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Abstract

We study in this paper the problem of iterative feedback gains auto-tuning for a class of nonlinear systems. For the class
of Input-Output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal Input-Output
linearization-based robust controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we
complement the robust controller with a model-free multi-parametric extremum seeking (MES) control to iteratively auto-tune
the feedback gains. We analyze the stability of the whole controller, i.e., robust nonlinear controller combined with the MES
model-free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example.

I. INTRODUCTION

Currently, feedback controllers are used in a variety of systems. There are several types of feedback, e.g., state feedback
vs. output feedback, linear vs. nonlinear etc. However, one common characteristic of all available feedback controllers is the
fact that they all rely on some ‘well chosen’ feedback gains. The selection of these feedback gains is often done based on
some desired performance. For instance, the gains can be chosen in such a way to minimize overshoot of a linear closed-loop
system, settling-time can be another performance target, minimizing a given finite-time or asymptotic, state or output tracking
error can be of interest in many applications, as well. Over the past years, there has been a myriad of results about feedback
gains tuning. Maybe one of the most famous, and widely taught technique, would be the so-called Ziegler-Nichols rules for
PID gains tuning for linear systems [1]. However, such rules apply for the particular class of linear systems, under linear PID
feedback, and are considered to be heuristic in nature.

For more general cases of models and controllers, and a more systematic or autonomous way of tuning feedback gains, the
control community started looking at an iterative procedure to auto-tune feedback gains for closed-loop systems. Indeed, in
the seminal paper [2], the authors introduced the idea that the feedback controllers’ parameters could be tuned iteratively to
compensate for model uncertainties, and that the tuning could be based on measurements directly obtained from the system.
This idea of iterative control tuning lead to the so-called ‘iterative feedback tuning’ (IFT) research field, where the goal is to
iteratively auto-tune feedback gains of a closed-loop system based on the online optimization of a well defined performance
cost function. There have been a lot of results about IFT in the past 20 years, and it is not the purpose of this paper to survey
all the existing papers in the field. However, the existing results are mainly dedicated to linear systems controlled with linear
feedbacks, e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

Based on these IFT algorithms for linear systems, some extensions to nonlinear systems have been proposed. For instance
in [13], the author study the case of discrete nonlinear systems controlled with linear time-invariant output feedback. The
effect of IFT algorithms developed originally for linear systems was studied on nonlinear systems by assuming local Taylor
approximation of the nonlinear dynamics. However, the full analysis of the feedback loop, i.e., IFT of the linear controller
applied to the nonlinear dynamics, was not reported in this paper. Other feedback gains iterative tuning algorithms were
developed for nonlinear systems in [14], [15], [16]. The algorithms developed in these papers, first assume that the closed-loop
input and output signals remain bounded during the gains tuning, and they rely on the numerical estimation of the gradient of
a given cost function with respect to the controller gains, which necessitates to run the system n + 2 times for each learning
iteration, where n is the dimension of the tuned gain vector. This obviously can be a limiting factor if the number of tuned
parameters is large. An alternative has been proposed in [17], where the proposed IFT algorithm requires only 2 experiments per
learning iteration. However, this algorithm was proposed for SISO systems, where the nonlinear dynamics can be approximated
with linear time-varying dynamics. The algorithms is of local nature designed around one test reference, and thus was not
proven to be robust w.r.t. changes in the reference. Moreover, this IFT algorithm requires to solve a local identification problem
(formulated as an optimal least-square problem) at each learning iteration. More recently, another approach has been proposed
in [18] for SISO systems. This method, called virtual reference feedback tuning (VRFT), is based on the assumption of
open-loop Lagrange stability of the system, since it requires an initial set of (noise-free) input-output data.
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In this work, we propose to study the problem of gains auto-tuning in the general setting of uncertain nonlinear systems (refer
to [19], [20] for preliminary results), with a rigorous stability analysis of the full system, i.e., learning algorithm merged with
the nonlinear controller and the nonlinear uncertain system. We consider here a particular class of nonlinear systems, namely,
nonlinear models affine in the control input, which are linearizable via static state feedback. We consider bounded additive
model uncertainties with known upper bound function. We propose a simple modular iterative gains tuning controller, in the
sense that we first design a passive robust controller, based on the classical Input-Output linearization method complemented
with a Lyapunov reconstruction-based control, e.g., [21], [22]. This passive robust controller ensures uniform boundedness of
the tracking errors (Lagrange stability) and their convergence to a given invariant set, i.e., we do not assume but rather guarantee
Lagrange stability of the feedback system while tuning the gains. Next, in a second phase, we add a multi-parametric extremum
seeking algorithm to iteratively auto-tune the feedback gains of the passive robust controller, to optimize a desired system
performance. The desired closed-loop performance is formulated in terms of a desired learning cost function minimization.
One of the main advantages of using MES to minimize the learning cost function, is the fact that MES necessitates only one
evaluation of the cost function for each learning iteration, i.e., one experiment per learning iteration.

This paper is organized as follows: First, some notations and definitions are recalled in Section II. Next, we present the
class of systems studied here and formulate the control problem in Section III. The proposed control approach together with
the closed-loop dynamic solutions’ boundedness are presented in Section IV. Section V is dedicated to the application of
the controller to a mechatronics example, namely, an electromagnetic actuator. Finally, the paper ends with a summarizing
discussion in Section VI.

II. NOTATIONS AND DEFINITIONS

Throughout the paper we will use |.| to denote the Euclidean norm; i.e., for x ∈ R
n we have |x| =

√
xT x. We will use the

notations diag{m1, ...,mn} for n × n diagonal matrix, z(i) denotes the ith element of the vector z. We use ˙(.) for the short
notation of time derivative and f (r)(t) for drf(t)

dtr . Max(V ) denotes the maximum element of a vector V , and sgn(.) denotes
for the sign function. We denote by C

k functions that are k times differentiable, and by C
∞ a smooth function. A function is

said analytic in a given set, if it admits a convergent Taylor series approximation in some neighborhood of every point of the
set. An impulsive dynamical system is said to be well-posed, if it has well defined distinct resetting times, admits a unique
solution over a finite forward time interval, and does not exhibits any Zeno solutions, i.e., an infinitely many resetting of the
system in finite time interval [23]. Finally, in the sequel when we talk about error trajectories’ boundedness, we mean uniform
boundedness as defined in [21] (p.167, Definition 4.6 ) for nonlinear continuous systems, and in [23] (p. 67, Definition 2.12)
for time-dependent impulsive dynamical systems.

III. PROBLEM FORMULATION

A. Class of systems

We consider here affine uncertain nonlinear systems of the form

ẋ = f(x) + ∆f(x) + g(x)u, x(0) = x0,
y = h(x),

(1)

where x ∈ R
n, u ∈ R

na , y ∈ R
m (na ≥ m), represent, the state, the input and the controlled output vectors, respectively. x0 is

a known initial condition, ∆f(x) is a vector field representing additive model uncertainties. The vector fields f , ∆f , columns
of g and function h satisfy the following assumptions.

Assumption 1: f : R
n → R

n and the columns of g : R
n → R

n×na are C
∞ vector fields on a bounded set X of R

n and
h(x) is a C

∞ function on X . The vector field ∆f(x) is C
1 on X .

Assumption 2: System (1) has a well-defined (vector) relative degree {r1, . . . , rm} at each point x0 ∈ X , and the system
is linearizable, i.e.,

∑i=m
i=1 ri = n (see e.g., [24]).

Assumption 3: The uncertainty vector ∆f is s.t. |∆f(x)| ≤ d(x) ∀x ∈ X , where d : X → R is a smooth nonnegative
function.

Assumption 4: The desired output trajectories yid are smooth functions of time, relating desired initial points yi0 at t = 0
to desired final points yif at t = tf , and s.t. yid(t) = yif , ∀t ≥ tf , tf > 0, i ∈ {1, ...,m}.

