
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Particle Filtering for Online Motion Planning with Task
Specifications

Berntorp, K.; Di Cairano, S.

TR2016-052 July 2016

Abstract
A probabilistic framework for online motion planning of vehicles in dynamic environments is
proposed. We develop a sampling-based motion planner that incorporates prediction of obsta-
cle motion. A key feature is the introduction of task specifications as artificial measurements,
which allows us to cast the exploration phase in the planner as a nonlinear, possibly mul-
timodal, estimation problem, which is effectively solved using particle filtering. For certain
parameter choices, the approach is equivalent to solving a nonlinear estimation problem using
particle filtering. The proposed approach is illustrated on a simulated autonomous-driving
example. The results indicate that our method is computationally efficient, consistent with
the task specifications, and computes dynamically feasible trajectories.

2016 American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139

Particle Filtering for Online Motion Planning with Task Specifications

Karl Berntorp1 and Stefano Di Cairano1

Abstract— A probabilistic framework for online motion plan-
ning of vehicles in dynamic environments is proposed. We
develop a sampling-based motion planner that incorporates
prediction of obstacle motion. A key feature is the introduction
of task specifications as artificial measurements, which allows
us to cast the exploration phase in the planner as a nonlinear,
possibly multimodal, estimation problem, which is effectively
solved using particle filtering. For certain parameter choices,
the approach is equivalent to solving a nonlinear estimation
problem using particle filtering. The proposed approach is illus-
trated on a simulated autonomous-driving example. The results
indicate that our method is computationally efficient, consistent
with the task specifications, and computes dynamically feasible
trajectories.

I. INTRODUCTION

Research toward increased vehicle autonomy is currently
given considerable attention. A key component for autonomy
is reliable motion planning. The goal of a motion planner is
to compute a trajectory profile to safely navigate towards a
goal, possibly in presence of moving obstacles and different
types of uncertainty. Sampling-based path planners, such
as rapidly-exploring random trees (RRTs), are popular [1].
RRTs rely on random exploration of the state space. Each
generated sample is checked for collision, typically assuming
a static environment; a collision-free sample is added as a
node, and connections are made to surrounding nodes for
tree expansion. Many path-planning techniques only provide
geometric paths. In these cases the considered system is
assumed to achieve instantaneous tracking. However, for
many applications, such as when considering road vehicles
or mobile manipulators, the equations of motion (i.e., the
differential constraints) significantly restrict the reachable set
and must therefore be accounted for. In addition, autonomous
vehicles should be reliable in changing and/or uncertain en-
vironments, implying that online replanning is a requirement.

We propose sequential Monte-Carlo methods for online
motion planning for vehicles in dynamic environments. First,
we formulate an RRT that samples control inputs and in-
cludes prediction of obstacle motion, that is, a time stamp is
associated with each node. An input-based RRT is motivated
by that the state space is often of higher dimension than
the input space. The search dimension is therefore decreased
with an input-based approach. Furthermore, sampling from
the input space generates paths that satisfy differential con-
straints on the vehicle motion. Explicit motion prediction
of obstacles enables reuse of many nodes when replanning,
hence achieving fast computations. Second, we leverage that

1Karl Berntorp and Stefano Di Cairano are with Mitsubishi
Electric Research Laboratories, 02139 Cambridge, MA, USA
Email:{karl.o.berntorp,dicairano}@ieee.org

there are often certain task specifications, or objectives,
associated with the desired motion. We interpret these spec-
ifications as measurements from an idealized motion and
formulate the tree expansion in the RRT as a nonlinear,
possibly multimodal, estimation problem, which we solve
using particle filtering. Particle filters (PFs) are sample-
based estimators that generate inputs according to a noise
model and propagate them through the system model. Hence,
complex and system models are trivially incorporated. PFs
can achieve arbitrarily good estimates [2], [3] and demon-
strations of real-time capabilites of PFs have been shown
in, for example, aircraft and automotive applications [4],
[5]. The inputs can be biased according to a given goal
(e.g., desired location and/or velocity). Depending on certain
design choices in our algorithm, both standard input-based
RRT and conventional particle filtering can be recovered.

