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Learning-Based Modular Indirect Adaptive Control for a Class of Nonlinear Systems

Mouhacine Benosman, Amir-massoud Farahmand, Meng Xia

Abstract— We study in this paper the problem of adaptive trajectory
tracking control for a class of nonlinear systems with parametric
uncertainties. We propose to use a modular approach: We first design
a robust nonlinear state feedback that renders the closed loop input-
to-state stable (ISS). Here, the input is considered to be the estimation
error of the uncertain parameters, and the state is considered to be the
closed-loop output tracking error. Next, we augment this robust ISS
controller with a model-free learning algorithm to estimate the model
uncertainties. We implement this method with two different learning
approaches. The first one is a model-free multi-parametric extremum
seeking (MES) method and the second is a Bayesian optimization-
based method called Gaussian Process Upper Confidence Bound (GP-
UCB). The combination of the ISS feedback and the learning algorithms
gives a learning-based modular indirect adaptive controller. We show the
efficiency of this approach on a two-link robot manipulator example.

I. INTRODUCTION

Classical adaptive methods can be classified into two main
approaches: ‘direct’ approaches, where the controller is updated to
adapt to the process, and ‘indirect’ approaches, where the model is
updated to better reflect the actual process. Many adaptive methods
have been proposed over the years for linear and nonlinear systems;
we cannot possibly cite them all. Instead we refer the reader to e.g.,
[1], [2] and the references therein for more detail. Of particular
interest to us is the indirect modular approach to adaptive nonlinear
control, e.g., [2]. In this approach, first the controller is designed by
assuming that all the parameters are known and then an identifier
is used to guarantee certain boundedness of the estimation error.
The identifier is independent of the designed controller and thus
the approach is called ‘modular’. For example, a modular approach
has been proposed in [3] for adaptive neural control of pure-
feedback nonlinear systems, where the input-to-state stability (ISS)
modularity of the controller-estimator is achieved and the closed-
loop stability is guaranteed by the small-gain theorem (see also [4],
[5]).

In this work, we build upon this type of modular adaptive
design and provide a framework that combines model-free learning
methods and robust model-based nonlinear control. We propose
a learning-based modular indirect adaptive controller, in which
model-free learning algorithms are used to estimate, in closed-
loop, the uncertain parameters of the model. The main difference
with the existing model-based indirect adaptive control methods
is the fact that we do not use the model to design the uncertainty
parameters estimation filters. Indeed, model-based indirect adaptive
controllers are based on parameters estimators designed using the
system’s model, e.g., the X-swapping methods presented in [2],
where gradient descent filters obtained using the systems dynamics
are designed to estimate the uncertain parameters. We argue that
because we do not use the system’s dynamics to design uncertainties
estimation filters we have less restrictions on the type of uncertain-
ties that we can estimate, e.g., uncertainties appearing nonlinearly
can be estimated with the proposed approach, see [6] for some
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earlier results on a mechatronics application. We also show that
with the proposed approach we can estimate at the same time a
vector of linearly dependent uncertainties, a case which cannot be
straightforwardly solved using model-based filters, e.g., refer to [7]
where it is shown that the X-swapping model-based method fails
to estimate a vector of linearly dependent model coefficients.

We implement the proposed approach with two different model-
free learning algorithms: The first one is a dither-based MES algo-
rithm, and the second one is a Bayesian optimization-based method
called GP-UCB. The latter solves the exploration-exploitation prob-
lem in the continuous armed bandit problem, which is a non-
associative reinforcement learning (RL) setting. MES is a model-
free control approach with well-known convergence properties, and
has been analyzed in many papers, e.g., [8], [9]. This makes MES
a good candidate for the model-free estimation part of our modular
adaptive controller, as already shown in some of our preliminary
results in [10], [11], [12]. However, one of the main limitations
with dither-based MES is the convergence to local minima. To
improve this part of the controller, we introduce another model-free
learning algorithm in the estimation part of the adaptive controller.
We propose in this paper to use a reinforcement learning algorithm
based on Bayesian optimization methods, known as GP-UCB [13].
Contrary to the MES algorithm, GP-UCB is guaranteed to reach
the global minima under certain mild assumptions.