B. Control objectives

Our objective is to design a feedback controller u(x,K), which ensures for the uncertain model (1) uniform boundedness of a
tracking error, and for which the stabilizing feedback gains vector K is iteratively auto-tuned, to optimize a desired performance
cost function. We stress here that the goal of the gain auto-tuning is not stabilization but rather performance optimization. To
achieve this control objective, we proceed as follows: We first design a ‘passive’ robust controller which ensures boundedness of
the tracking error dynamics, and then we combine it with a model-free learning algorithm to iteratively auto-tune the feedback
gains of the controller, and optimize online a desired performance cost function.
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IV. CONTROLLER DESIGN

A. Step one: Passive robust control design

Under Assumption 2, and nominal conditions, i.e., ∆f = 0, system (1) can be written as [24]

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t), (2)

where
y(r)(t) , (y

(r1)
1 (t), . . . , y

(rm)
m (t))T ,

ξ(t) = (ξ1(t), . . . , ξm(t))T ,

ξi(t) = (yi(t), . . . , y
(ri−1)
i (t)), 1 ≤ i ≤ m,

(3)

and where b, A write as functions of f, g, h, and A is non-singular in X ([24], pp. 234-288).
At this point we introduce one more assumption on the system.

Assumption 5: We assume that the additive uncertainties ∆f in (1) appear as additive uncertainties in the linearized model
(2), (3), as follows

y(r) = b(ξ) + ∆b(ξ) + A(ξ)u, (4)

where ∆b is C
1 on X̃ , and s.t. |∆b(ξ)| ≤ d2(ξ) ∀ξ ∈ X̃ , where d2 : X̃ → R is a smooth nonnegative function, and X̃ is the

image of the set X by the diffeomorphism x → ξ between the states of (1) and (2).
If we consider the nominal model (2), we can define a virtual input vector v as

b(ξ(t)) + A(ξ(t))u(t) = v(t). (5)

Combining (2) and (5), we obtain the linear (virtual) Input-Output mapping

y(r)(t) = v(t). (6)

Based on the linear system (6), we write the stabilizing output feedback for the nominal system (4) with ∆b(ξ) = 0, as

unom = A−1(ξ)(vs(t, ξ) − b(ξ)), vs = (vs1, ..., vsm)T ,

vsi(t, ξ) = yi
(ri)
d − Ki

ri(yi
(ri−1) − yi

(ri−1)
d ) − ... − Ki

1(yi − yid), i ∈ {1, ...,m}. (7)

Denoting the tracking error vector as ei(t) = yi(t) − yid(t), we obtain the tracking error dynamics

e
(ri)
i (t) + Ki

ri
e
(ri−1)
i (t) + ... + Ki

1ei(t) = 0, i = 1, ...,m, (8)

and by tuning the gains Ki
j , i = 1, ...,m, j = 1, ..., ri such that all the polynomials in (8) are Hurwitz, we obtain global

asymptotic convergence of the tracking errors ei(t), i = 1, ...m, to zero. To formalize this condition let us state the following
assumption.

Assumption 6: We assume that there exists a nonempty set K of again K i
j , i = 1, ...,m, j = 1, ..., ri, such that the

polynomials (8) are Hurwitz.
Remark 1: Assumption 6 is well know in the Input-Output linearization control literature. It simply states that we can find

gains that stabilize the polynomials (8), which can be done for example by pole placements (see Section V for an example).
Next, if we consider that ∆b(ξ) 6= 0 in (4), the global asymptotic stability of the error dynamics will not be guarantied
anymore due to the additive error vector ∆b(ξ), we then choose to use Lyapunov reconstruction technique (e.g., [22]) to obtain
a controller ensuring practical stability of the tracking error. This controller is presented in the following Theorem.

Theorem 1: Consider the system (1) for any x0 ∈ R
n, under Assumptions 1, 2, 3, 4, 5 and 6, with the feedback controller

u = A−1(ξ)(vs(t, ξ) − b(ξ)) − A−1(ξ)∂V
∂z̃

T
k d2(e), k > 0, vs = (vs1, ..., vsm)T ,

vsi(t, ξ) = yi
(ri)
d − Ki

ri(yi
(ri−1) − yi

(ri−1)
d ) − ... − Ki

1(yi − yid).
(9)

Where Ki
j ∈ K, j = 1, ..., ri, i = 1, ...,m, and V = zT Pz, P > 0 such that PÃ + ÃT P = −I , with Ã being an n × n

matrix defined as

Ã =



































0, 1, 0, ......................................., 0
0, 0, 1, 0, ...................................., 0

. . .
−K1

1 , ...,−K1
r1, 0, ........................., 0

. . .
0, ......................., 0, 1, 0, ..........., 0
0, ......................., 0, 0, 1, ..........., 0

. . .
0, ..............., 0,−Km

1 , .........,−Km
rm



































, (10)



4

and z = (z1, ..., zm)T , zi = (ei, ..., e
ri−1
i ), i = 1, ...,m, z̃ = (z1(r1), ..., z

m(rm))T ∈ R
m. Then, the vector z is uniformly

bounded and reached the positive invariant set S = {z ∈ R
n| 1 − k |∂V

∂z̃
| ≥ 0}.

Proof: We know from the discussion above that for the system (1), under Assumptions 1, 2 and 6, in the nominal case, i.e.,
∆f = 0, the control (7) globally asymptotically (exponentially) stabilizes the linear error dynamic (8), which by the classical
results in ([21], pp. 135-136), leads to the existence of a Lyapunov function V = zT Pz s.t. the time derivative of V along the
nominal system (1) ( with ∆f = 0), under the control law unom given by (7), satisfies

V̇ |((1),∆f=0) ≤ −|z|2,

where z = (z1, ..., zm)T , zi = (ei, ..., e
ri−1
i ), i = 1, ...,m, and P > 0 is the unique solution of the Lyapunov equation

PÃ + ÃT P = −I , wherein Ã given by (10), has been obtained by rewriting the error dynamic in the control canonical form.
Now, we will use the technique of Lyapunov reconstruction from nonlinear robust control, e.g., [22], to obtain the full controller
(9). Indeed, if we compute the time derivative of V along the uncertain model (1), under Assumption 3, 5, and considering
the augmented control law u = unom + urobust, we obtain

V̇ |((1),∆f 6=0) ≤ −|z|2 +
∂V

∂z̃
.(A urobust + ∆b), (11)

where z̃ = (z1(r1), ..., z
m(rm))T ∈ R

m.
Next, if we define urobust as

urobust = −A−1(ξ)
∂V

∂z̃

T

k d2(e), k > 0 (12)

substituting (12) in (11), we obtain

V̇ |((1),∆f 6=0) ≤ −|z|2 − |∂V
∂z̃

|2 k d2(e) + ∂V
∂z̃

∆b
≤ −|z|2 − |∂V

∂z̃
|2 k d2(e) + |∂V

∂z̃
|d2

≤ (1 − k |∂V
∂z̃

|) |∂V
∂z̃

| d2

(13)

which proves that V is decreasing as long as 1 − k | ∂V
∂z̃

| < 0, until the error vector enters the positive invariant set S = {z ∈
R

n| 1 − k |∂V
∂z̃

| ≥ 0}, which implies boundedness of V , and equivalently uniform boundedness of |z| ( which can be directly
obtained via the inequality λmin(P )|z|2 ≤ V (z), e.g., [25]).