RRTs have also explicitly addressed differential con-
straints [6]–[8], but equations of motion, which cannot be
neglected when considering, for example, nonholonomic
or automotive systems, are not trivially incorporated into
the traditional RRT framework. To connect two nodes is
a two-point boundary value problem, and in general there
are no guarantees that a solution exists [9]. Input-based
(kinodynamic) RRTs randomly choose a node to expand
from, and then generate random inputs and propagate them
through the system model [10], [11]. This reduces the tree
expansion to integration of the system model and by con-
struction generates drivable paths, provided a realistic model.
However, it introduces other potential problems, such as
sparse coverage of the reachable set [6]. This is not the case
for our approach. In [12], an input-based RRT that samples
position references to a tracking controller was developed for
autonomous vehicle driving. The approach in [12] assumes
goals in terms of position references. Standard RRTs are
suboptimal. RRT with asymptotic optimality, RRT*, was
introduced in [13], and an application of RRT* to motion
planning was made in [8]. However, here we focus on
online motion planning with scarce computing capabilites,
implying that the main focus of this paper is to quickly find
smooth, drivable motion profiles, rather than searching for
the optimal motion. PFs in path-planning applications have
been considered before, but for uncertainty propagation [14].

II. PARTICLE FILTER FOR ESTIMATION

Throughout, p(xk|ym:k) denotes the conditional probabil-
ity density function of the variable (state) x ⊂ X ∈ Rnx

at time tk ∈ R conditioned on the variable (measurement)
y ∈ Rny from time tm to time tk, ym:k := {ym, . . . , yk}.
Given mean vector µ and covariance matrix Υ, N (µ,Υ)

and N (x|µ,Υ) stand for the Gaussian distribution and prob-
ability density function, respectively. The notation x ∼ p(·)
means x sampled from p(·) and ∝ reads proportional to.

Consider the dynamic system

xk+1 = f(xk, uk, wk), (1a)
yk = h(xk, ek), (1b)

where f ∈ Rnx and h ∈ Rny in general are nonlinear
functions, wk ∈ Rnw and ek ∈ Rne are process and
measurement noise, respectively, and uk ∈ U ⊂ Rnu is
the deterministic input vector (i.e., the controls). Using a
Bayesian framework, (1) can be reformulated as

xk+1 ∼ p(xk+1|xk, uk), yk ∼ p(yk|xk),

where xk+1 and yk are regarded as samples from the respec-
tive distributions. Without loss of generality, uk is set to zero
in the following. When (1) is linear with additive Gaussian
noise, the optimal estimator is analytically computed and
given by the well-known Kalman filter. Most often, however,
numerical approximations are required.

A popular approach to the estimation of nonlinear systems
is to use PFs [15], [16], in which the probability density
function p(xk|y0:k) is estimated. PFs are sequential Monte-
Carlo methods that approximate the posterior density with a
set of N weighted particles as

p(xk|y0:k) ≈
N∑
i=1

wi
kδ(xk − xik), (2)

where wi
k is the importance weight for the ith particle and

δ(·) is the Dirac delta function. PFs have been used in a
wide range of applications, such as in tracking of automotive
systems [4], [5], [17]. Next, we explain the basic version of
the PF, but our approach can be extended to other types
of PFs (e.g., feedback particle filter [18]). To propagate the
particles forward in time, a proposal density

xk ∼ q(xk|xk−1, yk) (3)

is used. The proposal (3) is a key design step in particle
filters. The weights wi

k are recursively computed as

wi
k ∝

p(yk|xix)p(xik|xik−1)

q(xik|xik−1, y0:k)
wi

k−1. (4)

There is a large set of options for how to choose the proposal
density. One obvious choice of proposal density is

q(xk|xik−1, yk) = p(xk|xik−1), (5)

that is, prediction of particles is done using the dynamical
model (1a). With this choice, the weight update equation is

wi
k ∝ p(yk|xik)wi

k−1. (6)

With the proposal (5), the PF is called a bootstrap PF [19].
The PF includes a necessary resampling step. When the

effective number of samples Neff ≈ 1/
∑

i(w
i)2 becomes

small (e.g., below γN , γ ≤ 1), N particles are chosen (with
replacement), where the probability of choosing xik is wi

k.

There is a vast literature on the theoretical properties of
PFs—for example, guarantees of convergence both in weak
and mean-square sense [2], [3].

III. PARTICLE FILTER FOR ONLINE MOTION
PLANNING

Next, we present the proposed motion planner for online
motion planning with avoidance of dynamic obstacles.

