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Learning-based Reduced Order Model Stabilization for Partial Differential Equations:
Application to the Coupled Burgers’ Equation

Mouhacine Benosman, Boris Kramer, Petros T. Boufounos, Piyush Grover

Abstract— We present results on stabilization for reduced order mod-
els (ROM) of partial differential equations using learning. Stabilization
is achieved via closure models for ROMs, where we use a model-
free extremum seeking (ES) dither-based algorithm to optimally learn
the closure models’ parameters. We first propose to auto-tune linear
closure models using ES, and then extend the results to a closure
model combining linear and nonlinear terms, for better stabilization
performance. The coupled Burgers’ equation is employed as a test-bed
for the proposed tuning method.

I. I NTRODUCTION

The problem of reducing a partial differential equation (PDE)
to a system of finite dimensional ordinary differential equations
(ODE) has significant applications in engineering and physics,
where solving a PDE model is often too time consuming. Reducing
the PDE model to a simpler representation, without loosing the main
characteristics of the original model, such as stability and prediction
precision, is appealing for real-time model-based computations.
However, this problem remains challenging, since model reduction
can introduce stability loss and prediction degradation. To remedy
these problems, many methods have been developed aiming at what
is known as stable model reduction.

In this paper, we focus on additive terms calledclosure models
and their application in reduced order model (ROM) stabilization.
We develop a learning-based method for stabilization of the ROM,
applying extremum-seeking (ES) methods to automatically and
optimally tune the free parameters of the closure models.

Our work extends some of the existing results in the field. For
instance, a reduced order modelling method is proposed in [1] for
stable model reduction of Navier-Stokes flow models. The authors
propose stabilization by adding a nonlinear viscosity stabilizing
term to the reduced order model. The coefficients of this term are
identified using a variational data-assimilation approach, based on
solving a deterministic optimization. In [2], [3], a Lyapunov-based
stable model reduction is proposed for incompressible flows. The
approach is based on an iterative search of the projection modes
satisfying a local Lyapunov stability condition.

An example of stable model reduction for the Burger’s equation
using approximate inertial manifold (AMI) was presented in [4],
and using closure models in [5], [6]. These closure models modify
some stability-enhancing coefficients of the reduced order ODE
model using either constant additive terms, such as the constant
eddy viscosity model, or time and space varying terms, such as
Smagorinsky models. The added terms’ amplitudes are tuned in
such a way to stabilize the reduced order model. However, such
tuning is not always straightforward. Our work addresses this issue
and achieves optimal tuning using learning-based approaches.

This paper is organized as follows: Section II establishes our
notation and some necessary definitions. Section III introduces the
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problem of PDE model reduction and the closure model-based
stabilization, and presents the main result of this paper. An example
using the coupled Burgers’ equation is treated in Section IV. Finally,
Section V provides some discussion on our approach and concludes.

II. BASIC NOTATIONS AND DEFINITIONS

Throughout the paper we will use‖.‖ to denote the Euclidean
vector norm; i.e., forx ∈ Rn we have ‖x‖ =

√
xT x. The

Kronecker delta function is defined as:δij = 0, for i 6= j and
δii = 1. We will use ḟ for the short notation of time derivative of
f , andxT for the transpose of a vectorx. A function is said analytic
in a given set, if it admits a convergent Taylor series approximation
in some neighborhood of every point of the set. We consider the
Hilbert spaceZ = L2([0, 1]), which is the space of Lebesgue
square integrable functions, i.e.,f ∈ Z, iff

∫ 1

0
|f(x)|2dx < ∞.

We define onZ the inner product〈·, ·〉Z and the associated norm
‖.‖Z , as ‖f‖2Z =

∫ 1

0
|f(x)|2dx, and 〈f, g〉Z =

∫ 1

0
f(x)g(x)dx,

for f, g ∈ Z. A function ω(t, x) is in L2([0, T ];Z) if for each
0 ≤ t ≤ T , ω(t, ·) ∈ Z, and

∫ T

0
‖ω(t, ·)‖2Zdt ≤ ∞. Finally, in the

remaining of this paper by stability we mean stability of dynamical
systems in the sense of Lagrange, e.g., [7]1

III. ES-BASED PDES STABLE MODEL REDUCTION

We consider a stable dynamical system modeled by a nonlinear
partial differential equation of the form

ż = F(z) ∈ Z, (1)

whereZ is an infinite-dimension Hilbert space. Solutions to this
PDE can be obtained through numerical discretization, using, e.g.,
finite elements, finite volumes, finite differences etc. Unfortunately,
these computations are often very expensive and not suitable
for online applications such as analysis, prediction and control.
However, solutions of the original PDE often exhibit low rank
representations in an ‘optimal’ basis [8]. These representation can
be exploited to reduce the PDE to an ODE of significantly lower
order.