Remark 2: In the proof of Theorem 1, we use a smooth control term urobust given by (12) to compensate for the effect of the
uncertain term ∆b. Indeed, the choice (12) leads to the right-hand side of inequality (13) where we can see that for a big enough
values of k, the negative second term in the right-hand side of (13) (second line), can compensate for the third term (which is due
to the uncertainty ∆b). However, we could use a non-smooth control by choosing urobust = −A−1sgn(∂V

∂z̃
)T k d2(e). In this

case, the negative second term in the right-hand side of (13) will completely cancel the positive third term, and an asymptotic
(Lyapunov) stability results will be achieved. Indeed, this type of discontinuous controller is well known to compensate for
bounded uncertainties, e.g., refer to [22] and references therein, and would lead to an asymptotic stability result for the tracking
error dynamics. However, it is a discontinuous control, and thus it is not advisable for real applications. Its regularization is
often done by substituting the sign function by a saturation function, e.g., [22], which leads to a practical stability result
similar to the one obtained with the proposed urobust term in Theorem 1.

Remark 3: Assumption 5 is needed in this work, because we are using an Input-Output linearization approach, comple-
mented with a robust controller. This assumption is common in the literature of robust nonlinear control when Input-Output
linearization by feedback is used, e.g., please refer to [26]. This assumption is satisfied under the so-called, matching conditions,
which have been explicitly reported in ([26], p. 146).

B. Main result: Iterative auto-tuning of the feedback gains

In Theorem 1, we showed that the passive robust controller (9) leads to bounded tracking errors, which are attracted to
the invariant set S for a given choice of the feedback gains K i

j , j = 1, ..., ri, i = 1, ...,m. Next, to iteratively auto-tune the
feedback gains of (9), we define a desired learning cost function, and use a multi-parametric extremum seeking to iteratively
auto-tune the gains and minimize the learning cost function. We first denote the learning cost function to be minimized as
Q(β) where β represents the optimization variables vector, defined as

β = (δK1
1 , ..., δK1

r1, ..., δK
m
1 , ..., δKm

rm, δk)T , (14)

Such that the updated feedback gains write as

Ki
j = Ki

j−nominal + δKi
j , j = 1, ..., ri, i = 1, ...,m.

k = knominal + δk, knominal > 0,
(15)

where Ki
j−nominal, j = 1, ...ri, i = 1, ...,m are the nominal initial values of the feedback gains chosen such that Assumption

6 is satisfied.
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Remark 4: The choice of the learning cost function Q is not unique. For instance, if the controller tracking performance at
the specific time instants Itf , I ∈ {1, 2, 3, ...} is important for the targeted application (see the example presented in Section
V), one can choose Q as

Q(β) = zT (Itf )C1z(Itf ), C1 > 0. (16)

If another performance needs to be optimized over a finite time interval, for instance a combination of a tracking performance
and a control power performance, then one can choose for example the cost function

Q(β) =

∫ Itf

(I−1)tf

zT (t)C1z(t)dt +

∫ Itf

(I−1)tf

uT (t)C2u(t)dt, I ∈ {1, 2, 3, ...}, C1, C2 > 0. (17)

The gains’ variation vector β is then used to minimize the cost function Q over the iterations I ∈ {1, 2, 3, ...}. Other closed-loop
performances, like over-shooting and settling time minimization, could be added in the learning cost function, as well.
Following extremum seeking theory, e.g., [27], [28], the variations of the gains are defined as

ẋKi
j

= aKi
j
δKi

j
ωKi

j
sin(ωKi

j
t − π

2 )Q(β),

δK̂i
j(t) = xKi

j
(t) + aKi

j
sin(ωKi

j
t + π

2 ), j = 1, ...ri, i = 1, ...,m,

ẋk = akδkωksin(ωkt − π
2 )Q(β),

δk̂(t) = xk(t) + aksin(ωkt + π
2 ),

(18)

where aKi
j
, δKi

j
, j = 1, ...ri, i = 1, ...,m, ak, δk are positive tuning parameters, and

ω1 + ω2 6= ω3, for ω1 6= ω2 6= ω3, ∀ω1, ω2, ω3 ∈ {ωKi
j
, ωk, j = 1, ...ri, i = 1, ...,m}, (19)

with ωi > ω∗, ∀ωi ∈ {ωKi
j
, ωk, j = 1, ...ri, i = 1, ...,m}, ω∗ large enough.

To study the stability of the learning-based controller, i.e., controller (9), with the varying gains (15) and (18), we first need
to introduce some additional assumptions.

Assumption 7: We assume that the learning cost function Q has a local minimum at β∗.
Assumption 8: We consider that the initial gain vector β is sufficiently close to the optimal gain vector β∗.
Assumption 9: The learning cost function is analytic and its variation with respect to the gains is bounded in the neigh-

borhood of β∗, i.e., |∂Q
∂β

(β̃)| ≤ Θ2, Θ2 > 0, β̃ ∈ V(β∗), where V(β∗) denotes a compact neighborhood of β∗.
We can now state the following result.

Theorem 2: Consider the system (1) for any x0 ∈ R
n, under Assumptions 1, 2, 3, 4, 5 and 6, with the feedback controller

u = A−1(ξ)(vs(t, ξ) − b(ξ)) − A−1(ξ)∂V
∂z̃

T
k(t) d2(e), k > 0, vs = (vs1, ..., vsm)T ,

vsi(t, ξ) = ŷi
(ri)
d − Ki

ri(t)(yi
(ri−1) − ŷi

(ri−1)
d ) − ... − Ki

1(t)(yi − ŷid), i = 1, ...,m.
(20)

Where the state vector is reset following the resetting law x(Itf ) = x0, I ∈ {1, 2, ...}, the desired trajectory vector is reset
following ŷid(t) = yid(t − (I − 1)tf ), (I − 1)tf ≤ t < Itf , I ∈ {1, 2, ...}, and Ki

j(t) ∈ K, j = 1, ..., ri, i = 1, ...,m are
piecewise continuous gains switched at each iteration I , I ∈ {1, 2, ...}, following the update law

Ki
j(t) = Ki

j−nominal + δKi
j(t),

δKi
j(t) = δK̂i

j((I − 1)tf ), (I − 1)tf ≤ t < Itf ,
k(t) = knominal + δk(t), knominal > 0

δk(t) = δk̂((I − 1)tf ), (I − 1)tf ≤ t < Itf , I = 1, 2, 3...

(21)

where δK̂i
j , δk̂ are given by (18), (19) and whereas the rest of the coefficients are defined similarly to Theorem 1. Then,

the obtained closed-loop impulsive time-dependent dynamic system (1), (18), (19), (20) and (21), is well posed. The tracking
error z is uniformly bounded, and is steered at each iteration I towards the positive invariant set SI = {z ∈ R

n| 1 −
kI |∂V

∂z̃
| ≥ 0}, kI = βI(n + 1), where βI is the value of β at the Ith iteration. Furthermore, |Q(β(Itf )) − Q(β∗)| ≤

Θ2

(Θ1(δ)
ω0

+
√

∑

i=1,...,m, j=1,...,ri

aKi
j

2 + ak
2
)

, Θ1, Θ2 > 0, for I → ∞, where ω0 = Max(ωK1

1

, ..., ωKm
rm

, ωk), δ =

(δK1

1

, ..., δKm
rm

, δk)T , and Q satisfies Assumptions 7, 8 and 9. Wherein, the vector β remains bounded over the iterations s.t.

|β((I+1)tf )−β(Itf )| ≤ 0.5tfMax(δK1

1

aK1

1

2, ..., δKm
rm

aKm
rm

2, δka2
k)Θ2+tfω0

√

∑

i=1,...,m j=1,...,ri

aKi
j

2 + ak
2, I ∈ {1, 2, ...},

and satisfies asymptotically the bound |β(Itf ) − β∗| ≤ Θ1(δ)
ω0

+
√

∑

i=1,...,m j=1,...,ri

aKi
j

2 + ak
2, Θ1 > 0, for I → ∞.