A. Task Specification

Our approach relies on that there are certain specifications
(objectives) associated to the planning problem, which can be
used to guide the samples. To exemplify, when considering
vehicle motion planning, possible specifications are:

• Stay within some known region
• Maintain constant velocity
• Drive smoothly, that is, prioritize small steer rates
• Keep safety distance to surrounding obstacles

These specifications can be interpreted as desired measure-
ments obtained from an idealized motion. The deviation of
the actual velocity v from a desired nominal velocity vnom

can be written as h(v) = vnom − v, and ideally we want
to enforce h(v) = 0. Similarly, desire to maintain a safety
distance to obstacles can be formulated using a nonlinear
function g that is large for small distances, and ideally g = 0.

Assume that the system after discretization with sampling
time Ts is described by the stochastic difference equation

xk+1 = f(xk) + wk, (7)

where xk are the states and wk is additive noise, specified by
its (known) probability density function pw. For notational
brevity, uk is omitted. Now, assume that there are ny
different state-dependent specifications. These are modeled
as constraints by introducing desired outputs yd as functions
of the states,

yd = h(xk) :=
[
h1(xk) · · · hny

(xk)
]T
. (8)

The desired outputs can directly correspond to some or all of
the states. The features in (8) cannot be exactly tracked. We
therefore add a probabilistic slack on each desired output,
expressed by ek. The slack determines how large deviations
can be tolerated. Imperfect tracking can occur for several
reasons, for example, model imperfections. Sometimes the
objectives may be in conflict. For instance, in some situations
it might be impossible to maintain constant velocity while
keeping a safety margin to surrounding obstacles. The result
is a relation at each time instant k as in (1b),

yk = h(xk) + ek. (9)

The measurement noise provides for an intuitive way to
accomodate different objectives in the motion planning.
Traditionally, the cost function determines which objectives
to prioritize. However, when the prioritization is done already
in the input sampling, it is more likely that the specifications
will be met using fewer samples.

Remark 1: The slack ek can be set to any distribution. For
illustration, we use zero-mean Gaussian with covariance Rk,

ek ∼ N (0, Rk), since the distribution is then analytically
given by Rk. Note that for hard constraints, such as obstacle
avoidance, other distributions (e.g., uniform) might be more
suitable. This is not explored further here. Examples of
distributions are given in [20].

B. Input-Based RRT with Particle Filtering
We use PF as a means to generate trajectories and build

the tree. The main steps in the algorithm are outlined next.
1) Online Execution: We recursively compute a trajec-

tory over a horizon constrained by the sensing information,
toward a goal Xgoal that is assumed given by a higher-level
logic, for example, by road-map information [21].

The computed trajectory is ∆t long but is only applied
for δt ≤ ∆t; that is, the computed trajectory is applied in
receding horizon. Typical sensors provide better accuracy
at short range than long range, but it is still worthwhile
to account for the long-range information, similar to what
is done in model predictive control. As in [12], we keep a
committed tree, where the end coincides with the root node
of the next planning phase. The part of the tree that does not
originate from the end node is deleted.

2) Collision Checking: Given the vehicle state xk,
collisionFree returns True if the vehicle position is
unoccupied at time tk and False otherwise. Incorporating
time implies that a larger portion of the generated tree can be
reused in the next planning cycle and suppresses the need for
reevaluation of nodes, which is computationally heavy when
replanning in dynamic environments [12]. The inclusion of
time necessitates prediction of obstacles, given their states
at the beginning of every planning cycle, but the number
of obstacles in the vicinity of the autonomous vehicle is
typically much less than the number of nodes that have to
be checked in the reevaluation.

3) State-Space Exploration using Particle Filtering: The
procedure sample samples a node V using some heuristics
π. A PF executes for T time steps. If particle i ends up in
an occupied area, the corresponding weight wi

k+1 is set to
zero. If all N weights become zero, the PF is terminated and
a new node V is chosen for expansion of the tree T . States
are inserted as nodes and the corresponding inputs are edges
E connecting the nodes, forming the tree T = {V, E}. Each
node also contains a timestamp ts, a cost C reaching that
node, and a measure of the cost-to-goal. Because we sample
inputs, not nodes, inclusion of time is straightforward. The
PF provides N trajectories in each node expansion. To insert
all trajectories results in a very large tree and does not
utilize the information from the weights. Another option is
to choose the particle with largest weight at each time step.
However, this can lead to nonsmooth trajectories. We choose
the weighted mean of the trajectories, which is the minimum
mean-square solution over the computed trajectories.