In particular, dimensionality reduction follows three steps: The
first step is to discretize the PDE using a finite number of basis
functions, such as piecewise linear or higher order polynomials or
splines. In this paper we use the well-established finite element
method (FEM), and refer the reader to the large literature, e.g., [9],
[10] for details. We denote the approximation of the PDE solution
by zn(t, x) ∈ Rn, where t denotes the scalar time variable, and
x denotes the multidimensional space variable, i.e.,x is scalar
for a one dimensional space, a vector of two elements in a two
dimensional space, etc. We consider the one-dimensional case,
wherex is a scalar in a finite interval, chosen asΩ = [0, 1] without
loss of generality. By a standard abuse of notation,x ∈ Rn also
denotes the discretization of the spatial domain at equidistant space

1A systemẋ = f(t, x) is said to be Lagrange stable if for every initial
condition x0 associated with the time instantt0, there existsε(x0), such
that ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0.



points, xi = i · ∆x, for i = 1, . . . , n, and some spatial distance
∆x. In this notation,x is ann-dimensional vector.

In a second step one determines a set of spatial basis vectors
{φi}r

i=1 ∈ Rn for the discretized problem, which are optimal with
respect to a specified criterion. The basis is used to approximate
the discretized PDE solution as

Pnz(t, x) ≈ Φzr(t) =

r∑
i=1

zri(t)φi(x) ∈ Rn, (2)

where Pn is the projection ofz(t, x) onto Rn. Here, Φ is a
n × r matrix containing the basis vectorsφi as column vectors.
In many situations,r � n, i.e. the dimension of the high fidelity
discretization of the PDE is much larger than the dimensionr of
the optimal basis set.

The third step employs a Galerkin projection, a classical nonlin-
ear model reduction technique, to obtain a ROM of the form

żr(t) = F (zr(t)) ∈ Rr. (3)

The functionF : Rr → Rr is obtained from the weak form of the
original PDE, through the Galerkin projection.

The main challenge in this approach lies in selecting the basis
matrix Φ, and the criterion of optimality used. Many model reduc-
tion methods to find basis functions for nonlinear systems exist,
such as proper orthogonal decomposition (POD) [11], dynamic
mode decomposition (DMD) [12], and reduced basis methods (RB)
[13].

Remark 1: In the remainder, we present the idea of closure
models in the framework of POD. However, the derivation it is
not limited to a particular type of ROM. Indeed, closure modeling
- and more generally stabilization of ROMs - can be applied to
other ROMs, such as DMD.

A. Proper Orthogonal Decomposition (POD)

We briefly review the necessary steps for computing POD re-
duced order models, described in detail in [11], [8]. Models based
on POD select basis functions that capture an maximal amount of
energy of the original system. In particular, the POD basis functions
are computed from a collection of snapshots from the dynamical
system over a finite time interval. These snapshots are usually
obtained from a discretized approximation of the PDE model. This
approximation could be obtained using a numerical method, such
as FEM, or using direct measurements of the system modeled by
the PDE, if feasible. In this paper, the POD basis is computed
from snapshots of approximate numerical solutions of the partial
differential equation.