One point worth mentioning at this stage is that comparing to
‘pure’ model-free controllers, e.g., pure MES or model-free RL
algorithms, the proposed control has a different goal. The available
model-free controllers are meant for output or state regulation, i.e.,
solving a static optimization problem. In contrast, we propose to
use model-free learning to complement a model-based nonlinear
control to estimate the unknown parameters of the model, which
means that the control goal, i.e., state or output trajectory tracking
is handled by the model-based controller. The learning algorithm
is used to improve the tracking performance of the model-based
controller, and once the learning algorithm has converged, one can
carry on using the nonlinear model-based feedback controller alone,
i.e., without the need of the learning algorithm. Furthermore, due to
the fact that we are merging together a model-based control with a
model-free learning algorithm, we believe that this type of controller
can converge faster to an optimal performance, comparatively to
the pure model-free controller, since by ‘partly’ using a model-
based controller, we are taking advantage of the partial information
given by the physics of the system, whereas the pure model-free
algorithms assume no knowledge about the system, and thus start
the search for an optimal control signal from scratch.

Similar ideas of merging model-based control and MES has been
proposed in [14], [15], [16], [17], [6], [18], [10], [11], [12]. For
instance, extremum seeking is used to complement a model-based
controller, under the linearity of the model assumption in [14] (in
the direct adaptive control setting, where the controllers gains are
estimated), or in the indirect adaptive control setting, under the
assumption of linear parametrization of the control in terms of the
uncertainties in [15]. The modular design idea of using a model-
based controller with ISS guarantee, complemented with an MES-



based module can be found in [6], [18], [10], [11], [12], where
the MES was used to estimate the model parameters and in [17],
[19], where feedback gains were tuned using MES algorithms. The
work of this paper falls in this class of ISS-based modular indirect
adaptive controllers. The difference with other MES-based adaptive
controllers is that, due to the ISS modular design we can use any
model-free learning algorithm to estimate the model uncertainties,
not necessarily extremum seeking-based. To emphasize this we
show here the performance of the controller when using a type
of RL-based learning algorithm as well.
The rest of the paper is organized as follows. In Section II, we
present some notations, and fundamental definitions that will be
needed in the sequel. In Section III, we formulate the problem. The
nominal controller design are presented in Section IV. In Section
IV-B, a robust controller is designed which guarantees ISS from the
estimation error input to the tracking error state. In Section IV-C, the
ISS controller is complemented with an MES algorithm to estimate
the model parametric uncertainties. In Section IV-D, we introduce
the RL GP-UCB algorithm as a model-free learning to complement
the ISS controller. Section V is dedicated to an application example
and the paper conclusion is given in Section VI.

II. PRELIMINARIES

Throughout the paper, we use ‖ · ‖ to denote the Euclidean
norm; i.e., for a vector x ∈ R

n, we have ‖x‖ , ‖x‖2 =
√

xT x,
where xT denotes the transpose of the vector x. We denote by
Card(S) the size of a finite set S. The Frobenius norm of a
matrix A ∈ R

m×n, with elements aij , is defined as ‖A‖F ,√∑n

i=1

∑n

j=1
|aij |2. Given x ∈ R

m, the signum function is

defined as sign(x) , [sign(x1), sign(x2), · · · , sign(xm)]T ,
where sign(.) denotes the classical signum function.
In this paper, we will rely on the concept of ISS for dynamical
systems. Due to space restriction, we will not recall the definition
and the related Lyapunov direct theorem used here.1 However, in
the following we will use the definition of ISS for time-varying
systems, and the associated Lyapunov direct theorem as in [21],
[22].

III. PROBLEM FORMULATION

A. Nonlinear system model

We consider here affine uncertain nonlinear systems of the form

ẋ = f(x) + ∆f(t, x) + g(x)u,
y = h(x),

(1)

where x ∈ R
n, u ∈ R

p, y ∈ R
m (p ≥ m), represent the state, the

input and the controlled output vectors, respectively. ∆f(t, x) is a
vector field representing additive model uncertainties. The vector
fields f , ∆f , columns of g and function h satisfy the following
assumptions.