The choice of proposal (3) is nontrivial. One option is to
generate samples using the process model (5). This can be
inefficient, because the measurements are ignored. We guide
the samples using the conditional distribution

q(xk+1|xik, yk+1) = p(xk+1|xik, yk+1). (10)

Since the specifications for the whole planning horizon
are known beforehand, it is even possible to use future
measurements in (10). This will typically add smoothness to
the state profiles (compare with filtering/smoothing in state
estimation). The choice (10) leads to the weight update

wi
k+1 ∝ p(yk+1|xik)wi

k. (11)

Eq. (11) implies that the weight is independent of the
sample xik+1. The proposal (10) is optimal in the sense
that it maximizes the effective number of samples, but it
is generally difficult to sample from, exactly. However, for
a linear, Gaussian measurement relation (9) in the form
yk = Hxk + ek, the expression is analytic. For a nonlinear
measurement relation a linearization leads to
q(xk+1|xik−1, yk) = N

(
xk+1|x̂ik+1, (Σ

i
k+1)−1

)
x̂ik+1 = f(xik) + Li

k(yk+1 − ŷik+1),

Σi
k+1 =

(
(Hi

k)TR−1
k+1H

i
k +Q−1

k

)−1
,

Li
k = Qk(Hi

k)T(Hi
kQk(Hi

k)T +Rk+1)−1,

ŷik+1 = h(f(xik)), Hi
k =

∂h

∂x

∣∣∣∣
f(xi

k)

,

(12)
and Qk is the second-order moment of the process noise.
The likelihood in (11) is approximated as

p(yk+1|xik) = N
(
yk+1|ŷik+1, H

i
kQk(Hi

k)T +Rk+1

)
. (13)

Algorithm 1 provides the planner and the PF-based ex-
ploration is given in Algorithm 2. When t > t0 + δt, if a
solution exists (Line 13, Algorithm 1) the trajectory with
lowest accumulated cost C is chosen for execution (Line 14,
Algorithm 1). If no trajectories have converged, the one
closest to the goal, measured according to a suitable metric,
is chosen (Line 16, Algorithm 1).

Algorithm 1 RRT with PF-Based Input Sampling
1: Input: {x0, t0,Xgoal, T }
2: t← t0, V ← x0

3: while t ≤ t0 + δt do
4: V ← sample(T , π)
5: (x0:T , u0:T ,Success)← Algorithm 2(V.x)
6: if Success then
7: V ← {V, x0:T }
8: E ← {E , u0:T }
9: T ← {V, E}

10: end if
11: t← t+ δt
12: end while
13: if solution(Xgoal, T) then
14: (xbest, ubest)← constrSolution(T)
15: else
16: (xbest, ubest)← getClosest(T ,Xgoal)
17: end if
18: Apply (xbest, ubest) for δt s and repeat from Line 1

Remark 2: When the particle cloud is multimodal, which
can happen when, for example, the measurement equations

Algorithm 2 Particle Filter for Tree Expansion
Input: {x0}
Initialize: {xi0}Ni=1 ← x0, {wi

0}Ni=1 ← 1/N ,
Success ← True

1: for k ← 1 to T do
2: for i← 1 to N do
3: (xik, u

i
k) ∼ p(xk|xik−1, yk) using (12)

4: if collisionFree(xik) then
5: w̄i

k ← wi
kp(yk|xik−1) using (13)

6: else
7: w̄i

k ← 0
8: end if
9: end for

10: Nw ←
∑N

i=1 w
i
k

11: if Nw = 0 then
12: Success ← False
13: Terminate
14: end if
15: Normalize: wi

k ← w̄i
k/
∑N

j=1 w̄
j
k

16: Neff ← 1/(
∑N

i=1(wi
k)2)

17: if Neff ≤ γN then
18: (xik, u

i
k)← resample(xik, u

i
k, w

i
k)

19: wi
k ← 1/N, ∀i ∈ {1, . . . , N}

20: end if
21: xk ←

∑N
i=1 w

i
kx

i
k, uk ←

∑N
i=1 w

i
ku

i
k

22: x0:k ← {x0:k−1, xk}, u0:k ← {u0:k−1, uk}
23: end for

Return: {x0:T , u0:T ,Success}

contain squared entities, one weighted mean can be com-
puted for each mixture component. This implies that decision
making is naturally incorporated into the algorithm. Another
alternative is to execute several filters, one for each modality,
if this can be determined beforehand.

