
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Speed Sensorless State Estimation for Induction Motors: A
Moving Horizon Approach

Zhou, L.; Wang, Y.

TR2016-054 July 2016

Abstract
This paper investigates the speed sensorless state estimation problem for induction motors.
Aiming at developing new state estimation means to improve the estimation bandwidth, this
paper proposes various moving horizon estimation (MHE)- based state estimators. Applying
MHE for induction motors is not straightforward due to the fast convergence requirement,
external torque disturbances, parametric model errors, etc. To improve speed estimation
transient performance, we propose an MHE based on the full induction motor model and an
assumed load torque dynamics. We further formulate an adaptive MHE to jointly estimate
parameters and states and thus improve robustness of the MHE with respect to parametric
uncertainties. A dual-stage adaptive MHE, which performs parameter and state estimation
in two steps, is proposed to reduce computational complexity. Under certain circumstances,
the dual-stage adaptive MHE is equivalent to the case with a recursive least square algorithm
for parameter estimation and a conventional MHE for state estimation. Implementation is-
sues and tuning of the estimators are discussed. Numerical simulations demonstrate that the
proposed MHE estimators can effectively estimate the induction motor states at a fast con-
vergence rate, and the dualstage adaptive MHE can provide converging state and parameter
estimation despite the initial model parametric errors.

2016 American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139





Speed Sensorless State Estimation for Induction
Motors: A Moving Horizon Approach

Lei Zhou1 and Yebin Wang2

Abstract—This paper investigates the speed sensorless state
estimation problem for induction motors. Aiming at developing
new state estimation means to improve the estimation bandwidth,
this paper proposes various moving horizon estimation (MHE)-
based state estimators. Applying MHE for induction motors is
not straightforward due to the fast convergence requirement,
external torque disturbances, parametric model errors, etc. To
improve speed estimation transient performance, we propose an
MHE based on the full induction motor model and an assumed
load torque dynamics. We further formulate an adaptive MHE
to jointly estimate parameters and states and thus improve
robustness of the MHE with respect to parametric uncertainties.
A dual-stage adaptive MHE, which performs parameter and state
estimation in two steps, is proposed to reduce computational
complexity. Under certain circumstances, the dual-stage adaptive
MHE is equivalent to the case with a recursive least square
algorithm for parameter estimation and a conventional MHE
for state estimation. Implementation issues and tuning of the
estimators are discussed. Numerical simulations demonstrate
that the proposed MHE estimators can effectively estimate the
induction motor states at a fast convergence rate, and the dual-
stage adaptive MHE can provide converging state and parameter
estimation despite the initial model parametric errors.

I. INTRODUCTION

In the speed sensorless control of induction motors, where
the motor speed and position are not measured, the con-
vergence rate of the state estimation is the key limitation
to the motor’s tracking bandwidth. This fact motivates the
development of new state estimation solutions for induction
motor systems.

Speed sensorless state estimation for induction motors is a
challenging problem since the motor dynamics is multivariable
and nonlinear, and the motor parameters are often not exactly
known. Through the years, numerous estimation schemes have
been studied for induction motors. The classic model reference
adaptive system (MRAS) approach treats the motor speed as
a time-varying parameter to avoid nonlinearity [1]–[4], but
it often suffers from slow converging due to the adaptive
estimation. The sliding mode observer (SMO) treats the non-
linear terms as bounded uncertainties and has achieved robust
performance [5], [6], but this often leads to an unnecessary
worst case design and degraded estimation accuracy. The
extended/unscented Kalman filter (EKF/UKF) schemes have
also been studied [7], [8], where the rotor mechanical equation
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is often not included. This formulation allows state estimation
without knowing the motor mechanical parameters, but often
results in slow transient. Reference [9] performed EKF for in-
duction motor with the mechanical dynamics included, which
helps improving the transient performance and the estimation
accuracy at low speed.

