
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Data-Driven Gain Computation in the Feedback Particle
Filter

Berntorp, K.; Grover, P.

TR2016-050 July 06, 2016

Abstract
The recently introduced feedback particle filter (FPF) is a control-oriented particle filter
(PF) aimed at estimation of nonlinear/non-Gaussian systems. The FPF controls each par-
ticle using feedback from the measurements and is resampling free, which is in contrast to
conventional PFs based on importance sampling. The control gains are computed by solv-
ing boundary value problems. In general, numerical approximations are required and it is an
open question how to properly compute the approximate solution. This paper outlines a novel
method inspired by high-dimensional data-analysis techniques. Based on the time evolution
of the particle cloud, we compute values of the gain function for each particle. We exemplify
applicability and highlight the benefit of the approach on a planar two-body problem.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139

Data-Driven Gain Computation in the Feedback Particle Filter

Karl Berntorp1 and Piyush Grover1

Abstract— The recently introduced feedback particle filter
(FPF) is a control-oriented particle filter (PF) aimed at esti-
mation of nonlinear/non-Gaussian systems. The FPF controls
each particle using feedback from the measurements and is
resampling free, which is in contrast to conventional PFs
based on importance sampling. The control gains are computed
by solving boundary value problems. In general, numerical
approximations are required and it is an open question how to
properly compute the approximate solution. This paper outlines
a novel method inspired by high-dimensional data-analysis
techniques. Based on the time evolution of the particle cloud,
we compute values of the gain function for each particle. We
exemplify applicability and highlight the benefit of the approach
on a planar two-body problem.

I. INTRODUCTION

This paper is concerned with systems of the form

dx = f(x, t)dt+ dβ(t), (1a)
yk = h(xk) + ek, (1b)

where x := x(t) ∈ Rn is the state; yk := y(tk) ∈ Rm is
the discrete-time measurement at time tk; f and h are the
drift and measurement function, respectively; and β and e
are process and measurement noise, respectively. The aim in
continuous-discrete time Bayesian filtering is to estimate the
posterior filtering density p(x|Yk), or at least the relevant
moments, at each time t ∈ R. Here, Yk := {y0, . . . ,yk}
denotes the set of measurements, obtained at discrete time
steps. Sometimes a discretized counterpart to (1a) is used,
resulting in (possibly with different f)

xk+1 = f(xk, k) +wk, (2a)
yk = h(xk) + ek. (2b)

Particle filters (PFs) [1], [2] are popular for estimation of
nonlinear systems. PFs generate random state trajectories and
assign a weight to them according to how well they predict
the observations. PFs have been successful in numerous
applications, see [3]–[5] for some examples. One problem
with PFs is the inevitable particle degeneracy [6] (i.e.,
only a few particles, or even one, have nonzero weight).
Degeneracy leads to decreased performance, or even filter
divergence. To mitigate this, PFs include a resampling step
where trajectories are either kept or discarded, depending
on their weight. The resampling step makes PFs practically
useful, but introduces other negative effects, such as sample
impoverishment and increased variance [2].

1 The authors are with Mitsubishi Electric Research Laboratories,
Cambridge, MA 02139. Email: karl.o.berntorp@ieee.org,
grover@merl.com

The feedback particle filter (FPF) has been introduced
in a series of papers as a control-oriented, resampling-free,
variant of the PF [7]–[10]. The FPF applies a feedback
structure to each particle. It can be viewed as a generalization
of the Kalman filter to PFs. The measurement update is
implemented as a gradual transition from prior to posterior,
instead of the one-step multiplication of Bayes’ rule in con-
ventional importance-sampling based PFs. Numerical studies
in [11], [12] have demonstratred significant performance
improvements over conventional PFs. The gain function that
is present in the feedback structure is in general nonlinearly
dependent on the state and found as a solution to a boundary
value problem. Usually, approximate solutions are necessary,
because closed-form expressions can only be computed in
certain special cases.

This paper outlines a data-driven approach for computation
of the gain function in the FPF, which should be applicable
to a range of estimation problems. Our approach is motivated
by the following observation: the ensemble of particles
accumulated over time describes how the system evolves, and
therefore gives information about how the particles should be
controlled to explain the measurements. Inspired by proper
orthogonal decomposition (POD) as a high-dimensional data-
analysis technique, we approximate the gain function based
on the time evolution of the particle cloud.