Remark 3: The number of time steps T in Algorithm 2
is typically made adaptive to relate to the desired preview
time ∆t and the available computation time δt. The desired
preview time ∆t is dependent on the distance to the waypoint
Xgoal and the current vehicle velocity.

C. Relations Between RRT and Particle Filter

It is interesting to investigate the relation of Algorithm 1
to input-based RRT without biasing and conventional PF,
respectively. By replacing Line 3 in Algorithm 2 with uni-
form sampling and performing static collision checking, a
recursive version of the input-based RRT in [10] is recovered.

If the heuristics π at Line 4 in Algorithm 1 always
chooses the initial state x0, then the resulting algorithm
is a conventional PF, possibly executed several times or
once with large N , save for the collision check at Line 4
in Algorithm 2. Otherwise, it is the tree expansion that is
done using a conventional PF. We therefore know that, as
N →∞, the algorithm (or tree expansion) produces a set of
trajectories that exactly represent the distribution of the task
specifications. Furthermore, the weighted mean (Line 21 in
Algorithm 2) is the best trajectory, in the mean-square sense.

IV. NUMERICAL STUDY

In the simulation study, an autonomous vehicle travels
on a two-lane road. The road includes both straight-line
and curved road segments. The desired velocity is vnom =
25 m/s. There are surrounding vehicles maintaining either
of the lanes with constant velocity (between 20–23 m/s), on
average about 100 m apart. During parts of the simulation,
both lanes are blocked by vehicles. The planner must there-
fore find trajectories that slow down and stay behind until
an opening appears. When no obstacles are nearby, the ego
vehicle should stay in the right lane. However, when there are
obstacles within the planning horizon, the planner computes
trajectories for both lanes and choose the best one.

We compare Algorithm 1 for two parameter choices with
an input-based RRT [10] (UNIFORM). The heuristics π in
Algorithm 1 is as follows: During expansion, with probability
0.5 we choose a random node in the tree, and with probability
0.5 we choose the node closest to the intermediate goal.
When a feasible trajectory is found, with probability 0.5 we
choose a random node, and with probability 0.5 we choose
the initial node (i.e., the current position).

A trajectory has converged when it is located inside a unit
ball, centered in the middle of the right lane, ∆tvx m down
the road (either of the lanes in case of obstacles). The algo-
rithms are implemented in MATLAB. The implementations
draw samples and expand the tree for δt = 1 s to compute a
trajectory that is at least ∆t = 3 s of duration, which reflects
that onboard sensors can detect long-range obstacles with
reasonable accuracy (∆t), but the accuracy is more reliable
at shorter distances (δt). The PF prediction horizon T is
dependent on the timestamp of the node it expands from, to
not predict too far ahead in the future. The cost function C in
the RRTs for each node is a combination of the norm of the
mid-lane error and deviations from the nominal velocity. It is
chosen to give both good velocity and mid-lane tracking in
the RRT using uniform sampling. Already in a nonoptimized
MATLAB implementation, Algorithm 1 provides a feasible
trajectory faster than real time (i.e., in less than δt s) for the
considered scenario and parameters. All implementations use
the same computation-time limit.

Vehicle Model: We use an extended kinematic single-track
model, which mimics the vehicle behavior well under mild
driving conditions. More advanced models can be used in
the proposed planner without modification of the algorithms.
The motion equations are:

ṗx
ṗy

ψ̇
v̇x
δ̇

 =

vx cos(ψ + β)/ cos(β)

vx sin(ψ + β)/ cos(β)

vx tan(δ)/L
u1

u2

 ,
where L := lf + lr is the wheel base and the body slip β is
β := arctan (lr tan(δ)/L). In the motion planner, we use an
Euler discretization with time step Ts = 0.1 s. The inputs to
the model are longitudinal acceleration and steer rate, which
are sampled from a Gaussian distribution.