To this end, we compute a set ofs snapshots of approximate
solutions as

S = {zn(t1, ·), ..., zn(ts, ·)} ⊂ Rn, (4)

wheren is the selected number of FEM basis functions, andti are
time instances at which snapshots are recorded (do not have to be
uniform). Next, we define thecorrelation matrixK with elements

Kij =
1

s
〈zn(ti, ·), zn(tj , ·)〉, i, j = 1, ..., s. (5)

The normalized eigenvalues and eigenvectors ofK are denoted by
λi andvi, respectively. Note that theλi are also referred to as the
POD eigenvalues. The ith POD basis functionis given by

φi(x) =
1

√
s
√

λi

s∑
j=1

vi,jzn(tj , x), i = 1, ..., r, (6)

wherer ≤ min{s, n}, the number of retained POD basis functions,
depends on the application. An important property of the POD basis
functions is their orthonormality:

〈φi, φj〉 =

∫ 1

0

φi(x)φj(x)dx = δij (7)

whereδij denotes the Kronecker delta function. In this new basis,
the solution of the PDE (1) can then be approximated by

zpod
n (t, x) =

r∑
i=1

qi(t)φi(x) ∈ Rn, (8)

whereqi, i = 1, ..., r are the POD projection coefficients (which
play the role of thezr,i(t) in the ROM (3)). To find the co-
efficients qi(t), the model (1) is projected on ther-dimensional
POD subspace using Galerkin projection. To this end,z(t, x) is
replaced byzpod

n (t, x) in equation (1), and subsequently both sides
are projected (via the inner product) onto the basis{φi}r

i=1. Using
the orthonormality of the POD basis, equation (7), yields a system
of r ODEs

q̇(t) = F (q(t)) ∈ Rr. (9)

The Galerkin projection preserves the nonlinear structure of the
original PDE.

B. Closure models for ROM stabilization

We start with presenting the problem of stable model reduction in
its general form, i.e., without specifying a particular type of PDE.
To this end, we highlight the dependence of the general PDE (1),
on a single physical parameterµ by

ż = F(z, µ) ∈ Z. (10)

The parameterµ ∈ R is assumed to be critical for the stability and
accuracy of the model; changing the parameter can either make the
model unstable, or inaccurate for prediction. As an example, since
we are interested in fluid dynamical problems, we useµ to denote a
viscosity coefficient. The corresponding reduced order POD model
takes the form of (8) and (9):

q̇(t) = F (q(t), µ). (11)

As we explained earlier, the issue with this straightforward Galerkin
POD ROM (denoted POD ROM-G) is that the norm ofzpod

n might
become unbounded over a finite time support, despite the fact that
the solution of (10) is bounded. This can be reasoned by the fact
that the discarded modes in the reduced order models contributed
to energy dissipation.

One of the main ideas behind the closure models approach is
that the viscosity coefficientµ in (11) can be substituted by a
virtual viscosity coefficientµcl, whose form is chosen to stabilize
the solutions of the POD ROM (11). Furthermore, a penalty term
H(·, ·) is added to the original POD ROM-G, as follows

q̇(t) = F (q(t), µ) + H(t, q(t)). (12)

The termH(·, ·) is chosen depending on the structure ofF (·, ·)
to stabilize the solutions of (12). For instance, one can use the
Cazemier penalty model described in [6].

C. Examples of Closure Models

We present various closure models reported in the literature,
to illustrate the principles behind closure modeling, and motivate
our proposed method. Throughout,r denotes the total number of
modes retained in the ROM, andi ∈ {1, . . . , r} the index of a
basis function. Moreover,µ is the nominal value of the viscosity



coefficient in (10), andµe(i) is the viscosity term added to the
truncated modes, providing the stabilizing effect and improving
accuracy. We refer the reader to the cited references for further
results on stability guarantees, and heuristics/theoretic analogies of
choosing such closure terms.

1) Closure models with constant eddy viscosity coefficients:We
start with the simplest case of closure models based on constant
stabilizing eddy viscosity coefficients.

-ROM-H model:The first eddy viscosity model, known as the
Heisenberg ROM (ROM-H), [14], [6], is simply given by the
constant viscosity coefficient

µcl = µ + µe. (13)

-ROM-R model:This model is introduced in [15], with a mode
dependent viscosity coefficient

µcl(i) = µ + µe
i

r
. (14)

-ROM-RQ model:Proposed in [6], this model is a quadratic
version of the ROM-R, which we refer to as ROM-RQ. It is given
by the coefficients

µcl(i) = µ + µe

(
i

r

)2

. (15)

-ROM-RQ model:This model proposed in [6], is a root-square
version of the ROM-R; we use ROM-RS for reference. It is given
by

µcl(i) = µ + µe

√
i

r
. (16)

-ROM-T model:Known as spectral vanishing viscosity model,
is similar to the ROM-R in the sense that the amount of induced
damping changes as function of the mode index. This concept has
been introduced by Tadmor in [16], and so these closure models
are referred to as ROM-T. These models are given by{

µcl(i) = µ for i ≤ m,
µcl(i) = µ + µe for i > m,

(17)

wherem ≤ r is the index of modes above which a nonzero damping
is introduced.