There are few papers addressing the control-gain approxi-
mation in the FPF. In [11], we demonstrated how a sensible
approximation of the gain function can increase performance
compared with baseline FPF for a specific system. The
approach in this paper is more general, as we show in
Sec. IV, and still compares favorably. Gain computation for
an artificial, scalar example was considered in [9].

A. Notation

With δ(x − y) we mean the Dirac delta function, which
is one when x = y and zero otherwise. The conditional
probability density function of column matrix x given y
is denoted by p(x|y). For notational brevity and to be
consistent with [9], we will sometimes write p instead. Define
the expectation as E(x) :=

∫
xp dx and denote the average

of x as x̄. Let L2(Rn, p) mean the Hilbert space of square-
integrable functions with respect to p at a given time and let
X := L2(Rn). Furthermore, ∇f is the gradient of f with
respect to x. The notation H1(Rn, p) means the function
space where the function and its first derivative (defined in
expectation) are in L2(Rn, p). The inner product between
u := u(x) and v := v(x) is 〈u,v〉 :=

∫
uTv dx. The

induced norm is ‖u‖ :=
√
〈u,u〉. Finally, 0n×1 is the n×1

matrix with zeros everywhere.

II. FEEDBACK PARTICLE FILTER
This section gives a brief overview of the main steps in

the FPF. The key step in Bayesian filtering is Bayes’ rule,
which states that

p(xk|Yk) ∝ p(yk|xk)p(xk|Yk−1). (3)

In conventional PFs, the measurement update is implemented
as a point-wise multiplication between likelihood and prior,
where the prior is represented by a set of N particles. Each
particle is weighted using the likelihood. The key differences
between the FPF and conventional PFs are that in the FPF,
• the ensemble of particles is a controlled system;
• Bayes’ rule (3) is implemented using a continuous

transformation from prior to posterior.
The FPF approximates the posterior p with N unweighted

samples, or particles, xi as

p(x|Yk) ≈ p̂(x|Yk) =
1

N

N∑
i=1

δ(x− xi),

Note the difference to conventional PFs, where weights are
used to select the importance of the particles. The FPF treats
the measurement update of the ith particle as a controlled
system:

dxi = f idt+ dβi +U i
k.

As seen from Fig. 1, the structure of the FPF is similar
to that of the Kalman filter. To incorporate yk, a particle
flow Si

k := Si
k(λ) and a control input U i

k := U i
k(λ) are

introduced:
dSi

k

dλ
= U i

k, (4)

where λ ∈ [0, 1] is the pseudo-time. Si
k is initialized (λ = 0)

to equal the ith particle before the measurement update
and U i

k is designed such that the distribution generated by
{Si

k}Ni=1 approximates the posterior at λ = 1. This leads
to a simulation-based implementation of Bayes’ rule, unlike
traditional PFs. This approach is made possible by a log-
homotopy transformation, which transforms the discrete-time
Bayesian measurement update to a continuously evolving
process. In (4), U i

k has the form

U i
k(λ) = Ki

kI
i
k +

1

2
Ωi

k,

where Ki
k =

[
ki1 · · · kim

]
:= Ki(Si

k, λ) ∈ Rn×m is
the feedback gain function, Ωi

k := Ω(Si
k, λ) is the Wong-

Zakai correction term [13]. In the remainder, Ω ≈ 0. The
innovation error Ii equals

Iik = yk −
1

2
(hi + ĥ), (5)

where ĥ = E(h(x)) is expressed in terms of particles as

ĥ ≈ 1

N

N∑
i=1

h(Si
k).

The innovation process (5) includes the predicted mea-
surement of particle i and the average of all par-
ticles. The control synthesis is done by solving an

Ki ẋi = f(xi) +U iU i

− 1
2
(h(x̂i) + ĥ)

∑y Ii x̂i

Fig. 1. Simplified block diagram of the FPF. It uses feedback gains
{Ki}Ni=1 to control the particles {xi}Ni=1. This is in contrast to the
conventional PF, where only the particles’ weights are changed in the
measurement update.

optimal-control problem at each pseudo-time, with the
Kullback-Leibler divergence as the cost [10]. By defining
(φ)T =

[
φ1 · · · φm

]
:= φT(x, λ), kj := ∇φj(x, λ) is a

solution to the boundary value problem

∇T(p∇φj) = − 1

Rjj
(hj − ĥj)p, (6)

for j = 1, . . . ,m and each time tk [9], where Rjj is the
variance of the jth element in yk. In analogy with the PF,
the FPF is consistent (i.e., p̂(x|Yt) = p(x|Yt) for all t given
correct initial distribution) when N →∞. A key feature with
the simulation-based update in the FPF is that it removes the
need for resampling, which is present in conventional PFs.