Feature Selection: We introduce the following task ob-
jectives: (i) follow a nominal longitudinal velocity vnom =
25 m/s; (ii) follow the middle lane, if there are no obstacles
in the vicinity of the ego vehicle the goal is to follow the
middle of the right lane, but in case of obstacles both lanes
are tracked; (iii) maintain a safety margin to vehicles; (iiii)
maintain a minimum distance to vehicles in the same lane
of ds m. Assume that there are m obstacles with distances
{dj}mj=1, which describe the squared distance along each
coordinate axis computed in the frame of the obstacle, within
some radius from the ego vehicle. Denote the mid-lane error
by pe. Then, the desired outputs and objectives are modeled
as yd = [vnom 0 0]T , h(x) = [vx |pe| σ exp (−dT

j Wdj)]
T,

where σ determines the safety distance, and W is a weight-
ing matrix. Here, we choose the exponential function for
introducing safety margin, but other functions can be used.
Requirement (iiii) is solved by manipulating vnom, where
we set vnom to maintain a safety margin corresponding
to 2 s. Hence, this requirement is activated whenever the
velocity at the beginning of a planning phase will lead
to a safety distance smaller than ds m in less than δt s.
The allowed deviations from the specifications are set to
R = diag(4, 4, 2), where diag(·) is the diagonal matrix.

A. Results

1) Obstacle-Free Motion Planning: When there are no
predicted obstacles present in the vicinity of the ego vehicle,
it should ideally track the middle of the right lane perfectly.
Fig. 1 shows computed path, resulting particles (nodes for
UNIFORM), and best path for two parameter choices of Algo-
rithm 1 and input-based RRT using uniform input sampling.
The nodes are more scattered with uniform sampling, and it
is clear that the cost function must be carefully designed to
give satisfactory tracking without biased sampling.

Fig. 2 shows the corresponding velocities, which should
ideally equal vnom = 25 m/s. Fig. 2 highlights a well-
known problem with traditional RRT: when there is a hard
computation-time limit, RRT will sometimes not provide a
rich enough set of paths to give desired performance. When
introducing PFs for guiding the samples, this problem is
clearly suppressed. Both parameter setups result in almost
perfect lane following.

2) Overtaking: Figs. 3 and 4 show two snapshots of a
situation where the autonomous vehicle catches up with a
vehicle. In Fig. 3, two sets of trajectories are computed—one
where the vehicle maintains the right lane and one where the
autonomous vehicle initiates overtaking of the slower moving
vehicle. The resulting path is smooth for both N = 100 and
N = 10, although the two branches of the tree are more
distinct and the middle lane is better tracked for N = 100.
This also holds for when reentering the right lane when the
overtaking is concluded (Fig. 4). Parts of the trajectories
in the respective left lane in Fig. 4 are from the previous
iteration, where the aim was to track the left lane. In the
lower plot, they are extended toward the right lane.

3) Blocked Lanes: Fig. 5 displays the distance to the
preceding vehicle in the same lane (upper plot) and the

30 80

−190

−180

X [m]

Y [m]

PFRRT100

30 80

−190

−180

X [m]

Y [m]

PFRRT10

30 80

−190

−180

X [m]

Y [m]

UNIFORM

Fig. 1. Snapshots of generated trajectories (green) and best trajectory (red)
for motion planning using N = 100 particles (upper), N = 10 particle in
the tree expansion (middle), and RRT with uniform sampling (lower). The
cost function is a combination of deviations from the right middle lane
(dotted line) and vnom.

109 110 111 112

24

25

26

27

Time [s]

vx [m/s]

PFRRT100
PFRRT10
UNIFORM
vnom

Fig. 2. Generated velocities corresponding to Fig. 1 with vnom = 25 m/s.
Lack of biased sampling (UNIFORM) leads to larger error and less smooth
velocity profile.

corresponding velocity profile (lower plot) when both lanes
are blocked by vehicles that travel at 20 m/s. The speed of
the ego vehicle converges to that of the preceding vehicle,
and a safety distance corresponding to the desired 2 s is
achieved.

V. CONCLUDING DISCUSSION

We presented an input-based RRT that incorporates parti-
cle filtering as a means to probabilistically choose the control
inputs, hence achieving an efficient and nonsparse tree in the
regions of most interest. An enabler is the introduction of
task objectives, which allows a reformulation of the motion
planning as a nonlinear estimation problem. Because the
objectives are handled by a PF, highly nonlinear and/or con-
flicting objectives can be modeled. One example of this was
the mid-lane deviation (Fig. 3). In a range of applications,
there are specifications that the resulting trajectory should
aim to fulfill. Our framework is therefore significantly more
general than the particular example described in this paper.