-ROM-SK model:Introduced by Sirisup and Karniadakis in [17],
falls into the class of vanishing viscosity models. We use ROM-SK
for reference; it is given by{

µcl(i) = µ + µee
−(i−r)2

(i−m)2 for i ≤ m,
µcl(i) = µ for i > m, m ≤ r.

(18)

2) Closure models with time and space varying eddy viscosity
coefficients: Several (time and/or space) varying viscosity terms
have been proposed in the literature. For instance, [6] describes
the Smagorinsky nonlinear viscosity model. However, the model
requires online computation of some nonlinear closure terms at each
time step, which in general makes it computationally consuming. In
[1], a nonlinear (in the state variables) viscosity model is proposed.
This requires explicitly rewriting the ROM model (11), to separate
the linear viscous term as follows

q̇(t) = F (q(t), µ) = F̃ (q(t)) + µ Dq(t), (19)

whereD ∈ Rr×r represents a constant viscosity damping matrix,
and the functionF̃ (·) represents the remainder of the ROM model,

i.e., the part without damping. Based on equation (19), we can write
the nonlinear eddy viscosity model denoted byHnev(.), as

Hnev(µe, q(t)) = µe

√
V (q(t))

V∞(λ)
diag(d11, ..., drr)q(t), (20)

where µe > 0 is the amplitude of the closure model, the
dii, i = 1, . . . , r are the diagonal elements of the matrixD, and
V (q), V∞(λ) are defined as follows

V (q) :=
1

2

r∑
i=1

qi
2, V∞(λ) :=

1

2

r∑
i=1

λi, (21)

where theλi are the selected POD eigenvalues (as defined in
Section III-A). Compared to the previous closure models, the
nonlinear termHnev does not just act as a viscosity, but is rather
added directly to the right-hand side of the reduced order model
(19), as an additive stabilizing nonlinear term. The stabilizing effect
has been analyzed in [1] based on the decrease over time of an
energy function along the trajectories of the ROM solutions, i.e., a
Lyapunov-type analysis.

All these closure models share several characteristics, including a
common challenge, among others [1], [5]: the selection and tuning
of their free parameters, such as the closure models amplitudeµe.
In the next section, we show how ES can be used to auto-tune
the closure models’ free coefficients and optimize their stabilizing
effect.

D. Main result: ES-based closure models auto-tuning

As mentioned in [5], the tuning of the closure model parameter
is important to achieve stabilization of the ROM. We use model-
free ES optimization algorithms to optimally tune the coefficients
of the closure models presented in Section III-B. The advantage of
using ES is the auto-tuning capability that such algorithms allow.
Moreover, in contrast to manual off-line tuning approaches, the use
of ES allows us to constantly tune the closure model, even in an
online operation of the system. Indeed, ES can be used off-line
to tune the closure model, but it can also be connected online
to the real system to continuously fine-tune the closure model
coefficients, such as the amplitudes of the closure models. Thus,
the closure model can be valid for a longer time interval compared
to the classical closure models with constant coefficients, which are
usually tuned off-line over a fixed finite time interval.

We start by defining a suitable learning cost function. The goal
of the learning (or tuning) is to enforce Lagrange stability of the
ROM model (11), and to ensure that the solutions of the ROM (11)
are close to the ones of the original PDE (10). The later learning
goal is important for the accuracy of the solution. Model reduction
works toward obtaining a simplified ODE model which reproduces
the solutions of the original PDE (the real system) with much less
computational burden, i.e., using the lowest possible number of
modes. However, for model reduction to be useful, the solution
should be accurate.

We define the learning cost as a positive definite function of the
norm of the error between the approximate solutions of (10) and
the ROM (11), as follows

Q(µ̂) = H̃(ez(t, µ̂)), (22)

ez(t, µ̂) = zpod
n (t, x, µ̂)− zn(t, x, µ),

where µ̂ ∈ Rd, for some dimensiond, denotes the learned
parameter(s), and̃H is a positive definite function ofez. Note that
the errorez could be computed off-line using solutions of the ROM
(11), and approximate solutions of the PDE (10). The error could



be also computed online where thezpod
n (t, x, µ̂) is obtained from

solving the model (11), but thezn(t, x, µ) is obtained from real
measurements of the system at selected space pointsx.

