value Re = 50.
From Figures 1, 2, we can see that the temperature profile
obtained by the nominal POD ROM is not too different
from the true profile. However, the velocity profiles are
different, which is due to the fact that the uncertainty
of Re affects mainly the velocity part of the PDE. The
error between the true solutions and the nominal POD
ROM solutions are displayed in Figure 3. Now, we show
the MES-based learning of the uncertain parameter Re.
We first report in Figure 4(a), the learning cost function
over the learning iterations. We notice that, with the
chosen learning parameters a, ω, the MES exhibits a big
exploration step after the first iteration, which leads to a
large cost function first. However, this large value of the
cost function (due to the large exploration step), leads
quickly to the neighborhood of the true value of Re, as
seen in Figure 4(b). The error between the POD ROM
after learning and the true solutions are depicted in Figure
5. By comparing Figure 3 and Figure 5, we can see that
the error between the POD ROM solutions and the true
solutions have been largely reduced with the learning of
the actual value of Re, i.e., when R̂e converges to a small
neighborhood of the true value of Re.

1 We thank here Dr. Boris Kramer, former intern at MERL, for
sharing his codes to solve the Burgers’ equation.



(a) Learning-free POD ROM velocity profile

(b) Learning-free POD ROM temperature profile

Fig. 2. Learning-free POD ROM solutions of (15)

(a) Error between the true velocity and the
learning-free POD ROM velocity profile

(b) Error between the true temperature and the
learning-free POD ROM temperature profile

Fig. 3. Errors between the nominal POD ROM and the
true solutions
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(a) Learning cost function vs. number of itera-
tions
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(b) Learned parameter R̂e vs. number of itera-
tions

Fig. 4. Learned parameters and learning cost function

(a) Error between the true velocity and the
learning-based POD ROM velocity profile

(b) Error between the true temperature and the
learning-based POD ROM temperature profile

Fig. 5. Errors between the learning-based POD ROM and
the true solutions



5. CONCLUSION

In this work we have studied the problem of PDEs para-
metric identification. We have formulated the problem as
an optimization with respect the unknown parameters,
and have proposed to use model-free extremum seeking
theory to search for the optimal PDE parameters. We
believe that one of the main advantages of using extremum
seeking theory for parametric identification is the fact that
extremum seeking requires only one measurement at any
given time to direct the search for the optimal parameters.
Furthermore, the proposed extremum seeking algorithm,
namely, the dither-based algorithm is well know to be
robust with respect to measurement noises, which makes
it a good candidate for solving identification problems,
where measurements are often contaminated with noise.
In this context, we have proposed to merge together POD
model reduction theory and extremum seeking theory to
propose a solution for PDEs parametric identification.
Even though, these preliminary results are satisfactory,
we believe that this direction can be developed by looking
at convexification methods, i.e., change of coordinates in
the unknown parameters. Another improvement direction,
could be to use other type of model-free optimization
algorithms, like semi-global extremum seeking algorithm,
reinforcement learning algorithms, etc. We are investigat-
ing some of these directions and will communicate the
obtained results in our future reports.

REFERENCES

K.J. Astrom and P. Eykhoff. System identification– a
survey. Automatica, 7:123–162, 1971.

E. Baake, M. Baake, H. Bock, and K. Briggs. Fitting
ordinary differential equations to chaotic data. Phys.
Rev. A, 45:5524–5529, 1992.

M.J. Balajewicz, E.H. Dowell, and B.R. Noack. Low-
dimensional modelling of high–reynolds–number shear
flows incorporating constraints from the NavierStokes
equation. Journal of Fluid Mechanics, 729(1):285–308,
2013.

I. Barkana. Simple adaptive control a stable direct model
reference adaptive control methodology brief survey.
Int. Journal of Adaptive Control and Signal Processing,
28:567–603, 2014.

B. Calli, W. Caarls, P. Jonker, and M. Wisse. Compari-
son of extremum seeking control algorithms for robotic
applications. In International Conference on Intel-
ligent Robots and Systems (IROS), pages 3195–3202.
IEEE/RSJ, October 2012.

Rinaldo M. Colombo and Massimiliano D. Rosini. Pedes-
trian flows and non-classical shocks. Mathematical
Methods in the Applied Sciences, 28(13):1553–1567,
September 2005.