Assumption A1 The function f : R
n → R

n and the columns of
g : R

n → R
p are C

∞ vector fields on a bounded set X of R
n and

h : R
n → R

m is a C
∞ vector on X . The vector field ∆f(x) is

C
1 on X .

Assumption A2 System (1) has a well-defined (vector) relative
degree {r1, r2, · · · , rm} at each point x0 ∈ X , and the system
is linearizable, i.e.,

∑m

i=1
ri = n.

1Please refer to a longer version posted on arXiv [20], for the complete
definitions.

Assumption A3 The desired output trajectories yid (1 ≤ i ≤ m)
are smooth functions of time, relating desired initial points yid(0)
at t = 0 to desired final points yid(tf ) at t = tf .

B. Control objectives

Our objective is to design a state feedback adaptive controller
such that the output tracking error is uniformly bounded, whereas
the tracking error upper-bound is function of the uncertain pa-
rameters estimation error, which can be decreased by the model-
free learning. We stress that the goal of learning algorithm is not
stabilization but rather performance optimization, i.e., the learning
improves the parameters estimation error, which in turn improves
the output tracking error. To achieve this control objective, we
proceed as follows: First, we design a robust controller which
can guarantee input-to-state stability (ISS) of the tracking error
dynamics w.r.t the estimation errors input. Then, we combine
this controller with a model-free learning algorithm to iteratively
estimate the uncertain parameters, by optimizing online a desired
learning cost function.

IV. ADAPTIVE CONTROLLER DESIGN

A. Nominal Controller

Let us first consider the system under nominal conditions, i.e.,
when ∆f(t, x) = 0. In this case, it is well know, e.g., [21], that
system (1) can be written as

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t), (2)

where

y(r)(t) = [y
(r1)
1 (t), y

(r2)
2 (t), · · · , y(rm)

m (t)]T ,

ξ(t) = [ξ1(t), · · · , ξm(t)]T ,

ξi(t) = [yi(t), · · · , y
(ri−1)
i (t)], 1 ≤ i ≤ m

(3)

The functions b(ξ), A(ξ) can be written as functions of f , g and
h, and A(ξ) is non-singular in X̃ , where X̃ is the image of the set
of X by the diffeomorphism x 7→ ξ between the states of system
(1) and the linearized model (2). Now, to deal with the uncertain
model, we first need to introduce one more assumption on system
(1).

Assumption A4 The additive uncertainties ∆f(t, x) in (1) appear
as additive uncertainties in the input-output linearized model (2)-(3)
as follows (see also [23])

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t) + ∆b(t, ξ(t)), (4)

where ∆b(t, ξ) is C
1 w.r.t. the state vector ξ ∈ X̃ .

It is well known that the nominal model (2) can be easily
transformed into a linear input-output mapping. Indeed, we can
first define a virtual input vector v(t) as

v(t) = b(ξ(t)) + A(ξ(t))u(t). (5)

Combining (2) and (5), we can obtain the following input-output
mapping

y(r)(t) = v(t). (6)

Based on the linear system (6), it is straightforward to design a
stabilizing controller for the nominal system (2) as2

un = A−1(ξ) [vs(t, ξ)− b(ξ)] , (7)

2The inverse of A is to be understood in the sense of Moore-Penrose
pseudo-inverse which is guaranteed to exist by the relative degree Assump-
tion A2.



where vs is a m× 1 vector and the i-th (1 ≤ i ≤ m) element vsi

is given by

vsi = y
(ri)
id −Ki

ri
(y

(ri−1)
i − y

(ri−1)
id )− · · · −Ki

1(yi − yid).
(8)

If we denote the tracking error as ei(t) , yi(t) − yid(t), we
obtain the following tracking error dynamics

e
(ri)
i (t) + Ki

ri
e(ri−1)(t) + · · ·+ Ki

1ei(t) = 0, (9)

where i ∈ {1, 2, · · · , m}. By properly selecting the gains K i
j

where i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}, we can
obtain global asymptotic stability of the tracking errors ei(t). To
formalize this condition, we add the following assumption.