The main difficulty in the FPF is to find K. In the
following, we will discuss a Galerkin-based method based
on the weak formulation of (6) [14].

A. Galerkin Approximation of Gain Function

The consistency result for the FPF only holds for an exact
expression of the feedback gain. In fact, the main difficulty
in the implementation of the FPF is to find solutions to (6).
This equation can only be solved exactly for restricted types
of systems, such as when (1) is linear and Gaussian. In other
cases, numerical techniques are required.

Approximations of varying complexity can be computed
based on the weak formulation of (6) [14], leading to a
Galerkin-based approximation. A function ∇φj is said to
be a weak solution to (6) if

E((∇φj)T∇ψ) = E
(

1

Rjj
(hj − ĥj)ψ

)
(7)

for all test functions ψ belonging to H1(Rn, p) [9]. By
restricting ψ to belong to the subspace of H1(Rn, p) spanned
by {ψl}Ll=1, φj is approximated as

φj =

L∑
l=1

κljψl, (8)

that is, (8) is a weighted finite sum of L basis functions
{ψl}Ll=1, where {κlj}Ll=1 are constants for a fixed tk. This
implies that the gain function for each column becomes

kj =

L∑
l=1

κlj∇ψl. (9)

Eq. (9) leads to a finite-dimensional approximation of (7):

L∑
l=1

κljE
(
(∇ψl)

T∇ψ
)

= E
(

1

Rjj
(hj − ĥ)ψ

)
. (10)

In practical implementations, by substituting ψ with each
ψl and approximating the expectation using the particle
distribution, (10) becomes a linear matrix equation

Aκj = bj . (11)

Note that the equation system is the same for all particles.
Hence, element sl of A, Asl, and element l of bj , blj , are
found as

Asl =
1

N

N∑
i=1

(∇ψi
l)

T∇ψi
s,

bsj =
1

RjjN

N∑
i=1

(hij − ĥj)ψi
s.

1) Constant-Gain Approximation: A computationally
simple approximation of Ki

k is found by choosing the
coordinates as basis functions, that is, {ψl}Ll=1 = {xl}nl=1.
If the states are chosen as test functions, we have

∇ψl =
[
01×l−1 1 01×L−l+1

]T
.

Hence, A in (11) becomes the identity matrix, and we end
up with an approximation that is the same for all particles,
the constant-gain approximation:

Kk ≈
[
c1 · · · cm

]
R−1, cj :=

1

N

N∑
i=1

(
hij − ĥj

)
Si
k.

(12)
Using (12) for gain approximation is so far the most com-
mon way to find an expression of the gain function. The
resulting FPF is hereafter denoted by FPF. The constant-gain
approximation is the best constant approximation of K in
the mean-square sense.

III. DATA-DRIVEN GAIN COMPUTATION

Our method for gain-function approximation relies on the
observation that the time evolution of the particle cloud
describes the global system behavior. As a consequence, the
particle cloud contains information about how to locally ad-
just the particles. We adapt POD [16] to find basis functions
for the weak formulation in Sec. II-A. POD is widely used
in computational fluid dynamics and structural vibrations, to
mention two applications. In image processing it is known
as principal component analysis, and is extensively used as
a data-extraction method.

The objective in POD is to obtain compact representations
of high-dimensional data, such as in large-scale dynamical
systems. Suppose the goal is to approximate a vector field
θ(x, t). The field is decomposed as

θ(x, t) = θ̄(x) + θ′(x, t),

where θ̄ is a steady-state flow and θ′ is the time-varying
part. The goal is to represent θ′ as a sum of orthonormal
basis functions, that is,

θ′ =

∞∑
j=1

aj(t)ϕj(x),

where aj are time-dependent coefficients and {ϕ}∞j=1 ∈ X
is the basis. The coefficients are uncorrelated and computed
as aj = 〈θ′,ϕj〉. In POD, we seek an optimal basis in the
sense that if θ′ is projected onto {ϕ}Lj=1, the average energy
content retained is greater than if projected onto any other
set of L basis functions. This can be formulated as

maximize
ϕ∈X

|〈θ′,ϕ〉|2
‖ϕ‖2

. (13)

Using a first-order variation of the cost function, it can
be shown that solving (13) amounts to solving an integral
eigenvalue problem:∫

R(x,x′)ϕ(x′) dx′ = λϕ(x), (14)

where R is the auto-correlation function. Typically, dis-
cretization is performed both in space and time. The dis-
cretized version of R̄ in (14) is the covariance matrix Σ,
and (14) amounts to solve a matrix eigenvalue problem. For
sufficiently many discretization points, the sample covari-
ance matrix is a reliable approximation of Σ. Assuming a
subtracted mean, the sample covariance matrix is given by

Σ =
1

M − 1
XXT,

where X is the matrix containing the data and M is the
number of time-discretization points. For further details, see
[16] and references therein. The remainder of this section
explains how to incorporate POD for gain computation.