In this paper we study the moving horizon estimation
(MHE) for speed sensorless state estimation of induction
motors, targeting at improving the convergence rate of the
speed estimation. The MHE has been initially introduced
in [10] inspired by its widely used dual problem receding
horizon control (RHC), and is receiving growing interest in
the past decade due to the advances in numerical optimizations
and computational capability of computers. References [11]
and [12] have provided comprehensive studies of the MHE
for general linear and nonlinear systems, respectively.

The MHE for induction motor state estimation has been
explored in [13] to achieve better estimation accuracy and
bandwidth against MRAS and EKF estimators. However in
[13] the motor speed is assumed to be constant over the
estimation horizon, which may limit the speed estimation
convergence rate. Also [13] assumed exact knowledge of
model parameters, which is not always available in practice.

In this paper, the MHE considering the full dynamics of
the induction motor is being studied, where the rotor speed
is estimated as a state using the rotor’s equation of motion.
Comparing with the constant speed assumption, the inclusion
of the mechanical equation can improve the speed estimation
convergence rate and can improve the estimation accuracy at
low speed. This formulation, however, increases the estima-
tor’s sensitivity with respect to the mechanical uncertainties,
such as load variations and friction torque disturbances. To
address this, in our work the load torque is being estimated as
a state variable with an assumed dynamics.

Another contribution of this paper is the inclusion of on-line
parameter estimation. It is well known that the performance
of MHE is significantly influenced by the model accuracy. In
order to increase the estimator’s robustness in terms of para-
metric uncertainties, the adaptive MHE is being studied, where
the parameters are being estimated together with the states.
Different formulations of the adaptive MHE for induction
motors are introduced and discussed, and a dual-stage adaptive
MHE that decomposes state and parameter estimations is
proposed. Our simulation shows that the dual-stage estimator
design can effectively lower the implementation difficulty
of MHE and can achieve accurate estimation despite initial
parameter errors.



This paper is organized as follows. The induction motor
model and the general MHE formulation are briefly introduced
in Section II. The MHE for induction motor state estimation
including the mechanical dynamics is presented in Section
III. Several adaptive MHE formulations for induction motor
are presented in Section IV. Section V discusses the design
and tuning of the estimators, and Section VI verifies the
performances of MHE and dual-stage adaptive MHE through
numerical simulations. Conclusion is drawn in Section VII.

II. INDUCTION MOTOR MODEL AND GENERAL MHE
A. Induction Motor Model

The induction motor model in the stationary two-phase
reference frame can be written as

i̇ds = −γids + αβψdr + βψqrω + uds/σ

i̇qs = −γiqs − βψdrω + αβψqr + uqs/σ

ψ̇dr = αLmids − αψdr − ψqrω
ψ̇qr = αLmiqs + ψdrω − αψqr

ω̇ =
µ

J
(−idsψqr + ψdriqs)−

TL
J

y =
[
ids, iqs

]T
,

(1)

where ψdr and ψqr are the rotor fluxes, ids and iqs are the
stator currents, uds and uqs are the stator voltages, all defined
in the stationary d-q frame. ω is the rotor speed; J is the
rotor inertia; TL is the load torque, and y is the measurement.
The rest variables in (1) denote model parameters, where σ =

Ls(1− L2
m

LsLr
), α = Rr

Lr
, β = Lm

σLr
, γ = Rs

σ +αβLm, µ = 3
2
Lm

Lr
.

(Rs, Ls) and (Rr, Lr) are the resistance and inductance of
the stator and the rotor, respectively, and Lm is the mutual
inductance.

Speed sensorless estimation problem for induction motor is
roughly formulated as: design a estimator to reconstruct the
full state of the induction motor system (1) from measuring
only the stator currents (ids, iqs) and voltages (uds, uqs).