L. Cordier, B.R. Noack, G. Tissot, G. Lehnasch,
J. Delville, M. Balajewicz, G. Daviller, and R. K. Niven.
Identification strategies for model-based control. Exper-
iments in Fluids, 54(1580):1–21, 2013.

C. A. J. Fletcher. The group finite element formulation.
Computer Methods in Applied Mechanics and Engineer-
ing, 37:225–244, 1983.

M. Gevers. A personal view of the development of system
identification a 30–year journey through an exciting
field. IEEE Control Systems Magazine, page 93105,
2006.

M.D. Gunzburger, J. S. Peterson, and J.N. Shadid.
Reduced–order modeling of time–dependent PDEs with
mulptiple parameters in the boundary data. Computer
Methods in Applied Mechanics and Engineering, 196(4–
6):10301047, 2007.

W.M. Haddad and V. S. Chellaboina. Nonlinear dynam-
ical systems and control: a Lyapunov–based approach.
Princeton University Press, 2008.

R.L. Huges. The flow of human crowds. Annual Review
of Fluid Mechanics, 35:169–182, 2003.

B. Kramer. Model reduction of the coupled burgers
equation in conservation form. Masters of science in
mathematics, Virginia Polytechnic Institute and State
University, 2011.

K. Kunisch and S. Volkwein. Galerkin proper orthogonal
decomposition methods for a general equation in fluid
dynamics. SIAM Journal on Numerical Analysis, 40(2):
492–515, 2007.

Kangji Li, Hongye Su, Jian Chu, and Chao Xu. A fast-
pod model for simulation and control of indoor thermal
environment of buildings. (60):150–157, 2013.

L. Ljung. Perspectives on system identification. Automa-
tion and remote control, 34(1):112, April 2010.

L. Ljung and T. Glad. On global identifiability of arbitrary
model parameterizations. Automatica, 30(2):265–276,
Feb 1994.

L. Ljung and A. Vicino. Special issue on identification.
IEEE, Transactions on Automatic Control, 50(10), Oct
2005.

W. MacKunis, S.V. Drakunov, M. Reyhanoglu, and
L. Ukeiley. Nonlinear estimation of fluid velocity fileds.
In IEEE, Conference on Decision and Control, pages
6931–6935, 2011.

G. Montseny, J. Audounet, and D. Matignon. Frac-
tional integrodifferential boundary control of the euler–
bernoulli beam. In IEEE, Conference on Decision and
Control, pages 4973–4978, San Diego, California, 1997.

T. Muller and J. Timmer. Fitting parameters in partial
differential equations from partially observed noisy data.
Physica D, 171:1–7, 2002.

T. Muller and J. Timmer. Parameter identification tech-
niques for partial differential equations. Int. J. Bifurca-
tion Chaos, 14(06), 2004.

U. Parlitz and C.Merkwirth. Prediction of spatiotemporal
time series based on reconstructed local states. Phys.
Rev. Lett., 84:1890–1893, 2000.

G. Pillonetto, F. Dinuzzo, T. Chenc, G. De Nicolao, and
L. Ljung. Kernel methods in system identification,
machine learning and function estimation: A survey.
Automatica, (50):112, April 2014.

M.A. Rotea. Analysis of multivariable extremum seeking
algorithms. In American Control Conference, 2000.
Proceedings of the 2000, volume 1, pages 433–437, Sep
2000.

C.W. Rowley. Model reduction for fluids using balanced
proper orthogonal decomposition. INT. J. on Bifurca-
tion and Chaos, 2005.

O.J. Sordalen. Optimal thrust allocation for marine
vessels. Control Engineering Practice, 15(4):1223–1231,
1997.

H. U. Voss, P. Kolodner, M. Abel, and J. Kurths. Am-
plitude equations from spatiotemporal binary–fuid con-
vection data. Phys. Rev. Lett., 83:3422–3425, 1999.

Xiaolei Xun, Jiguo Cao, Bani Mallick, Arnab Maity, and
Raymond J. Carroll. Parameter estimation of partial
differential equation models. Journal of the American
Statistical Association, 108(503):1009–1020, 2013.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-060.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