Proof: First, we discuss the well-posedness of the obtained closed-loop impulsive dynamical system. Indeed, the closed-
loop system (1), (18), (19), (20) and (21), can be viewed as an impulsive time-dependent dynamical system ([23], pp. 18-
19), with the trivial resetting law ∆x(t) = x0, for t = Itf , I ∈ {1, 2, ...}. In this case the resetting times given by
Itf , tf > 0 I ∈ {1, 2, ...}, are well defined and distinct. Furthermore, due to Assumption 1 and the smoothness of (20) (within
each iteration), this impulsive dynamic system admits a unique solution in forward time, for any initial condition x0 ∈ R

n
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([23], p. 12). Finally, the fact that tf 6= 0 excludes a Zeno behavior over a finite time interval (only a finite number of resets
are possible over a finite time interval). Next, let us consider the system (1) with the initial condition x0 (or equivalently
the initial tracking error z0 = h(x0) − yd(0)), under Assumptions 1, 2, 3, 4, 5 and 6, with the feedback controller (20),
(21), for a given time-interval (I

′ − 1)tf ≤ t < I
′

tf , for any given I
′ ∈ {1, 2, ...}. Based on Theorem 1, there exists a

Lyapunov function VI
′ = zT PI

′ z, such that V̇I
′ ≤ (1− kI

′ |∂V
I
′

∂z̃
|) |∂V

I
′

∂z̃
| d2, where PI

′ is solution of the Lyapunov equation
PI

′ ÃI
′ + ÃT

I
′ PI

′ = −I , wherein Ã given by (10), with the gains for the iteration I
′

Ki
I
′

j
(t) = Ki

j−nominal + δKi
j(t),

δKi
j(t) = δK̂i

j((I
′ − 1)tf ), (I

′ − 1)tf ≤ t < I
′

tf ,
kI

′ (t) = knominal + δk(t), knominal > 0,

δk(t) = δk̂((I
′ − 1)tf ), (I

′ − 1)tf ≤ t < I
′

tf , I
′

= 1, 2, 3...

(22)

which shows that z, starting from z0 (for all the iterations I
′ ∈ {1, 2, ...}) is steered ∀t ∈ [(I

′ − 1)tf , I
′

tf [, towards the
invariant set SI

′ = {z ∈ R
n| 1 − kI

′ |∂V
I
′

∂z̃
| ≥ 0}, and this is valid for all I

′ ∈ {1, 2, 3...} . Furthermore, since at each
switching point, i.e., each new iteration I

′

, we reset the system from the same bounded initial condition z0, we can conclude
about the uniform boundedness of the tracking error z. Next, we use to the results presented in [29], that characterize the
learning cost function Q behavior along the iterations. First, based on Assumptions 7, 8 and 9, the extremum seeking (ES)
nonlinear dynamics (18), (19), can be approximated by a linear averaged dynamic (using averaging approximation over time
([29], p 435, Definition 1)). Furthermore, ∃Θ1, ω∗, such that for all ω0 = Max(ωK1

1

, ..., ωKm
rm

, ωk) > ω∗, the solution of the
averaged model βaver(t) is locally close to the solution of the original ES dynamics, and satisfies ([29], p. 436)

|β(t) − d(t) − βaver(t)| ≤ Θ1(δ)
ω0

, Θ1 > 0, ∀t ≥ 0,

with dvec(t) = (aK1

1

sin(ωK1

1

t − π
2 ), ..., aKm

rm
sin(ωKm

rm
t − π

2 ), aksin(ωkt − π
2 ))T , and δ = (δK1

1

, ..., δKm
rm

, δk)T . Moreover,
since Q is analytic it can be approximated locally in V(β∗) with a quadratic function, e.g., Taylor series up to second order.
This together with the proper choice of the dither signals as in (18), and the dither frequencies satisfying (19), allows to prove
that βaver satisfies ([29], p. 437)

limt→∞βaver(t) = β∗,

which together with the previous inequality leads to

|β(t) − β∗| − |d(t)| ≤ |β(t) − β∗ − d(t)| ≤ Θ1(δ)
ω0

, Θ1 > 0, t → ∞,

⇒ |β(t) − β∗| ≤ Θ1(δ)
ω0

+ |d(t)|, t → ∞.

This finally implies that

|β(t) − β∗| ≤ Θ1(δ)
ω0

+
√

∑

i=1,...,m, j=1,...,ri

aKi
j

2 + ak
2, Θ1 > 0, t → ∞,

⇒ |β(Itf ) − β∗| ≤ Θ1(δ)
ω0

+
√

∑

i=1,...,m, j=1,...,ri

aKi
j

2 + ak
2, Θ1 > 0, I → ∞.

Next, based on Assumption 9, the cost function is locally Lipschitz, with the Lipschitz constant maxβ∈V(β∗)|∂Q
∂β

| = Θ2, i.e.,
|Q(β1) − Q(β2)| ≤ Θ2|β1 − β2|, ∀β1, β2 ∈ V(β∗), which together with the previous inequality leads to

|Q(β(Itf )) − Q(β∗)| ≤ Θ2(
Θ1(δ)

ω0
+

√

∑

i=1,...,m, j=1,...,ri

aKi
j

2 + ak
2), Θ1, Θ2 > 0, I → ∞.

Finally, we show that the ES algorithm (18), (19) is a gradient-based algorithm, as follows: from (18), and if we denote
X = (xK1

1

, ..., xKm
rm

, xk)T , we can write

Ẋ = (aK1

1

δK1

1

ωK1

1

sin(ωK1

1

t − π

2
), ..., aKm

rm
δKm

rm
ωKm

rm
sin(ωKm

rm
t − π

2
), akδkωksin(ωkt − π

2
))T Q(β). (23)

Based on Assumption 9, the cost function can be locally approximated with its first order Taylor development in V(β∗), which
leads to

Ẋ ' d̃vec

(

Q(β̃) + d
T

vec

∂Q

∂β
(β̃)

)

, β̃ ∈ V(β∗), (24)

where d̃vec = (aK1

1

δK1

1

ωK1

1

sin(ωK1

1

t−π
2 ), ..., aKm

rm
δKm

rm
ωKm

rm
sin(ωKm

rm
t−π

2 ), akδkωksin(ωkt−π
2 ))T , and dvec = (aK1

1

sin(ωK1

1

t+
π
2 ), ..., aKm

rm
sin(ωKm

rm
t + π

2 ), aksin(ωkt + π
2 ))T .

Next, by integrating (24), over [t, t + tf ] and neglecting the terms inversely proportional to the high frequencies, i.e., terms
on 1

ωi
’s (high frequencies filtered by the integral operator), we obtain

X(t + tf ) − X(t) ' −tfR
∂Q

∂β
(β̃), (25)
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with R = 0.5 diag{δK1

1

ωK1

1

aK1

1

2, ..., δKm
rm

ωKm
rm

aKm
rm

2, δkωka2
k}.

Next, from (14) and (18), we can write |β(t + tf ) − β(t)| ≤ |X(t + tf ) − X(t)| + |dvec(t + tf ) − dvec(t)|, which together
with (25), with the bound | dvec(t+tf )−dvec(t)

tf
| ≤ |ḋvec| ≤ ω0

√

∑

i=1,...,m j=1,...,ri

aKi
j

2 + ak
2, and Assumption 9, leads to the

inequality
|β((I + 1)tf ) − β(Itf )| ≤ 0.5tfMax(δK1

1

ωK1

1

aK1

1

2, ..., δKm
rm

ωKm
rm

aKm
rm

2, δkωka2
k)Θ2

+tfω0

√

∑

i=1,...,m j=1,...,ri

aKi
j

2 + ak
2, I ∈ {1, 2, ...}.