A more practical way of implementing the ES-based tuning of
µ̂, is to start with an off-line tuning of the closure model. Then,
the obtained ROM, i.e., the computed optimal value ofµ̂, is used
in an online operation of the system, e.g., control and estimation.
One can then fine-tune the ROM online by continuously learning
the best value ofµ̂ at any give time during the operation of
the system. To derive formal convergence results, we use some
classical assumptions of the solutions of the original PDE, and on
the learning cost function.

Assumption 1:The solutions of the original PDE model (10), are
assumed to be inL2([0,∞);Z), ∀µ.

Assumption 2:The cost functionQ in (22) has a local minimum
at µ̂ = µ∗.

Assumption 3:The cost functionQ in (22) is analytic and its
variation with respect toµ is bounded in the neighborhood ofµ∗,
i.e.,‖ ∂Q

∂µ
(µ̃)‖ ≤ ξ2 for all µ andξ2 > 0, µ̃ ∈ V(µ∗), whereV(µ∗)

denotes a compact neighborhood ofµ∗.
Under these assumptions, the following lemma follows.
Lemma 1:Consider the PDE (10), under Assumption 1, together

with its ROM model (11), where the viscosity coefficientµ is
substituted byµcl. Let µcl take the form of any of the closure
models in (13) to (18), where the closure model amplitudeµe is
tuned based on the following ES algorithm

ẏ = a sin(ωt +
π

2
)Q(µ̂e), y(0) = 0,

µ̂e = y + a sin(ωt− π

2
),

whereω > ω∗, ω∗ large enough, andQ is given by (22). Under
Assumptions 2, and 3, there exists anξ1 > 0 such that error w.r.t.
the optimal value ofµe, eµ = µ∗ − µ̂e(t) admits the following
bound

‖eµ(t)‖ ≤ ξ1

ω
+ a, t →∞,

and the learning cost function approaches its optimal value within
the following upper-bound

‖Q(µ̂e)−Q(µ∗)‖ ≤ ξ2(
ξ1

ω
+ a), t →∞

whereξ2 := max
µ∈V(µ∗)

‖ ∂Q
∂µ
‖.

Proof 1: Please refer to [18].
Where the linear terms of the PDE are dominant, e.g., in short-

time scales, closure models based on constant linear eddy viscosity
coefficients can be a good solution to stabilize ROMs and preserve
the intrinsic energy properties of the original PDE. However, in
many cases with nonlinear energy cascade, these closure models
are unrealistic; linear terms cannot recover the nonlinear energy
terms lost during the ROM computation. For this reason, many
researchers have tried to come up with nonlinear stabilizing terms
for instable ROMs. An example of such a nonlinear closure model
is the one given by equation (20), and proposed in [19] based on
finite-time thermodynamics (FTT) arguments and in [20] based on
scaling arguments.

We now introduce a combination of both linear and nonlinear
closure models, wich can lead to a more efficient closure model.
In particular, this combination can efficiently handle linear energy
terms, that are typically dominant for small time scales and handle
nonlinear energy terms, which are typically more dominant for
large time-scales and in some specific PDEs/boundary conditions.
Furthermore, we propose to auto-tune this closure model using

ES algorithms, which provides an automatic way to select the
appropriate term to amplify. It can be either the linear part or
the nonlinear part of the closure model, depending on the present
behavior of the system, e.g., depending on the test conditions. We
summarize this result in the following Lemma.