B. General MHE formulation
This section briefly introduces the general MHE formula-

tion to make this paper self-contained. Consider a nonlinear
stochastic discrete-time system

xk+1 = fk(xk, uk) + wk

yk = hk(xk) + vk,
(2)

where k is the time step, xk is the state, uk is the control
input, yk is the output, wk is the process noises, and vk is the
measurement noises. The MHE at time T can be formulated
as the following constrained optimization problem

min
z,{wk}T−1

k=T−N

ZT−N (z) +

T−1∑
k=T−N

Lk(wk, vk)

subject to
xk+1 = fk(xk, uk) + wk, k = T −N, ..., T − 1

vk = yk − hk(xk) ∈ Vk, k = T −N, ..., T − 1

xk(k; z, {wj}, uk) ∈ Xk, k = T −N, ..., T
wk ∈Wk, k = T −N, ..., T − 1,

(3)

where N is the length of the estimation horizon defined
between T − N and T − 1, and z = xT−N is the state at
the beginning of the estimation horizon. The sets Xk, Wk

and Vk denote the constraints on states, process noises, and
measurement noises, respectively.

The cost function in (3) consists of two parts: the arrival
cost ZT−N (z) and the sum of the stage costs Lk(wk, vk)
over the horizon. The stage cost Lk(wk, vk) penalizes on
the estimation errors wk and vk at each time step inside the
estimation horizon, and the arrival cost ZT−N (z) summarizes
the past data that are not explicitly accounted for in the
objective function. A true arrival cost is defined as

ZT−N (z) = min
x0,{wk}T−N−1

k=0

T−N−1∑
k=0

Lk(wk, vk) + Γ(x0) (4)

and subject to constraints in (3) from 0 to T −N . Here Γ(x0)
is the initial cost, penalizing on the deviation of the initial
state estimate from its true value. The MHE with the true
arrival cost ensures that it has the same solution with the full-
information estimation.

Remark 2.1: When MHE is used for nonlinear or con-
strained systems, the exact expression for the true arrival
cost cannot be established [12]. An approximation of the
arrival cost, denoted by ẐT−N (z), is usually used. The arrival
cost approximation can significantly influence the estimation
accuracy and the stability of the estimator.

III. MHE FOR INDUCTION MOTORS

Work [13] considers the MHE for the induction motor with
an assumed speed dynamics ω̇ = 0. This treatment helps
ameliorate numerical stability of the optimization problem
derived from the MHE, however compromises estimation
performance. In this section, we formulate the MHE using the
induction motor model with the mechanical equation included.

Assuming that the load torque is slowly time-varying com-
pared to the motor states, we have ṪL = 0. By com-
bining Eq. (1) and ṪL = 0, we can obtain a 6th-order
induction motor model with the state variables given by
x = [ids, iqs, ψdr, ψqr, ω, TL]T . By discretizing the model and
including the process and measurement noises, we can get a
discrete-time stochastic model of the induction motor as

xk+1 = f(xk) +Buk + wk

yk = Cxk + vk.
(5)

Note that in (5) B and C are constant matrices, while f(·) is
a smooth vector field.

Remark 3.1: The main goal of including the load torque as a
state variable is to improve the estimator’s robustness towards
mechanical uncertainties. When the motor is running, the load
torque may be time-varying, and the Coulomb friction is also
known to deteriorate the estimator’s performance especially
during low speed operation. In order to maintain accurate
estimation despite these uncertainties, the load torque is treated
as a state variables. We selected an assumed dynamics ṪL = 0
since the motor load torque variation during operation are
usually slow compared with the required speed bandwidth.



The MHE for the induction motor with rotor speed dynam-
ics can be formulated as

min
z,{wk}T−1

k=T−N

ΦT = ẐT−N (z) +

T−1∑
k=T−N

Lk(wk, vk) (6)

subject to the system dynamics (5). A quadratic stage cost is
selected as Lk(wk, vk) = wTkQ

−1wk + vTk R
−1vk, where Q

and R are positive definite matrices and can be regarded as
design parameters of the estimator. Specifically, when wk and
vk are zero mean, independent Gaussian variables, the matrices
Q and R can be selected as their covariance matrices.