Assumption A5 There exists a non-empty set A where K i
j ∈

A such that the polynomials in (9) are Hurwitz, where i ∈
{1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}.

To this end, we define z = [z1, z2, · · · , zm]T , where zi =

[ei, ėi, · · · , e
(ri−1)
i ] and i ∈ {1, 2, · · · , m}. Then, from (9),

we can obtain

ż = Ãz,

where Ã ∈ R
n×n is a diagonal block matrix given by

Ã = diag{Ã1, Ã2, · · · , Ãm}, (10)

and Ãi (1 ≤ i ≤ m) is a ri × ri matrix given by

Ãi =




0 1
0 1

0
. . .

... 1
−Ki

1 −Ki
2 · · · · · · −Ki

ri




.

As discussed above, the gains Ki
j can be chosen such that the matrix

Ã is Hurwitz. Thus, there exists a positive definite matrix P > 0
such that (see e.g. [21])

ÃT P + PÃ = − I. (11)

In the next section, we build upon the nominal controller (7) to
write a robust ISS controller.

B. Lyapunov reconstruction-based ISS Controller

We now consider the uncertain model (1), i.e., when ∆f(t, x) 6=
0. The corresponding exact linearized model is given by (4) where
∆b(t, ξ(t)) 6= 0. The global asymptotic stability of the error dynam-
ics (9) cannot be guaranteed anymore due to the additive uncertainty
∆b(t, ξ(t)). We use Lyapunov reconstruction techniques to design a
new controller so that the tracking error is guaranteed to be bounded
given that the estimate error of ∆b(t, ξ(t)) is bounded. The new
controller for the uncertain model (4) is defined as

uf = un + ur, (12)

where the nominal controller un is given by (7) and the robust
controller ur will be given later. By using controller (12), and (4)
we obtain

y(r)(t) = b(ξ(t)) + A(ξ(t))uf + ∆b(t, ξ(t)),

= b(ξ(t)) + A(ξ(t))un + A(ξ(t))ur + ∆b(t, ξ(t)),

= vs(t, ξ) + A(ξ(t))ur + ∆b(t, ξ(t)), (13)

where (13) holds from (7). This leads to the following error
dynamics

ż = Ãz + B̃δ, (14)

where Ã is defined in (10), δ is a m× 1 vector given by

δ = A(ξ(t))ur + ∆b(t, ξ(t)), (15)

and the matrix B̃ ∈ R
n×m is given by

B̃ =
[

B̃T
1 , B̃T

2 , . . . , B̃T
m

]T
, (16)

where each B̃i (1 ≤ i ≤ m) is given by a ri×m matrix such that

B̃i(l, q) =

{
1 for l = ri, q = i
0 otherwise.

If we choose V (z) = zT Pz as a Lyapunov function for the
dynamics (14), where P is the solution of the Lyapunov equation
(11), we obtain

V̇ (t) =
∂V

∂z
ż,

= zT (ÃT P + PÃ)z + 2zT PB̃δ,

= − ‖z‖2 + 2zT PB̃δ, (17)

where δ given by (15) depends on the robust controller ur .
Next, we design the controller ur based on the form of the

uncertainties ∆b(t, ξ(t)). More specifically, we consider the case
when ∆b(t, ξ(t)) is of the following form

∆b(t, ξ(t)) = E Q(ξ, t), (18)

where E ∈ R
m×m is a matrix of unknown constant parameters, and

Q(ξ, t) : R
n×R→ R

m is a known bounded function of states and
time variables. For notational convenience, we denote by Ê(t) the
estimate of E, and by eE = E−Ê, the estimate error. We define the
unknown parameter vector ∆ = [E(1, 1), ..., E(m, m)]T ∈ R

m2

,
i.e., concatenation of all elements of E, its estimate is denoted by
∆̂(t) = [Ê(1, 1), ..., Ê(m, m)]T , and the estimation error vector
is given by e∆(t) = ∆− ∆̂(t).