Lemma 2:Consider the PDE (10) under Assumption 1, together
with its stabilized reduced order model

q̇(t) = F (q(t), µ) = F̃ (q(t)) + µlin Dq(t) + Hnl(q(t), µnl),

Hnl = µnl

√
V (q)

V∞(λ)
diag(d11, ..., drr)q(t),

whereV (q) and V∞(λ) are defined in equation (21). The linear
viscosity coefficientµlin is substituted byµcl = µ + µe chosen
from any of the constant closure models (13) to (18). The closure
model amplitudesµe, µnl are then tuned based on the following
ES algorithm

ẏ1 = a1 sin(ω1t + π
2
)Q(µ̂e, µ̂nl),

µ̂e = y1 + a1 sin(ω1t− π
2
),

ẏ2 = a2 sin(ω2t + π
2
)Q(µ̂e, µ̂nl),

µ̂nl = y2 + a2 sin(ω2t− π
2
),

(23)

wherey1(0) = y2(0) = 0, ωmax = max{ω1, ω2} > ω∗, ω∗ large
enough, andQ is given by (22), withµ̂ = (µ̂e, µ̂nl). Let eµ(t) :=
[µ∗e− µ̂e(t), µ

∗
nl− µ̂nl(t)]

T be the error between the computed and
optimal values of the tuning parameters. Under Assumptions 2 and
3, the norm of the error vector admits the following bound

‖eµ(t)‖ ≤ ξ1

ωmax
+

√
a2
1 + a2

2, t →∞,

with a1, a2 > 0, ξ1 > 0, and the learning cost function approaches
its optimal value within the following upper-bound

‖Q(µ̂e, µ̂nl)−Q(µe
∗, µnl

∗)‖ ≤ ξ2(
ξ1

ω
+

√
a2
1 + a2

2), t →∞,

whereξ2 := max
(µ1,µ2)∈V(µ∗)

‖ ∂Q
∂µ
‖.

Proof 2: Please refer to [18].

IV. EXAMPLE : THE COUPLEDBURGERS’ EQUATION

As an example application of our approach, we consider the
coupled Burgers’ equation, (e.g., see [21]), of the form{

∂w(t,x)
∂t

+ w(t, x)w(t,x)
∂x

= µ ∂2w(t,x)

∂x2 − κT (t, x)
∂T (t,x)

∂t
+ w(t, x) ∂T (t,x)

∂x
= c ∂2T (t,x)

∂x2 + f(t, x),
(24)

where T (·, ·) represents the temperature,w(·, ·) represents the
velocity, κ is the coefficient of the thermal expansion,c the heat
diffusion coefficient, µ the viscosity (inverse of the Reynolds
number Re), x ∈ [0, 1] is the one dimensional space variable,
t > 0, and f ∈ L2((0,∞),Z), Z = L2([0, 1]) is the external
forcing term. The boundary conditions are imposed as

w(t, 0) = wL, ∂w(t,1)
∂x

= wR,
T (t, 0) = TL, T (t, 1) = TR,

(25)

wherewL, wR, TL, TR are positive constants, andL andR denote
left and right boundary, respectively. The initial conditions are
imposed as

w(0, x) = w0(x) ∈ L2([0, 1]),

T (0, x) = T0(x) ∈ L2([0, 1]),

and are specified below. We assume thatµ > 0 throughout.
Following a Galerkin projection onto the subspace spanned by the



POD basis functions, the coupled Burgers’ equation is reduced to
a POD ROM with the following structure (e.g., see [22])[

q̇w

q̇T

]
= B1(t) + µB2 + µ D q + D̃q + CqqT ,

where the matrix-valued functionB1(t) is due to the projection
of the forcing termf , matrix B2 is due to the projection of
the boundary conditions, matrixD is due to the projection of
the viscosity damping termµ ∂2w(t,x)

∂x2 , matrix D̃ is due to the
projection of the thermal coupling and the heat diffusion terms
−κT (t, x), c ∂2T (t,x)

∂x2 , and the matrixC is due to the projection
of the gradient-based termsw w(t,x)

∂x
, andw ∂T (t,x)

∂x
. The solutions

in the n-dimensional space are expressed in the POD basis as

wpod
n (x, t) = wav(x) +

r∑
i=1

φwi(x)qwi(t),

T pod
n (x, t) = Tav(x) +

r∑
i=1

φTi(x)qTi(t),

Here, φwi(x), qwi(t), i = 1, ..., rw, and φTi(x), qTi(t), i =
1, ..., rT , are the spatial basis functions and time-dependent co-
efficients, for the velocity and temperature, respectively. The terms
wav(x), Tav(x) represent the mean values (over time) ofw and
T , respectively.