Fig. 3. Snapshot of a situation where the autonomous vehicle catches a
slower moving vehicle. The motion planner computes trajectories to either
stay in the lane (and slowing down) or initiates overtaking of the slow
vehicle.

Fig. 4. Snapshot a couple of seconds after initiating overtaking in Fig. 3.

The focus has been on developing an algorithm that
quickly and efficiently provides feasible trajectories, rather
than finding the optimal. However, with the introduction of
PF, there are relations to optimal estimation that can be
further explored. It is future work to investigate convergence
and optimality properties of our algorithm.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge
University Press, 2006.

[2] D. Crisan and A. Doucet, “A survey of convergence results on particle
filtering methods for practitioners,” IEEE Trans. Signal Process.,
vol. 50, no. 3, pp. 736–746, 2002.

[3] R. Douc, E. Moulines, and J. Olsson, “Long-term stability of sequen-
tial Monte Carlo methods under verifiable conditions,” The Annals of
Applied Probability, vol. 24, no. 5, pp. 1767–1802, 2014.

[4] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning,

0 10 20

30

60

90

Time [s]

p [m]
PFRRT100
PFRRT10
ds
Activation time

0 10 20

19

22

25

Time [s]

vx [m/s]

Fig. 5. Distances to preceding vehicle and corresponding velocity profiles.
Both lanes are blocked by slow vehicles, so the only possibility is to slow
down. A safety margin corresponding to 2 s at obstacle standstill (i.e., 40 m
in stationarity) is imposed.

navigation, and tracking,” IEEE Trans. Signal Process., vol. 50, no. 2,
pp. 425–437, 2002.

[5] K. Berntorp, “Particle filter for combined wheel-slip and vehicle-
motion estimation,” in Am. Control Conf., Chicago, IL, Jul. 2015.

[6] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” J. Guidance, Control, and Dynamics,
vol. 25, no. 1, pp. 116–129, 2002.

[7] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory gener-
ation for wheeled mobile robots,” Int. J. R. Res., vol. 26, no. 2, pp.
141–166, 2007.

[8] J. Hwan Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli,
P. Tsiotras, and K. Iagnemma, “Optimal motion planning with the
half-car dynamical model for autonomous high-speed driving,” in Am.
Control Conf., Washington, DC, Jun. 2013.

[9] R. Vinter, Optimal Control. Boston, MA: Birkhäuser, 2010.
[10] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-

namic motion planning with moving obstacles,” Int. J. R. Res., vol. 21,
no. 3, pp. 233–255, 2002.

[11] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. R. Res., vol. 20, no. 5, pp. 378–400, 2001.

[12] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1105–
1118, 2009.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. R. Res., vol. 30, no. 7, pp. 846–894, 2011.

[14] N. Melchior and R. Simmons, “Particle RRT for path planning with
uncertainty,” in Int. Conf. Robot. Automation, Rome, Italy, Apr. 2007.

[15] A. Doucet, N. De Freitas, and N. Gordon, “An introduction to
sequential Monte Carlo methods,” in Sequential Monte Carlo methods
in practice. Springer, 2001, pp. 3–14.

[16] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, 2002.

[17] F. Gustafsson, “Particle filter theory and practice with positioning
applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp.
53–82, 2010.

[18] K. Berntorp, “Feedback particle filter: Application and evaluation,” in
18th Int. Conf. Information Fusion, Washington, DC, Jul. 2015.

[19] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,” IEE Proc. F,
Radar and Signal Process., vol. 140, no. 2, pp. 107–113, 1993.

[20] F. Gustafsson, U. Orguner, T. B. Schön, P. Skoglar, and R. Karlsson,
“Navigation and tracking of road-bound vehicles using map support,”
in Handbook of Intelligent Vehicles. Springer, 2012, pp. 397–434.

[21] S. Thrun, M. Montemerlo et al., “Stanley: The robot that won the
DARPA grand challenge,” J. Field Robotics, vol. 23, no. 9, pp. 661–
692, 2006.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-052.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