Next, we propose the following robust controller

ur = −A−1(ξ)[B̃T Pz‖Q(ξ, t)‖2 + Ê(t)Q(ξ, t)]. (19)

The closed-loop error dynamics can be written as

ż = f̃(t, z, e∆), (20)

where e∆(t) is considered to be an input to the system (20).
Theorem 1: Consider the system (1), under Assumptions A1-A5,

where ∆b(t, ξ(t)) satisfies (18). If we apply to (1) the feedback
controller (12), where un is given by (7) and ur is given by (19),
then the closed-loop system (20) is ISS from the estimation errors
input e∆(t) ∈ R

m2

to the tracking errors state z(t) ∈ R
n.

Proof: Please refer to a longer version posted on arXiv [20] for
the complete proofs, which will also be included in a future longer
journal version of this work.

C. MES-based parametric uncertainties estimation

Let us define now the following cost function

J(∆̂) = F (z(∆̂)), (21)

where F : R
n → R, F (0) = 0, F (z) > 0 for z ∈ R

n − {0}. We
need the following assumptions on J .



Assumption A6 The cost function J has a local minimum at
∆̂∗ = ∆.

Assumption A7 The initial error e∆(t0) is sufficiently small, i.e.,
the original parameter estimate vector ∆̂ are close enough to the
actual parameter vector ∆.

Assumption A8 The cost function J is analytic and its variation
with respect to the uncertain parameters is bounded in the neigh-
borhood of ∆̂∗, i.e., ‖ ∂J

∂∆̂
(∆̃)‖ ≤ ξ2, ξ2 > 0, ∆̃ ∈ V(∆̂∗), where

V(∆̂∗) denotes a compact neighborhood of ∆̂∗.

We can now present the following result.
Lemma 2: Consider the system (1), under Assumptions A1-A8,

where the uncertainty is given by (18). If we apply to (1) the
feedback controller (12), where un is given by (7), ur is given
by (19), the cost function is given by (21), and ∆̂(t) are estimated
through the ES algorithm

˙̃xi = ai sin(ωit +
π

2
)J(∆̂), ai > 0,

∆̂i(t) = x̃i + ai sin(ωit−
π

2
), i ∈ {1, 2, . . . , m2} (22)

with ωi 6= ωj , ωi + ωj 6= ωk, i, j, k ∈ {1, 2, . . . , m2}, and ωi >
ω∗, ∀ i ∈ {1, 2, . . . , m2}, with ω∗ large enough. Then, the norm
of the error vector z(t) admits the following bound

‖z(t)‖ ≤ β(‖z(0)‖, t) + γ(β̃(‖e∆(0)‖, t) + ‖e∆‖max),

where ‖e∆‖max = ξ1
ω0

+

√∑m2

i=1
a2

i , ξ1 > 0, ω0 =

maxi∈{1,2,...,m2} ωi, β ∈ KL, β̃ ∈ KL and γ ∈ K.
Proof: Please refer to a longer version posted on arXiv [20] for

the complete proofs, which will also be included in a future longer
journal version of this work.

As we mentioned earlier, the dither-based MES has the problem
of local minima. To address this point in the next section we propose
to use GP-UCB as the model-free learning algorithm for model
uncertainties estimation.

D. GP-UCB based parametric uncertainties estimation

In this section we propose to use Gaussian Process Upper
Confidence Bound (GP-UCB) algorithm to find the uncertain pa-
rameter vector ∆ [13], [24]. GP-UCB is a Bayesian optimization
algorithm for stochastic optimization, i.e., the task of finding the
global optimum of an unknown function when the evaluations
are potentially contaminated with noise. The underlying working
assumption for Bayesian optimization algorithms, including GP-
UCB, is that the function evaluation is costly, so we would like
to minimize the number of evaluations while having as accurate
estimate of the minimizer (or maximizer) as possible [25]. For GP-
UCB, this goal is guaranteed by having an upper bound on the
regret of the algorithm – to be defined precisely later.