A. Burgers equation ES-based POD ROM stabilization

Due to space limitation, we only report results related to Lemma
22, where we test the auto-tuning results of ES on the combination
of a linear constant viscosity and a nonlinear closure model. We
consider the coupled Burgers’ equation (24), with the parameters
Re = 1000, κ = 5 × 10−4, c = 1 × 10−2, the trivial boundary
conditionswL = wR = 0, TL = TR = 0, a simulation time-
length tf = 1s and zero forcing,f = 0. We use ten POD modes
for both variables (temperature and velocity). For the choice of
the initial conditions, we follow [6], where the simplified Burgers’
equation has been used in the context of POD ROM stabilization.
Indeed, in [6] the authors propose two types of initial conditions for
the velocity variable, which led to instability of the nominal POD
ROM, i.e., the basic Galerkin POD ROM (POD ROM-G) without
any closure model. Accordingly, we choose the following initial
conditions:

w(x, 0) =

{
1, if x ∈ [0, 0.5]
0, if x ∈ ]0.5, 1],

T (x, 0) =

{
1, if x ∈ [0, 0.5]
0, if x ∈ ]0.5, 1],

We apply Lemma 2, with the Heisenberg linear closure model given
by (13). The two closure model amplitudesµe and µnl are tuned
using the discrete version of the ES algorithm (23), given by

y1(k + 1) = y1(k) + a1 tf sin(ω1tfk + π
2
)Q(µ̂e, µ̂nl),

µ̂e(k + 1) = y1(k + 1) + a1 sin(ω1tfk − π
2
),

y2(k + 1) = y2(k) + a2 tf sin(ω2y2(k + 1) + π
2
)Q(µ̂e, µ̂nl),

µ̂nl(k + 1) = y2(k + 1) + a2 sin(ω2tfk − π
2
),

where y1(0) = y2(0) = 0, and k = 0, 1, 2, ... is the number
of the learning iterations. We use the parameters’ values:a1 =

2A longer version with more tests has been posted on the arXiv version
[18].

(a) Error between the true velocity
and the learning-free POD ROM
velocity profile

(b) Error between the true temper-
ature and the learning-free POD
ROM temperature profile

Fig. 1. Errors between the nominal POD ROM and the true solutions- No
learning

6×10−6 [−], ω1 = 10 [ rad
sec

], a2 = 6×10−6 [−], ω2 = 15 [ rad
sec

].
The learning cost function is chosen as

Q(µe, µnl) =

∫ tf

0

〈eT , eT 〉dt +

∫ tf

0

〈ew, ew〉dt. (26)

Moreover,eT := Tn(µ) − T pod
n (µ, µe, µnl) and ew := wn(µ) −

wpod
n (µ, µe, µnl) define the errors between the true model solution

and the POD ROM solution for temperature and velocity, respec-
tively. We report the errors between the true solutions and the POD
ROM-G solutions, in Figure 1.

Next, we show the profile of the learning cost function over the
learning iterations in Figure 2(a). We can see a quick decrease of
the cost function within the first20 iterations. This means that the
ES manages to improve the overall solutions of the POD ROM very
fast. The associated profiles for the two closure models’ amplitudes
learned valueŝµe andµ̂nl are reported in figures 2(b), and 2(c). We
can see that even though the cost function value drops quickly, the
ES algorithm continues to fine-tune the values of the parametersµ̂e,
µ̂nl over the iterations, and they eventually reach optimal values of
µ̂e ' 0.3, and µ̂nl ' 0.76.

Figure 3 demonstrates the improvement in solution accuracy
through learning of the closure terms for the POD ROM models.
The reader should note the difference in scaling compared to the
errors with no learning in Figure 1.

V. CONCLUSION

In this work, we explore the problem of stabilization of reduced
order models for partial differential equations, focusing on the clo-
sure model-based ROM stabilization approach. It is well known that
tuning the closure models’ gains is an important part in obtaining
good stabilizing performances. Thus, we propose a learning ES-
based auto-tuning method to optimally tune the gains of linear
and nonlinear closure models, and achieve an optimal stabilization
of the ROM. We validate our method using the coupled Burgers’
equation as an example, demonstrating significant improvements in
error performance. The results are encouraging. We defer to future
publications verifying our approach on more challenging higher
dimensional cases. Our results also raise the prospect of developing
new nonlinear closure models, together with their auto-tuning algo-
rithms using extremum-seeking, as well as other machine learning
techniques.
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