Remark 5: - The gains’ asymptotic convergence-bounds presented in Theorem 2, are correlated to the choice of the first
order multi-parametric extremum seeking (18), however, these bounds can be easily changed by using other MES algorithms,
e.g., [30], [31]. This is due to the modular design of the controller (20), (21), which uses the passive robust part to ensure
boundedness of the tracking error dynamics, and the learning part to optimize the learning cost function Q.
- In Theorem 2, we show that in each iteration I , the tracking error vector z is directed toward the invariant set SI . However,
due to the finite time-interval length tf of each iteration, we cannot guarantee that the vector z enters SI in each iteration
(unless we are in the trivial case where z0 ∈ SI ). All what we guarantee is that the vector norm |z| starts from a bounded value
|z0| and remains bounded during the iterations with an upper-bound which can be estimated as function of |z0| by using the
bounds of the quadratic Lyapunov functions VI , I = 1, 2, ..., i.e., a uniform boundedness result ([23], p. 6, Definition 2.12).

Remark 6: In Assumption 6, we assume the existence of a set K of gains, such that the tracking errors (8) are stable.
However, nothing is said in algorithm (18), (19), and (21), about the search excursion boundaries. Indeed, in algorithm (18),
(19), if we keep the search amplitudes aKi

j
, ak small, we can expect the gains search to be around the initial point. However,

to force the gains to remain within a desired set, we need to modify the extremum seeking to include input saturations. Few
options have been recently reported in the ES community literature. For instance, we can bound the gains search within some
desired min-max bounds by using the modified ES algorithm presented in [32], where the time derivations of the internal
ES algorithm variables xKi

j
, xk, i.e., the first and third equations in (18), are modified with some properly defined saturated

functions of the learning cost (for the detailed equations, please refer to ([32], p. 1709)). Another option would be to use the
modified dither-based ES algorithms presented in [33], where two approaches have been proposed to constraint the optimal
variables search within desired upper-lower limits. The first approach is based on a penalty formulation, where the learning
cost function in (18) is augmented with penalty terms to take into account the variables constraints. The second approach is
based on adding an anti-windup term to the original dither-based ES algorithm.

Remark 7: Dither-based ES algorithms of the form (18), have been well studied and their main characteristics in terms of
domain of attraction, speed of convergence, and accuracy, have been correlated to the choice of their search amplitudes ais,
their search frequency ωis, and their integrators amplitudes δis. For example in [28], [34], it is shown that the convergence
speed of a sinusoidal dither-based ES algorithm of the form (18) is proportional to the constant 0.5δωa2. This gives a clear
indication of the effect of δ, ω, and a on the ES algorithm convergence speed. The precision of the convergence to the optimum
is function of δ and a, and the convergence error tends to zero if a, δ tend to zero. Moreover, the domain of attraction of the
ES algorithm can be enlarged arbitrarily (semi-global convergence), by reducing a, δ, and ω [34]. However, that might lead to
a slowdown in convergence to the optimum, which is a well know characteristic of learning algorithms, where there is often
a tradeoff between exploitation and exploration.

Remark 8: We want to compare here our approach with the available IFT algorithms for nonlinear systems. First of all,
the available IFT algorithms for nonlinear systems, assume the existence of a controller that makes the closed-loop (Lagrange)
stable. Whereas, we force the closed-loop to be always Lagrange stable, with a proper design of the feedback control, and its
interaction with the gains tuning algorithm. Besides this important stability argument, the main difference between our algorithm
and the available IFT methods, is in the number of experiments needed in each learning iteration. Indeed, the available nonlinear
IFT algorithms in [13], [14], [15], [16] require n + 2 experiments for each learning iteration, to estimate the gradient of the
learning cost function with respect to an n-dimensional vector of feedback gains to be tuned. An alternative is proposed in
[17], where only 2 experiments are needed per learning iteration, to approximate the gradient of the cost function. However,
in this case the algorithm requires further to solve a local identification by least square optimization at each learning iteration.
Moreover, the algorithm is based on a local approximation of the nonlinear dynamics with time-varying linear dynamics, and
thus has no proven robustness to changes in the reference, e.g., when starting from a non-zero initial condition far from the
reference. This available IFT algorithms are different from our algorithm in two ways. First, our algorithm only requires one
experiment for each learning iteration. Second, in these available IFT algorithms, the system needs to be run several times
per each learning iteration, with several different reference trajectories for the closed-loop system to track. This means that
the system cannot be operational during the tuning, since it has to be probed with different reference signals (aside from its
useful reference trajectory). On the contrary, with our algorithm, the system can be operational all the time, since we do not
require to probe the system with different references. Instead, we just let the system run with its (useful) reference, to realize
its task, and we use its output to auto-tune the feedback gains in realtime. This characteristic is important since it allows our
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IFT algorithm to continue fine-tuning the gains while the system is operational. This can be useful in case of system aging,
where some part of the system’s dynamics are slowly changing, and the gains are tracking that change, or in the case of a
more abrupt fault on the system, where the gains have to be re-tuned in realtime to preserve some performance for the faulty
system.
In the next section, we propose to illustrate this approach on a mechatronics system.

V. THE CASE OF ELECTROMAGNETIC ACTUATORS

We apply here the method presented above to the case of an electromagnetic actuator. This system requires accurate control
of the moving armature between two desired positions. The main objective, known as ‘soft landing’ of the moving armature,
is to ensure small contact velocity between the moving armature and the fixed parts of the actuator. This motion is usually of
iterative nature, since the actuator has to iteratively open and close to achieve a desired cyclic motion of a mechanical part,
attached to the actuator, e.g., an engine-valve system in automotive applications.

A. System modelling

Following [35], [36], we consider the following nonlinear model for electromagnetic actuators

md2xa

dt2
= ks(x0 − xa) − η dxa

dt
− ai2

2(b+xa)2 ,

u = Ri + a
b+xa

di
dt

− ai
(b+xa)2

dxa

dt
, 0 ≤ xa ≤ xf ,

(26)

where xa represents the armature position, physically constrained between the initial position of the armature 0, and the
maximal position of the armature xf , dxa

dt
represents the armature velocity, m is the armature mass, ks the spring constant,

x0 the initial spring length, η the damping coefficient (assumed to be constant), ai2

2(b+xa)2 represents the electromagnetic force
(EMF) generated by the coil, a, b are two constant parameters of the coil, R the resistance of the coil, L = a

b+xa
the coil

inductance, ai
(b+xa)2

dxa

dt
represents the back EMF. Finally, i denotes the coil current, di

dt
its time derivative and u represents the

control voltage applied to the coil. In this model we do not consider the saturation region of the flux linkage in the magnetic
field generated by the coil, since we assume a current and armature motion ranges within the linear region of the flux.

B. Passive robust controller

In this section, we first design a nonlinear passive robust control based on Theorem 1. Following Assumption 4, we define
a desired armature position trajectory xref , s.t. xref is smooth (at least C2) function satisfying the initial/final constraints:
xref (0) = 0, xref (tf ) = xf , ẋref (0) = 0, ẋref (tf ) = 0, where tf is a desired finite motion time, and xf is a desired final
position.
We consider the dynamical system (26), with bounded parametric uncertainties on the spring coefficient δks, with |δks| ≤
δksmax, and the damping coefficient δη, with |δη| ≤ δηmax, such that ks = ksnominal + δks, η = ηnominal + δη, where
ksnominal, ηnominal are the nominal values of the spring stiffness and the damping coefficient, respectively. If we consider
the state vector x = (xa, ẋa, i)T , and the controlled output xa, the uncertain model of the electromagnetic actuator can be
written in the form of (1), as

ẋ =





ẋa

ẍa

i̇



 =







x2

ksnominal

m
(x0 − x1) − ηnominal

m
x2 − ax2

3

2(b+x1)2

−R(b+x1)
a

x3 + x3x2

b+x1






+





0
δks

m
(x0 − x1) + δη

m
x2

0



 +





0
0

b+x1

a



 u,

y = x1.

(27)

First, Assumption 1 is clearly satisfied over a nonempty bounded states set X . As for Assumption 2, it is straightforward to
check that if we compute the third time-derivative of the output xa, the control variable u appears in a nonsingular expression,
which implies that r = n = 3. Assumption 3 is also satisfied since |∆f(x)| ≤ δksmax

m
|x0 − x1| + δηmax

m
|x2|.