One difficulty of stochastic optimization is that since we only
observe noisy samples from the function, we cannot really be sure
about the exact value of the function at any given point. One may
try to query a single point many times in order to have an accurate
estimate of the function. This, however, may lead to excessive
number of samples, and can be wasteful way of assigning samples
when the true value of the function at that point is actually far from
optimal. The Upper Confidence Bound (UCB) family of algorithms
provides a principled approach to guide the search [26]. These
algorithms, which are not necessarily formulated in a Bayesian
framework, automatically balance the exploration (i.e., finding the
regions of the parameter space that might be promising) and the

exploration (i.e., focusing on the regions that are known to be the
best based on the current available knowledge) using the principle
of optimism in the face of uncertainty. These algorithms often come
with strong theoretical guarantee about their performance. For more
information about the UCB class of algorithms, refer to [27], [28],
[29]. GP-UCB is a particular UCB algorithms that is suitable to
deal with continuous domains. It uses a Gaussian Process (GP) to
maintain the mean and confidence information about the unknown
function.

We briefly discuss GP-UCB in our context following the discus-
sion of the original papers [13], [24]. Consider the cost function
J : D → R to be minimized. This function depends on the
dynamics of the closed-loop system, which itself depends on the
parameters ∆̂ used in the controller design. So we may consider it
as an unknown function of ∆̂, so D ⊂ R

m2

For the moment, let us assume that J is a function sampled from a
Gaussian Process (GP) [30]. Recall that a GP is a stochastic process
indexed by the set D that has the property that for any finite subset
of the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂t} ⊂ D, the joint

distribution of
(
J(∆̂i)

)t

i=1
is a multivariate Gaussian distribution.

GP is defined by a mean function µ(∆̂) = E

[
J(∆̂)

]
and its

covariance function (or kernel) K(∆̂, ∆̂′) = Cov(J(∆̂), J(∆̂′)) =

E

[(
J(∆̂)− µ(∆̂)

)(
J(∆̂′)− µ(∆̂′)

)>
]

. The kernel K of a GP

determines the behavior of a typical function sampled from the GP.
For instance, if we choose K(∆̂, ∆̂′) = exp

(
− ‖∆̂−∆̂′‖2

2l2

)
, the

squared exponential kernel with length scale l > 0, it implies that
the GP is mean square differentiable of all orders.

Let us first briefly describe how we can find the posterior
distribution of a GP(0, K), a GP with zero prior mean. Suppose
that for ∆̂t−1 , {∆̂1, ∆̂2, . . . , ∆̂t−1} ⊂ D, we have observed the
noisy evaluation yi = J(∆̂i) + ηi with ηi ∼ N(0, σ2) being i.i.d.
Gaussian noise. We can find the posterior mean and variance for a
new point ∆̂∗ ∈ D as follows: Denote the vector of observed values
by yt−1 = [y1, . . . , yt−1]

> ∈ R
t−1, and define the Grammian

matrix K ∈ R
t−1×t−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector

K∗ = [K(∆̂1, ∆̂
∗), . . . , K(∆̂t−1, ∆̂

∗)]. The expected mean µt(∆̂
∗)

and the variance σt(∆̂
∗) of the posterior of the GP evaluated at

∆̂∗ are (cf. Section 2.2 of [30])

µt(∆̂
∗) = K∗

[
K + σ2

I
]−1

yt−1,

σ2
t (∆̂∗) = K(∆̂∗, ∆̂∗)− K>

∗

[
K + σ2

I
]−1

K∗.

At round t, the GP-UCB algorithm selects the next query point
∆̂t by solving the following optimization problem:

∆̂t ← argmin
∆̂∈D

µt−1(∆̂)− β
1/2
t σt−1(∆̂). (23)

Where βt depends on the choice of kernel among other parameters
of the problem.