A. Using POD in Feedback Particle Filter

Our goal is to utilize the motion equations to choose a
suitable basis for the gain function. To this end, assume
that we simulate (1a) in open loop until time index k, when
a measurement arrives. At each simulation step (i.e., time-
discretization point), x is discretized in N points in Rn,
{xi}Ni=1. These points are stacked in a column matrix as

x′ :=
[
(x1)T · · · (xN)T

]T ∈ RnN . (15)

Eq. (15) is a discretization of the state space using the particle
cloud from the FPF. We store the M latest snapshots of
the particle cloud, normalize, subtract the average, and stack
them column wise, leading to

X =

x
1
1 · · · x1

M
...

...
xN
1 · · · xN

M

 ∈ RnN×M . (16)

We now use singular value decomposition (SVD) of Σ
[17]. Hence, decompose X as

X = USV T, (17)

where U ∈ RnN×nN is an orthonormal matrix containing
the left singular vectors of X , S ∈ RnN×M consists of
min(nN,M) nonnegative numbers σj in decreasing order on
the diagonal, and V ∈ RM×M is orthonormal and contains
the right singular vectors. Extract the first r ≤ min(nN,M)
columns from U to form Û and decompose it as

Û =

u
1
1 · · · u1

r
...

...
uN
1 · · · uN

r

 ∈ RnN×r. (18)

From the decomposition (18), we know have r orthonormal
eigenvectors for each of the N particles. The singular val-
ues as usual determine the magnitude of each eigenvector.
Multiplying Q = US results in

Q =

σ1u
1
1 · · · σLu

1
r

...
...

σ1u
N
1 · · · σLu

N
r

 =

q
1
1 · · · q1r
...

...
qN1 · · · qNr

 . (19)

The interpretation of V in POD is that column m, vm,
determines the time modulation of eigenvector m; that is,
element j in vm is the time modulation of ui

m at time index
k −M + j. Thus, since we store the particle cloud up to
time index k, we multiply qim with the last element of vm.
The average of the resulting vectors gives the direction of
motion. We denote the result with q̄i.

B. Gain Computation with POD in Feedback Particle Filter

In the constant-gain approximation, the test functions are
chosen as the n state coordinates. This implies that the lth
basis function is a unit step along the lth coordinate axis.
On the other hand, the eigenvectors obtained from POD
represent the direction of motion (i.e., the gradient) for each
particle. Motivated by this, we add q̄i to the unit step for
each particle. In this way, each particle is adjusted locally
based on global information from the ensemble of particles.
Thus, for particle i, the lth basis function equals

∇ψi
l =

[
01×l−1 1 01×L−l+1

]T
+ q̄i (20)

and the corresponding test function, which is linear in the
particle, becomes

ψi
l = xil + (q̄i)Txi. (21)

Then, (20) and (21) are used to compute κj in (11), where

Asl =
1

N

N∑
i=1

(
‖q̄i‖22 + q̄is + q̄il + δ(s− l)

)
,

bsj =
1

RjjN

N∑
i=1

(hij − ĥj)
(
xis + (q̄i)Txi

)
.

(22)

The resulting gain function becomes

Ki
k =

[
ki1 · · · kim

]
, (23)

where kij are computed as

kij =

n∑
l=1

κlj

([
01×l−1 1 01×n−l+1

]T
+ q̄i

)
. (24)

The filter formulation is summarized in Algorithm 1.
Remark 1: The left singular vectors in POD are optimal

in the sense that they capture more energy along a given
direction than any other set of basis functions [16]. In other
words, the first r columns of U (i.e., Û in (18)) give
an optimal orthonormal basis for approximating the data
contained in X .

Remark 2: The gain computation (24) results in test func-
tions that are linear in the particles. Hence, A in (11)
has dimension n × n. The main computational overhead
compared with the constant-gain approximation is instead
the computation of the SVD. Note, however, that the SVD
only is computed once per measurement update, not at
each step in the particle-flow simulation (4). Often it is
sufficient to choose the first few eigenvectors to accurately
explain the modes of the considered system, implying that
r � min(nN,M).