Next, following the Input-Output linearization method, we can write

y(3) = x(3)
a = −ksnominal

m
ẋa − ηnominal

m
ẍa +

Ri2

(b + xa)m
− δks

m
ẋa − δη

m
ẍa − i

m(b + xa)
u, (28)

which is of the form of equation (4), with A = − i
m(b+xa) , b = −ksnominal

m
ẋa − ηnominal

m
ẍa + Ri2

(b+xa)m , and the additive
uncertainty term ∆b = − δks

m
ẋa − δη

m
ẍa, such that |∆b| ≤ δksmax

m
|ẋa| + δηmax

m
|ẍa| = d2(xa, ẋa). Let us define the tracking
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error vector z := (z1, z2, z3)
T = (xa − xref , ẋa − ẋref , ẍa − ẍref )T , where ẋref =

dxref (t)
dt

, and ẍref =
d2xref (t)

dt2
. Next,

using Theorem 1, we can write the following robust passive controller

u = −m(b+xa)
i

(vs + ksnominal

m
ẋa + ηnominal

m
ẍa − Ri2

(b+xa)m ) + m(b+xa)
i

∂V
∂z3

ks(
δksmax

m
|ẋa| + δηmax

m
|ẍa|),

vs = x
(3)
ref (t) + K3(x

(2)
a − x

(2)
ref (t)) + K2(x

(1)
a − x

(1)
ref (t)) + K1(xa − xref (t)),

k > 0, Ki < 0, i = 1, 2, 3.

(29)

Where V = zT Pz, P > 0 solution of the equation P ˜̃A + ˜̃AT P = −I , with

˜̃A =





0 1 0
0 0 1

K1 K2 K3



 , (30)

where K1, K2, K3 are chosen such that ˜̃A is Hurwitz.
Remark 9: With regard to Assumption 6, about the existence of a non-empty set of gains K, such that ˜̃A is Hurwitz, we

can easily characterize K is this case. Indeed, if we want to place the eigenvalues of ˜̃A at the values s1, s2, s3, such that
s1min

≤ s1 ≤ s1max
, s1min

< s1max
< 0, s2min

≤ s2 ≤ s2max
, s2min

< s2max
< 0, and s3min

≤ s3 ≤ s3max
, s3min

<
s3max

< 0, by direct match of the coefficients of the characteristic polynomial: s3 − K3s
2 − K2s − K1 = 0, with the desired

characteristic polynomial:
∏i=3

i=1(s − si) = 0, we can write

K1 =
∏i=3

i=1 si,
K2 = −∑

i,j∈{1,2,3},i6=j sisj ,

K3 =
∑i=3

i=1 si,

(31)

which allows as to write the set K as
K = {(K1,K2,K3)|simin

sjmin
srmax

≤ K1 ≤ simax
sjmax

srmin
, i 6= j 6= k, i, j, r ∈ {1, 2, 3}

−∑

i,j∈{1,2,3},i6=j simin
sjmin

≤ K2 ≤ −∑

i,j∈{1,2,3},i6=j simax
sjmax

,
∑i=3

i=1 simin
≤ K3 ≤ ∑i=3

i=1 simax
}.

C. Learning-based auto-tuning of the controller gains
We use now the results of Theorem 2, to iteratively auto-tune the feedback gains of the controller (29). Considering a cyclic

behavior of the actuator, with each iteration happening over a time interval of length tf , we define the following learning cost
function

Q(β) = C1z1(Itf )2 + C2z2(Itf )2 + C3

∫ Itf

(I−1)tf

uT (t)u(t)dt, (32)

where I = 1, 2, 3... is the number of iterations, C1, C2, C3 > 0, and β = (δK1, δK2, δK3, δk)T , such as the feedback
gains write as

K1 = K1nominal
+ δK1,

K2 = K2nominal
+ δK2,

K3 = K3nominal
+ δK3,

k = knominal + δk,

(33)

where K1nominal
, K2nominal

, K3nominal
, knominal, are the nominal initial values of the feedback gains in (29).

The learning cost function (32), has been chosen based on the desired overall performance of the controlled system. Indeed,
in this case the main control objective is ‘soft-landing’, which explains the two first terms in (32). As for the third term in the
learning cost function, it has been added to limit the required closed-loop control voltage.

Following (18), (19), and (21) the variations of the estimated gains are given by

ẋK1
= aK1

δ1ω1sin(ω1t − π
2 )Q(β),

δK̂1(t) = xK1
(t) + aK1

sin(ω1t + π
2 ),

ẋK2
= aK2

δ2ω2sin(ω2t − π
2 )Q(β),

δK̂2(t) = xK2
(t) + aK2

sin(ω2t + π
2 ),

ẋK3
= aK3

δ3ω3sin(ω3t − π
2 )Q(β),

δK̂3(t) = xK3
(t) + aK3

sin(ω3t + π
2 ),

ẋk = akδ4ω4sin(ω4t − π
2 )Q(β),

δk̂(t) = xk(t) + aksin(ω4t + π
2 ),

δKj(t) = δK̂j((I − 1)tf ), (I − 1)tf ≤ t < Itf , j ∈ {1, 2, 3}, I = 1, 2, 3...

δk(t) = δk̂((I − 1)tf ), (I − 1)tf ≤ t < Itf , I = 1, 2, 3...

(34)

where aK1
, aK2

, aK3
, ak, δi i ∈ {1, 2, 3, 4} are positive, and ωp + ωq 6= ωr, p, q, r ∈ {1, 2, 3, 4}, for p 6= q 6= r.
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Parameter Value
m 0.27 [kg]
R 6 [Ω]
η 7.53 [kg/sec]
x0 8 [mm]
k 158 [N/mm]
a 14.96× 10−6 [Nm2/A2]
b 4× 10−5 [m]

TABLE I: Numerical values of the mechanical parameters
D. Simulation results

We show here the behavior of the proposed approach on the electromagnetic actuator example presented in [37], where the
model (26) is used with the numerical values of Table I. The desired trajectory has been selected as the 5th order polynomial
xref (t) =

∑5
i=0 ai(t/tf )i, where the ai’s have been computed to satisfy the boundary constraints xref (0) = 0, xref (tf ) =

xf , ẋref (0) = ẋref (tf ) = 0, ẍref (0) = ẍref (tf ) = 0, with tf = 1 sec, xf = 0.5 mm.
Furthermore, to make the simulation case more challenging we assume an initial error both on the position and the velocity
z1(0) = 0.01 mm, z2(0) = 0.01 mm/sec. Note that these values may seem small, but for this type of actuators it is usually
the case that the armature starts form a predefined static position constrained mechanically, so we know that the initial velocity
is zero and we know in advance very precisely the initial position of the armature. However, we want to show the performances
of the controller on some challenging cases. We also added a saturation block on the closed-loop control voltage, with an
upper limit of 40 volts. We performed several tests, with different initial conditions and initial values for the nominal gains.
They all showed a performance improvement after few iterations, i.e., learning cost function decrease after few iterations. We
cannot report here all the cases, however, we chose to report two main cases. One in nominal noise-free conditions, where we
assume perfect measurements of the armature position and velocity. The second test considers noisy measurements conditions.
We report below the numerical results obtained in both cases.