The induction motor model is nonlinear. As is mentioned in
Remark 2.1, there does not exist a closed-form expression for
the exact arrival cost. Here we use the filtering form of arrival
cost approximation introduced in [12]. Define the cost for the
initial estimation error as Γ(x0) = (x0 − x̂0)TΠ−10 (x0 − x̂0).
The approximate arrival cost can be calculated by

ẐT−N (z) = (z − x̂T−N )TΠ−1T−N (z − x̂T−N ) + Φ∗T−N ,

where Φ∗T−N is computed optimal cost of the problem (6) at
time T − N . The matrix ΠT−N is updated according to the
following matrix Ricatti equation

Πk+1 =Q+AkΠkA
T
k

−AkΠkC
T (R+ CTΠkC

T )−1CΠkA
T
k ,

in which Ak = ∂f(x̂k)/∂x̂k.
Remark 3.2: The MHE (6) does not include inequality

constraints for two reasons. First, this does not significantly
improve the estimation performance, because the inequality
constraints on induction motor states are loose and almost
always satisfied. Second, removing the inequality constraints
can simplify the optimization problem and greatly reduce the
computational load.

IV. ADAPTIVE MHE FOR INDUCTION MOTORS

In induction motor systems, the model parameters are
often not exactly known as well as time-varying during the
operation. For example the electric heating incurs significant
variations of both the stator and rotor resistance values. On the
other hand, it is well known that the MHE is a model-based
estimation scheme, and its performance highly relies on the
model accuracy. In order to improve the estimator’s robustness
with respect to parametric model errors, we present an adaptive
MHE for the speed sensorless estimation, where the system
parameters are estimated together with states.

A. Augmented state MHE

One way to implement the adaptive MHE is through
augmented state MHE, which is defined on the basis of
an augmented system dynamics. Define the vector of model
parameters as p = [α, β, γ, σ]T . We first expand the state
x by including model parameters as an augmented state
x′T = [x, p]T . Also define the augmented process noises
w′ = [w,wp]

T , where wp represent the mismatch between
the true model parameters and its estimate p̂. Consequently,
assume the parameters are slowly time varying, we have the

augmented system dynamics given by (5) and ṗ = 0. The
augmented state MHE is therefore formulated as the following
optimization problem:

min
z′,{w′k}

T−1
k=T−N

Φ′T = Z ′T−N (z′) +

T−1∑
k=T−N

L′k(w′k, v
′
k), (7)

and subject to the augmented system dynamics.
In the augmented state MHE, the stage and arrival costs

are calculated using the same formulas as the non-adaptive
MHE (6), except that the augmented state x′ and process
noises w′ are used instead of x and w. The covariance
matrix of the augmented process noises is defined as Q′ =
diag(Q,Qp), where each diagonal component of the matrix
Qp = diag(Qα, Qβ , Qγ , Qσ) represents the weight on the
estimation error of individual model parameter.

B. Dual-stage adaptive MHE

In the augmented state MHE, the inclusion of parameters
in the states results in a higher order and highly non-convex
optimization problem. This fact, however, adds significant dif-
ficulties to the optimization problem solving. In order to make
the problem tractable, a dual-stage adaptive moving horizon
estimator is proposed, where the parameter estimation and
the state estimation are decomposed into two sequential steps.
Comparing with the original augmented state MHE, the dual-
stage MHE can effectively reduce the size and complexity of
the optimization problems, and therefore makes them relatively
easy to solve with established nonlinear programming (NLP)
solvers.

In the dual-stage adaptive MHE, two optimization problems
are solved sequentially at every time step for parameter and
state estimation. The parameter estimation can be achieved by
solving the optimization problem

min
p

ΦpT = Φp∗T−Np
+

T−1∑
k=T−Np

vTk R
−1vk, (8)

where Np is the length of the parameter estimation horizon.
The arrival cost in (8) is selected as Φp∗T−Np

, which implies
the estimator is totally forgetting the initial guesses. This
selection is made because there is no dynamics involved in
the parameters to propagate the covariance of the parameter
estimation error, i.e., ṗ = 0. The stage cost in (8) is selected
as a quadratic form of the output error vk, and the penalty
on wk is not included. This is because {wk}T−1k=T−Nx

are the
decision variables of the state estimation and thus are fixed
in the parameter estimation, so the quadratic term wTkQ

−1wk
does not directly penalize on the model parameters. In the
formulation (8), the parameter vector p is constant in the
parameter estimation horizon, therefore the size of the cor-
responding optimization problem is fixed and is independent
to the horizon length Np.