The optimization problem (23) is often nonlinear and non-convex.
Nonetheless solving it only requires querying the GP, which in
general is much faster than querying the original dynamical system.
This is important when the dynamical system is a physical system
and we would like to minimize the number of interactions with it
before finding a ∆̂ with small J(∆̂). One practically easy way to
approximately solve (23) is to restrict the search to a finite subset
D′ of D. The finite subset can be a uniform grid structure over D,
or it might consist of randomly selected members of D.



The theoretical guarantee for GP-UCB is in the form of regret
upper bound. Let us define ∆∗ ← argmin∆∈D J(∆), the global
minimizer of the objective function. The regret at time t is defined
by rt = J(∆̂t) − J(∆∗). This is a measure of sub-optimality of
the choice of ∆̂t according the cost function J . The cumulative
regret at time T is defined as RT =

∑T

t=1
rt. Ideally we would

like limt→∞
RT

T
= 0.

The behavior of the cumulative regret RT depends on the set D
and the choice of kernel. If D is a compact and convex set of R

n

and we use the squared exponential kernel, for any fixed confidence
parameter δ > 0, the asymptotic behavior of RT is

O
(√

T [logd+1(T ) + log(1/δ)]
)

,

with probability at least 1 − δ (cf. Theorems 3 and 5 of [13]).
This result does not even require the function J to be a GP. It only
requires the function to have a finite norm in the reproducing kernel
Hilbert space (RKHS) HK defined by the kernel K.

V. TWO-LINK MANIPULATOR EXAMPLE

We consider here a two-link robot manipulator, with the follow-
ing dynamics

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (24)

where q , [q1, q2]
T denotes the two joint angles and τ , [τ1, τ2]

T

denotes the two joint torques. The matrix H ∈ R
4×4 is assumed

to be non-singular and its elements are given by

H11 = m1`
2
c1 + I1 + m2[`

2
1 + `2c2 + 2`1`c2 cos(q2)] + I2,

H12 = m2`1`c2 cos(q2) + m2`
2
c2 + I2,

H21 = H12,

H22 = m2`
2
c2 + I2.

(25)
The matrix C(q, q̇) is given by

C(q, q̇) ,

[
−hq̇2 −hq̇1 − hq̇2

hq̇1 0

]
,

where h = m2`1`c2 sin(q2). The vector G = [G1, G2]
T is given

by

G1 = m1`c1g cos(q1) + m2g[`2 cos(q1 + q2) + `1 cos(q1)],
G2 = m2`c2g cos(q1 + q2),

(26)
where, `1, `2 are the lengths of the first and second link, respec-
tively, `c1 , `c2 are the distances between the rotation center and the
center of mass of the first and second link respectively. m1, m2

are the masses of the first and second link, respectively, I1 is the
moment of inertia of the first link and I2 the moment of inertia of
the second link, respectively, and g denotes the earth gravitational
constant.
In our simulations, we assume that the parameters take the following
values: I2 = 5.5

12
kg · m2, m1 = 10.5 kg, m2 = 5.5 kg,

`1 = 1.1 m, `2 = 1.1 m, `c1 = 0.5 m, `c2 = 0.5 m,
I1 = 11

12
kg · m2, g = 9.8 m/s2. The system dynamics (24)

can be rewritten as

q̈ = H−1(q)τ −H−1(q) [C(q, q̇)q̇ + G(q)] . (27)

Thus, the nominal controller is given by

τn = [C(q, q̇)q̇ + G(q)]

+ H(q) [q̈d −Kd(q̇ − q̇d)−Kp(q − qd)] , (28)

where qd = [q1d, q2d]T , denotes the desired trajectory and the
diagonal gain matrices Kp > 0, Kd > 0, are chosen such that

the linear error dynamics (as in (9)) are asymptotically stable. We
choose as output references the 5th order polynomials q1ref (t) =
q2ref (t) =