- Test one (noise-free): In this test, we select the nominal feedback gains as: K1 = −500, K2 = −125, K3 = −26, k = 1,
which satisfy Assumption 5.
We compare the performance of the passive robust controller (29) with the fixed nominal gains, to the performance of the
learning controller (29),(33), (34), which is implemented with the learning cost function (32), where C1 = 500, C2 =
500, C3 = 10−4. As with any optimal control method, there is no ready-to-use recipe to choose the cost function weights Ci,
but the system and the targeted performance can direct the weights’ choice. For instance, in our case we give equal weights
to the first and second terms, which are the main ‘soft-landing’ performance terms. The last control-effort minimization term,
has smaller weight for two main reasons; the first one is that, it is not the main goal of the feedback control, and the second
is that the third term is an integral of the control power over the motion time interval [t0, tf ], which is intrinsically higher
than the two first terms, i.e., the position and velocity errors at a single impact time. For these reasons, we choose smaller
weight for the third term to balance the learning cost function. The learning frequencies for each feedback gain are chosen as
ω1 = 7.5 rad/sec, ω2 = 5.3 rad/sec, ω3 = 5.1 rad/sec, ω4 = 6.1 rad/sec. This choice is motivated by two things: First the
frequencies have to satisfy condition (19). Second, all the frequencies need to be high enough to ensure convergence (based
on averaging arguments), e.g., [27], and low enough comparatively to closed-loop system dynamics, to ensure a time-scale
septation, i.e., [28], [34]. We point out here that to accelerate the learning convergence rate, which is related to the choice
of the coefficients δis , e.g., [28], we have chosen the following values δ1 = 2, δ2 = 2.8, δ3 = 2.9, and δ4 = 2.4. Finally,
the dither signals’ amplitudes were selected as aK1

= 80, aK2
= 160, aK3

= 6, and ak = 0.1. The choice of the amplitudes
ais changes the speed and precision of convergence (see Remark 7). Indeed, small values for the amplitudes lead to a more
precise estimation of the optimum (which is also clear from the estimation bounds proposed in Theorem 2), but slow down
the convergence, as discussed in Remark 7. We choose the amplitude ak to be smaller than the other amplitudes because its
corresponds to the robustness gain k, which we want to keep small, since it is multiplied by the uncertainty upper-bound term
d2(xa, ẋa) which can have large values (see equation (28)). Comparatively, the remaining gains are only multiplied by the
tracking error (see equation (29)), which are smaller (providing that the initial tracking error is small).

We show on figures 1(a), 1(b) the performance of the position and the velocity tracking, with and without the learning
algorithm. We see clearly the effect of the learning algorithm, which makes the tracking performance better by properly tuning
the feedback gains. The associated coil current and voltage signals are also reposted on figures 2(a) and 2(b), respectively.
We notice a slight voltage saturation towards the end of the motion, where it reaches the voltage limit set by the saturation
function value that we fixed at 40 V . We also report on figure 3, the cost function value along the learning iterations. We
see a clear decrease of the cost function which reaches a local optimum after about 21 iterations. We underline here that we
decided to stop the learning iterations, when the value of the cost function is lower than 10th of its initial value. Indeed, in
practical applications we do not need to continue changing the gains values. After the cost function has dropped below a
desired threshold, we can just select the associated gains as the optimal gains for the feedback system, and apply them to
the system. One can then monitor the value of the learning cost function, if it rises suddenly for any reason, e.g., a fault
in the system, the learning is then resumed to re-tune the gains to adapt to the new closed-loop dynamics. We report the
learned feedback gains on figures 4(a), 4(b), 4(c), and 4(d), respectively. We can notice that the best value of the gains is not
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necessarily the largest value. Indeed, the learning cost function (32), is not a trivial function of the gains, i.e., one cannot have
a simple intuition about how to adjust the gains, for the desired soft impact performance with control voltage saturations. This
shows the usefulness of these type of IFT algorithms, which can help in tuning the feedback gains, even when the relationship
between the desired performance and the feedback gains is not trivial.

In a second test presented below, we wanted to evaluate the algorithm when the measurements are corrupted with measurement
noise, which is the case in most practical applications.

- Test two (noisy measurements): We want to test here the robustness of the MES-based IFT algorithm w.r.t. measurement
noise. We consider additive measurement noise on both the armature position and velocity. We introduced uniform additive
position measurement noise of excursion ±10−2, and additive velocity measurement noise of excursion ±10−3. We report the
obtained convergence results on figures 5, 6(a), 6(b), 6(c) and 6(d). These results show the robustness of the dither-based MES
algorithm to additive measurement noise, as documented in the ES literature, e.g., [38]. Indeed, we see on figure 5 that the
learning cost function decreases, at almost the same convergence rate. We see on figures 6(a), 6(b), 6(c) and 6(d) that the gains
converge to slightly different values, which was expected because the noise appears in the measurements and in the feedback
control, since the feedback control is based on the measurements. Thus the noise affects all the terms of the learning cost
function. However, the main goal of improving the closed-loop performance, is still achieved as shown by the minimization
of the learning cost function on figure 5.

VI. CONCLUSION

In this work, we have studied the problem of iterative feedback gains tuning for nonlinear systems with bounded additive
uncertainties. First, we have used Input-Output linearization with static state feedback method and ‘robustified’ it with respect
to the additive model uncertainties, using Lyapunov reconstruction techniques, to ensure uniform boundedness of a tracking
error vector. Second, we have complemented the Input-Output linearization controller with a model-free learning algorithm
to iteratively auto-tune the control feedback gains, and optimize a desired performance of the system. The learning algorithm
used here is based on multi-parametric extremum seeking theory. The full controller, i.e., the learning algorithm together with
the passive robust controller, forms an iterative feedback gains auto-tuning (IFT) controller. We have reported some numerical
results obtained on an electromagnetic actuator example. Future investigations will focus on extending this method to the more
general case of additive as well as multiplicative uncertainties, i.e. with uncertainties on f(x), and g(x). For example, this
could be done following the same approach but with a different robust nonlinear controller, obtained from the multiplicative
fault tolerant controller proposed in [22]. Another improvement direction could target the convergence rate and domain of
attraction of the auto-tuning algorithm, for example, by using different ES algorithms with semi-global convergence properties,
e.g., [39], [30], [40]. Furthermore, we saw that the ES-based IFT proposed here requires less experiments per learning iteration
compared to the available IFT algorithms, which require a number of experiments that is directly proportional to the number
of tuned gains. However, the number of parameters necessary to tune the algorithm with extremum seeking also becomes
very large as the number of gains increase significantly. To remedy this, one research direction would be to try other types of
model-free learning algorithms, e.g., machine learning and reinforcement learning algorithms.
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Fig. 1: Obtained outputs vs. reference trajectory - Controller (29) without learning (dashed line), with learning (bold line)

REFERENCES

[1] J. Ziegler and N. Nichols, “Optimum settings for automatic controllers,” Trans. ASME, vol. 64, pp. 759–768, 1942.
[2] H. Hjalmarsson, S. Gunnarsson, and M. Gevers, “A convergent iterative restricted complexity control design scheme,” in IEEE, Conference on Decision

and Control, 1994, pp. 1735–1740.
[3] O. Lequin, M. Gevers, M. Mossberg, E. Bosmans, and L. Triest, “Iterative feedback tuning of PID parameters: comparison with classical tuning rules,”

Control Engineering Practice, vol. 11, no. 9, pp. 1023 – 1033, 2003.
[4] H. Hjalmarsson, “Iterative feedback tuning-an overview,” International Journal of Adaptive Control and Signal Processing, vol. 16, no. 5, pp. 373–395,

2002. [Online]. Available: http://dx.doi.org/10.1002/acs.714
[5] N. Killingsworth and M. Kristic, “PID tunning using extremum seeking,” IEEE Control Systems Magazine, pp. 1429–1439, 2006.
[6] L. Koszalka, R. Rudek, and I. Pozniak-Koszalka, “An idea of using reinforcement learning in adaptive control systems,” in Networking, International

Conference on Systems and International Conference on Mobile Communications and Learning Technologies, 2006. ICN/ICONS/MCL 2006. International
Conference on, April 2006, pp. 190–196.

[7] H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin, “Iterative feedback tuning: theory and applications,” IEEE Control Systems, vol. 18, no. 4,
pp. 26 – 41, 1998.