The state estimation problem is given by

min
z,{wk}T−1

k=T−Nx

ΦxT = ZT−Nx
(z) +

T−1∑
k=T−Nx

Lxk(wk, vk)

and subject to the induction motor model (5). Fig. 1 shows a
block diagram of the data transmission in the dual-stage MHE.
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Fig. 1. Block diagram of the dual-stage MHE.

By separating out the parameter estimation, the state estima-
tion in the dual-stage MHE is reduced to the conventional
MHE for state estimation.

Remark 4.1: The parameter estimation can be simplified
by redefining the parameter vector as θ = [γ, αβ, β, 1/σ]T

and using only the first two state equations in (5), i.e., the
stator current dynamics. The reason is two fold. First, all
four parameters are appearing in the stator current dynamics,
therefore these two equations are sufficient to estimate all
parameters. Second, the proposed parameters in θ are linearly
involved in the induction model equations, therefore the pa-
rameter estimation can be an unconstrained linear estimation
problem. With this modification, the complexity of solving
the corresponding optimization problem can be significantly
reduced.
C. RLS-based dual-stage adaptive MHE

The simplification to the parameter estimation in Re-
mark 4.1 formulates the parameter estimation of the induction
motor as an unconstrained linear system identification prob-
lem, in which case, the recursive least square (RLS) estimation
method can be readily applied for the parameter estimation.

For a linear equation y = φT θ, where φ is the input vector
and y is the vector of measurements, the RLS estimation gives
the estimated parameter θ̂ that minimizes the accumulated
mean squared error as

min
θ

ΦRLST =
1

T

T∑
k=1

(
yk|θ − yk

)2
. (9)

To perform RLS-based parameter estimation for the induc-
tion motor, the discretized stator current equations can be
written as the following linear regression form[

ik+1
ds −i

k
ds

dt
ik+1
qs −i

k
qs

dt

]
=

[
−îkds ψ̂kds ψ̂kqsω̂

k ukds
−îkqs ψ̂kqs −ψ̂kdsω̂k ukqs

] γ
αβ
β

1/σ

 (10)

where dt is the sampling interval. The RLS estimation algo-
rithm can then be applied to (10) and identify the parameters.

Remark 4.2: By comparing the cost functions of the MHE
parameter estimation formulation (8) and the RLS parameter
estimation given in (9), we can conclude that with the sim-
plification in Remark 4.1, the RLS parameter estimation is
equivalent to the MHE parameter estimation with an infinite
parameter estimation horizon length and with the matrix R in
the cost function being an identity matrix.

V. DISCUSSION
A. Arrival cost

The arrival cost in MHE plays a crucial role in determining
the behavior of the overall estimation process. Since a closed-
form expression for the true arrival cost does not exist for

nonlinear or constrained systems, an approximation to the
arrival cost need to be used. According to the stability analysis
of MHE in [12], asymptotic convergence of the estimation
error can be preserved if the approximated arrival cost is
bounded by the true arrival cost.

Although this condition allows systematic stability analysis,
a practical arrival cost synthetic method that meets this condi-
tion is hard to find. In our development of MHE for induction
motors, the filtering arrival cost approximation in [12] and [14]
is being used, as was discussed in Section III.

Another commonly used approximation of arrival cost is
ZT−N = Φ∗T−N . This arrival cost is independent of z
and is totally ignoring the initial guesses. This arrival cost
approximation satisfies the inequality conditions and therefore
asymptotic convergence can be guaranteed. However, this
selection does not necessarily give satisfactory performance
[15]. With this approximation, the horizon length need to be
sufficiently large to achieve faster convergence.