∑5

i=0
ai(t/tf )i, where the ai’s have been computed

to satisfy the boundary constraints qiref (0) = 0, qiref (tf ) =
qf , q̇iref (0) = q̇iref (tf ) = 0, q̈iref (0) = q̈iref (tf ) = 0, i = 1, 2,
with tf = 2 sec, qf = 1.5 rad. In these tests, we assume that
the nonlinear model (24) is uncertain. In particular, we assume that
there exist additive uncertainties in the model (27), i.e.,

q̈ = H−1(q)τ −H−1(q) [C(q, q̇)q̇ + G(q)]− E G(q), (29)

where E is a matrix of constant uncertain parameters. Following
(19), the robust-part of the control writes as

τr = −H(B̃T Pz‖G‖2 − Ê G(q)), (30)

where

B̃T =

[
0 1 0 0
0 0 0 1

]
,

P is solution of the Lyapunov equation (11), with

Ã =




0 1 0 0
−K1

p −K1
d 0 0

0 0 0 1
0 0 −K2

p −K2
d


 ,

z = [q1−q1d, q̇1− q̇1d, q2−q2d, q̇2− q̇2d]
T , and Ê is the matrix of

the parameters’ estimates. Eventually, the final feedback controller
writes as

τ = τn + τr. (31)

We consider the challenging case where the uncertain parameters
are linearly dependent. In this case the uncertainties’ ‘effect’ is not
observable from the measured output. Indeed, in the case where
the uncertainties enter the model in a linearly dependent function,
e.g. when the matrix ∆ has only one non-zero line, some of the
classical available modular model-based adaptive controllers, like
for instance X-swapping controllers, cannot be used to estimate all
the uncertain parameters simultaneously. For example, it has been
shown in [7], that the model-based gradient descent filters failed to
estimate simultaneously multiple parameters in the case of the elec-
tromagnetic actuators example. For instance, in comparison with the
ES-based indirect adaptive controller of [15], the modular approach
does not rely on the parameters mutual exhaustive assumption, i.e.,
each element of the control vector needs to be linearly dependent on
at least one element of the uncertainties vector. More specifically,
we consider here the following case: ∆(1, 1) = 0.3, ∆(1, 2) =
0.6, and ∆(2, i) = 0, i = 1, 2. In this case, the uncertainties’
effect on the acceleration q̈1 cannot be differentiated, and thus the
application of the model-based X-swapping method to estimate the
actual values of both uncertainties at the same time is challenging.
Similarly, the method of [15], cannot be readily applied because the
second control τ2 is not linearly depend on the uncertainties, which
only affects τ1. However, we show next that, by using the modular
ISS-based controller, we manage to estimate the actual values of the
uncertainties simultaneously and improve the tracking performance.
Due to the limitation of number of pages, we only report the results
related to the GP-UCB. For the MES results please refer to [20].

To show that the modular ISS-based controller is independent of
the choice of the learning algorithm, we apply the GP-UCB learning
algorithm-based estimator to the same two-links manipulator exam-
ple. We apply the algorithm IV-D, with the following parameters:
σ = 0.1, l = 0.2, and βt = 2 log( Card(D′)t2π2

6δ
), with δ = 0.05.

We test the GP-UCB algorithm under the uncertainties conditions
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Fig. 1. Cost function and uncertainties estimates- (GP-UCB) algorithm

stated above. The obtained parameters are reported on figures 1(a),
1(b), 1(c). We can see on these figures that the uncertainties are
well estimated. One could argue that they are better estimated with
the GP-UCB than with MES algorithm (see [20]) because there is
no permanent dither signal, which leads to permanent oscillations
in the MES-based learning. The tracking performance improved in
this as well due to the precise estimation of the parameters.

VI. CONCLUSION

We have studied the problem of adaptive control for nonlinear
systems which are affine in the control with parametric uncertain-
ties. For this class of systems, we have proposed the following
controller: We use a modular approach, where we first design a
robust nonlinear controller, designed based on the model (assuming
knowledge of the uncertain parameters), and then complement this
controller with an estimation module to estimate the actual values of
the uncertain parameters. The novelty is that the estimation module
that we propose is based on model-free learning algorithms.
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