[8] Y. Wang, F. Gao, and F. D. III, “Survey on iterative learning control, repetitive control, and run-to-run control,” vol. 19, pp. 1589–1600, 2009.
[9] D. Rupp and L. Guzzelle, “Iterative tuning of internal model controllers with application to air/fuel ration control,” IEEE, Transactions on Control

Systems Technology, vol. 18, no. 1, pp. 177–184, January 2010.
[10] F. De Bruyne, “Iterative feedback tuning for internal model controllers,” Control Engineering Practice, vol. 11, no. 9, pp. 1043–1048, January 2003.
[11] B. J. V. der Velden, T. Oomen, and M. F. Heertjes, “Constrained iterative feedback tuning for robust high-precision motion control,” in IFAC World

Congress, 2014, pp. 4915–4920.
[12] M. F. Heertjes, B. V. der Velden, and T. Oomen, “Constrained iterative feedback tuning for robust control of a wafer stage system,” IEEE, Transactions

on Control Systems Technology, April 2015.
[13] H. Hjalmarsson, “Control of nonlinear systems using iterative feedback tuning,” in IEEE, American Control Conference, Philadelphia, Pennsylvania,

June 1998, pp. 2083–2087.



13

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Time [sec]

C
oi

l c
ur

re
nt

 [A
m

p]

(a) Obtained coil current

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Time [sec]

C
oi

l v
ol

ta
ge

 [V
]

(b) Control voltage

Fig. 2: Coil voltage and current - Controller (29)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

C
os

t F
un

ct
io

n

Fig. 3: Learning cost function vs. learning iterations- Controller (29)



14

0 10 20 30 40
−850

−800

−750

−700

−650

−600

−550

−500

Number of iterations

K
1

(a) K1 vs. learning iterations

0 10 20 30 40
−1000

−800

−600

−400

−200

0

Number of iterations

K
2

(b) K2 vs. learning iterations

0 10 20 30 40
−55

−50

−45

−40

−35

−30

−25

Number of iterations

K
3

(c) K3 vs. learning iterations

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

Number of iterations

k

(d) k vs. learning iterations

Fig. 4: Gains learning- Controller (29)-Test 1

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of iterations

C
os

t F
un

ct
io

n

Fig. 5: Cost function vs. learning iterations for two different sets of initial gains



15

0 10 20 30 40
−900

−800

−700

−600

−500

Number of iterations

K
1

(a) K1 vs. learning iterations

0 10 20 30 40
−1000

−800

−600

−400

−200

0

Number of iterations

K
2

(b) K2 vs. learning iterations

0 10 20 30 40
−60

−55

−50

−45

−40

−35

−30

−25

Number of iterations

K
3

(c) K3 vs. learning iterations

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

k

(d) k vs. learning iterations

Fig. 6: Gains learning- Controller (29)- Test 2

[14] J. Sjoberg and M. Agarwal, “Model-free repetitive control design for nonlinear systems,” in IEEE, Conference on Decision and Control, 1996, pp.
2824–2829.

[15] F. De Bruyne, B. Anderson, M. Gevers, and N. Linard, “Iterative controller optimization for nonlinear systems,” in IEEE, Conference on Decision and
Control, 1997, pp. 3749–3754.

[16] J. Sjoberg, F. De Bruyne, M. Agarwal, B. Anderson, M. Gevers, F. Kraus, and N. Linard, “Iterative controller optimization for nonlinear systems,”
Control Engineering Practice, no. 11, pp. 1079–1086, 2003.

[17] J. Sjoberg and M. Agarwal, “Nonlinear controller tuning based on linearized time-variant model,” in IEEE, Conference on Decision and Control, 1997,
pp. 3336–3340.

[18] M. Campi and S. Savaresi, “Virtual reference feedback tuning for non-linear systems,” in 44th IEEE Conference on Decision and Control, and the
European Control Confrence, 2005, pp. 6608–6613.

[19] M. Benosman and G. Atinc, “Multi-parametric extremum seeking-based learning control for electromagnetic actuators,” in IEEE, American Control
Conference, 2013, pp. 1917–1922.

[20] M. Benosman, “Multi-parametric extremum seeking-based auto-tuning for robust input-output linearization control,” in IEEE, Conference on Decision
and Control, Los Angeles, CA, 2014, pp. 2685–2690.

[21] H. Khalil, Nonlinear systems, 2nd ed. New York Macmillan, 1996.
[22] M. Benosman and K.-Y. Lum, “Passive actuators’ fault tolerant control for affine nonlinear systems,” IEEE, Transactions on Control Systems Technology,

vol. 18, no. 1, pp. 152–163, January 2010.
[23] W. M. Haddad, V. Chellaboind, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University

Press, Princeton, 2006.
[24] A. Isidori, Nonlinear Control Systems, 2nd ed., ser. Communications and Control Engineering Series. Springer-Verlag, 1989.
[25] J. Hale, Theory of functional differential equations, ser. Applied Mathematical Sciences. Springer-Verlag, 1977, vol. 3.
[26] H. Elmali and N. Olgac, “Robust output tracking control of nonlinear MIMO systems via sliding mode technique,” Automatica, vol. 28, no. 1, pp.

145–151, 1992.
[27] K. B. Ariyur and M. Krstic, “Multivariable extremum seeking feedback: Analysis and design,” in Proc. of the Mathematical Theory of Networks and

Systems, South Bend, IN, August 2002.
[28] Y. Tan, D. Nesic, and I. Mareels, “On the dither choice in extremum seeking control,” Automatica, no. 44, pp. 1446–1450, 2008.
[29] M. A. Rotea, “Analysis of multivariable extremum seeking algorithms,” in IEEE, American Control Conference, June 2000, pp. 433–437.
[30] W. Moase, Y. Tan, D. Nesic, and C. Manzie, “Non-local stability of a multi-variable extremum-seeking scheme,” in IEEE, Australian Control Conference,

November 2011, pp. 38–43.
[31] A. Scheinker, “Simultaneous stabilization of and optimization of unkown time-varying systems,” in IEEE, American Control Conference, June 2013, pp.

2643–2648.
[32] M. Ye and G. Hu, “Extremum seeking under input constraint for systems with a time-varying extremum,” in IEEE, Conference on Decision and Control,

2013, pp. 1708–1713.



16

[33] Y. Tan, Y. Li, and I. Mareels, “Extremum seeking for constrained inputs,” IEEE, Transactions on Automatic Control, vol. 58, no. 9, pp. 2405–2410,
September 2013.

[34] D. Nesic, “Extremum seeking control: Convrgence analysis,” in IEEE, European Control Conference, Budapest, Hungry, August 2009.
[35] Y. Wang, A. Stefanopoulou, M. Haghgooie, I. Kolmanovsky, and M. Hammoud, “Modelling of an electromechanical valve actuator for a camless engine,”

in 5th International Symposium on Advanced Vehicle Control, 2000, number 93.
[36] K. Peterson and A. Stefanopoulou, “Extremum seeking control for soft landing of electromechanical valve actuator,” Automatica, vol. 40, pp. 1063–1069,

2004.
[37] N. Kahveci and I. Kolmanovsky, “Control design for electromagnetic actuators based on backstepping and landing reference governor,” in 5th IFAC

Symposium on Mechatronic Systems, Cambridge, September 2010, pp. 393–398.
[38] B. Calli, W. Caarls, P. Jonker, and M. Wisse, “Comparison of extremum seeking control algorithms for robotic applications,” in International Conference

on Intelligent Robots and Systems (IROS). IEEE/RSJ, October 2012, pp. 3195–3202.
[39] Y. Tan, D. Nesic, and I. Mareels, “On non-local stability properties of extremum seeking control,” Automatica, no. 42, pp. 889–903, 2006.
[40] S. Z. Khong, D. Nesic, Y. Tan, and C. Manzie, “Unified frameworks for sampled-data extremum seeking control: Global optimization and mutli-unit

systems,” Automatica, no. 49, pp. 2720–2733, 2013.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2016-059.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16