As an alternative to the filtering approximation, a smoothing
arrival cost approximation was proposed in [11] and was
further described in [14]. This arrival cost approximation helps
to eliminate the periodic behavior of the estimator by including
more data in the update of z, where the arrival cost covariance
uses ΠT−N |T−1. In our implementation this approximation
was not selected, mainly because the periodical behavior of
the estimator does not significantly deteriorate the convergence
rate of the estimation.

B. Horizon length

Another important design parameter of the MHE is the
horizon length. Similar to its dual problem RHC, a large
horizon length is preferable for the MHE. Nevertheless, a
long estimation horizon will lead to a large scale optimization
problem and overload the computational resources. Usually
the horizon length is determined by balancing the trade-off
between estimation performance and the computational time.

A longer estimation horizon allows the estimator to use
more data, and therefore the estimation is less dependent on
the approximation of the arrival cost. For unconstrained MHE,
selecting a horizon length of N = 1 will reduce the MHE
estimator to the EKF, where only the measurements at the
current time step are used in the estimation process. Intuitively,
one can deduce that comparing with unconstrained MHE with
a horizon length larger than 1, the EKF is more sensitive to
the initial error in states and covariances.

The horizon length may be dynamically changed in the
estimation process. This method is particularly interesting
for the dual-stage adaptive MHE, where the model accuracy
changes along with the parameter estimation process. In our
implementation, different horizon lengths are selected for the
state estimation in the initial parameter estimation transient
and in steady state. During the parameter estimation transient,
a horizon length of 2 is selected for less trust to the model
accuracy. After the parameter estimation converges, a longer
horizon length is used to provide more precise estimation.



TABLE I
PARAMETERS OF INDUCTION MOTOR MODEL.

Parameter Value
Stator resistance Rs 11.05Ω
Rotor resistance Rr 2.133Ω
Stator self-inductance Ls 0.23 H
Rotor self-inductance Lr 0.23 H
Mutual Inductance Lm 0.22 H
Rotor inertia J 0.0012 kgm2

Number of pole pares p 2
Motor power 250 W
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Fig. 2. Block diagram of induction motor vector control.

VI. NUMERICAL VALIDATION

A. Setup description

Numerical simulations are used to test the proposed MHE
schemes. Table I shows the system parameters of the induc-
tion motor used in the simulations. The simulation runs at
a sampling rate of 10 kHz, and the Matlab Optimization
ToolboxTM is used for solving the optimization problems. The
process and measurement noises are assumed to be zero-mean
Gaussian random processes, with the covariance matrices
being Q = diag

(
1× 10−4A2, 1× 10−4A2, 1× 10−4(V · s)2,

1 × 10−4(V · s)2, 1 × 10−4(rad/s)2, QTL
(Nm)2

)
and R =

diag
(
1 × 10−6A6, 1 × 10−4A2

)
, where QTL

can be selected
according to the motor’s operation conditions.

Fig. 2 shows a block diagram of the speed sensorless induc-
tion motor system that is used in the numerical evaluations.
The controllers form a standard indirect field oriented control,
and thus the details are omitted. The simulation is conducted
with the control loops closed using the measured currents and
the estimated speed, and the proportional-integral (PI) tracking
controller gains are kept the same under different test cases.

B. MHE state estimation

The proposed MHE formulation for induction motor state
estimation is compared with the transient performance of
EKF. Note that both estimators have the mechanical equation
included in the model. In this simulation, the induction motor
parameters are assumed to be exactly known. The initial states
are selected as ids = iqs = 1 A, ψdr = ψqr = 0 V · s,
ω = 5 rad/s, TL = 0 Nm. The initial values of the estimated
states were selected to be all zero values. The covariance
matrix for initial state estimation error is Π0 = I6×6 × 10−3,
and QTL

is selected as 1× 10−4 for not including the torque
estimation. An estimation horizon length of 20 time steps is
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selected for the MHE. The simulated operating condition is
speed step responses, where the reference speed is 100 rad/s
during the time interval [0, 0.2s], and a reference speed step
of 20 rad/s is added at t = 0.2 s.

Fig. 3 shows the simulation results of the MHE for induction
motor. In Fig. 3, the top plot shows the reference, plant and es-
timated speed, and the bottom plot shows the estimation errors
of the MHE and that of EKF with the same initial conditions. It
can be seen that the MHE with mechanical equation included
can correctly estimate the speed of the induction motor and
demonstrated a faster convergence transient comparing with
EKF. However when the reference speed step is happening,
the estimation error of the MHE experiences a small transient
(peak 0.25 rad/s), while the estimation error of the EKF barely
deviates from zero.

The proposed MHE was also compared with the baseline
MHE formulation in [13]. However with a step-type speed
reference, our simulation shows that the baseline MHE has
a relatively slow estimation transient, and consequently the
tracking controllers have to be tuned slower than the proposed
MHE to ensure system stability. This observation coincides
with the fact that the baseline MHE will suffer slow transient
due to inherent adaptation-based speed estimation.

C. Load torque estimation
We also simulate the proposed MHE with mechanical

equation to verify its ability to sustain step-type load torque
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Fig. 5. Simulation results of the dual-stage adaptive MHE.

disturbances, and the results are shown in Fig. 4. In this
test, an estimation horizon of 10 time steps is selected. The
initial conditions for the state and its estimate are taken as
x = [1, 1, 0, 0, 5, 0]T and x̂ = [0, 0, 0, 0, 0, 0]T , and the initial
guess on error covariance is Π0 = I6×6 × 10−3.

In Fig. 4, the top plot shows the reference and plant speed
of the motor with estimators of different QTL

values being
used for speed feedback control, the middle plot shows the
corresponding speed estimation errors, and the bottom plot
presents the true load torque and their estimates. The data
show that the MHE formulation with load torque included
in the state variables can successfully reject disturbances in
the load torque, and the load torque model error covariance
QTL

determines the convergence rate of the torque and speed
estimation. This observation matches with the performance
of the 6th order EKF with load torque estimation included
[16], where a larger error covariance term QTL

gives a faster
estimation transient.

D. Dual-stage adaptive MHE

The RLS-based dual-stage adaptive MHE is simulated with
the induction motor system. In this test case, the initial values
of the parameter estimates are σ0 = 0.8σ, γ0 = 0.8γ,
α0 = 0.9α, β0 = 0.9β. The horizon length of the MHE state
estimator is selected as Nx = 2 when 0 s ≤ t ≤ 0.1 s, and
Nx = 10 when 0.1 s < t ≤ 0.4 s.

The simulation results of the RLS-based dual-stage adaptive
MHE are shown in Fig. 5, where the top plot shows the
plant and estimated speed, the middle plot shows the corre-
sponding speed estimation error, and the parameter estimation
percentage error is shown in the bottom plot. This simulation
demonstrates that the dual-stage adaptive MHE can success-
fully incorporate the parameter estimation and give converging
estimation despite the existence of initial model parametric
errors, while the under these conditions non-adaptive MHE
(6) and EKF fail to provide convergent state estimation.

VII. CONCLUSION AND FUTURE WORK

In this work, a moving horizon estimation (MHE) scheme
for induction motor state estimation with the rotor mechanical

dynamics included was introduced, and a dual-stage adaptive
MHE formulation that offers parameter on-line estimation was
proposed. Simulation results show that the proposed MHE
can provide a relatively fast converging estimation transient
and can reject torque disturbances, which will allow the
usage of high bandwidth tracking controllers and therefore
improve the speed control bandwidth of the motor. The test
results of the dual-stage adaptive MHE for induction motor
show that the proposed estimation scheme can successfully
achieve converging estimation performance when the model
parameters are not exactly known initially. Future work should
consider analysis and better tuning of the dual-stage adaptive
MHE, which will significantly resolve the difficulties of the
experimental implementation of MHE for induction motors.
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