Algorithm 1 FPF with POD-Based Gain Computation
Initialize: Set {xi

0}Ni=1 ∼ p0(x0)
1: for k ← 0 to T do
2: Set t = tk
3: while t ≤ tk+1 do
4: Simulate dxi = f idt+ dβ, for i ∈ {1, . . . , N}
5: end while
6: Construct X according to (16) using M particle

clouds
7: Compute q̄i using (17)–(19)
8: Set {Si

k}Ni=1 = {xi
k}Ni=1 and λ = 0

9: while λ ≤ 1 do
10: Compute n

l=1{∇ψi
l , ψ

i
l}Ni=1 using (20) and (21)

11: Compute A, bj using (22), for j ∈ {1, . . . ,m}
12: Compute κj using (11), for j ∈ {1, . . . ,m}
13: Compute Ki

k using (23)–(24) for i ∈ {1, . . . , N}
14: Simulate the particle flow according to (4) using

Ki
k and Iik computed by (5) for i ∈ {1, . . . , N}

15: end while
16: Set {xi

k}Ni=1 = {Si
k}Ni=1

17: end for

IV. NUMERICAL STUDY

We assess the performance on a planar two-body problem,
which involves estimating the motion of a satellite that orbits
around earth, and compare against a Rao-Blackwellized
particle filter (RBPF) [18]. A more detailed comparison of
FPF against several PFs and the UKF is found in [11].
Simplified two-dimensional equations of motion relative to
the earth-fixed, earth-centered, inertial frame are given by

ṗX = vX ,

ṗY = vX ,

v̇X = −µpX
r3

+
1

m
FX + w3,

v̇Y = −µpY
r3

+
1

m
FY + w4,

(25)

−7000 0 7000

−7000

0

7000

X [km]

Y [km]

Fig. 2. The two-body problem with two bearing sensors (crosses) that
measure the respective angle to the satellite. The earth surface is indicated
with the dash-dotted circle and the small solid circle indicates the earth
center. The true satellite path for one orbit realization is the gray circle.

where pX , pY are the longitudinal and lateral positions
in the earth-fixed frame, respectively, and vX , vY are the
corresponding velocities. FX and FY are the external forces
applied to the satellite to correct for the perturbation ac-
celerations w3 and w4, r =

√
p2X + p2Y , µ = 398601.2 is

earth’s gravitational constant, and m is the satellite mass. For
simplicity, FX = FY = 0 in what follows. The perturbations
w3 and w4 are both Gaussian distributed with zero mean and
standard deviation 0.1 m/s2.1 The initial conditions are

x0 =
[
7000 0 0 −7.54

]T
, (26)

in km and km/s, respectively, corresponding to a low-earth
orbit with period time around 97 min..

Two bearing sensors measure the angle relative to
the satellite. The sensors are located at S1 = (r0, 0),
S2 = (−r0, 0), where r0 = 6374 km. The measurement
model is

yk =

[
θ1
θ2

]
=

arctan

(
pY

pX −R0

)
arctan

(
pY

pX +R0

)
+ e,

and both sensors have Gaussian distributed, independent
noise, with zero mean and standard deviation 1 deg. Each
sensor is only able to track objects that reside in a cone
with 40 deg opening angle. When the satellite is within
the respective X-axis aligned cone, the sensor provides
measurements at 0.1 Hz. Fig. 2 shows a schematic of the
setup. Note that the sensors never provide measurements
simultaneously. Furthermore, because the measurements are
infrequent, there can be a severe mismatch between actual
measurement and predicted measurement.

1Keplerian orbits do not exist in practice because of perturbation forces.
Satellites drift from their assigned orbital positions because of, e.g., solar
radiation pressure and atmospheric drag, if not accounted for. These distur-
bances, i.e., w3 and w4, are modeled as Gaussians here.

The initial orbit is assumed uncertain for all filters, with
mean (26) and covariance matrix

P0 = diag([4, 4, 0.04, 0.04]).

The simulated data is generated by propagating (25) using
the Euler-Maruyama scheme with step size ∆t = 0.01 s. The
filters are discretized with step size ∆t = 0.1 s, and each
simulation lasts for 500 min, corresponding to approximately
5.5 orbits. In the FPFs, ∆λ = 0.001.

1) Results: RMSE is often a useful measure, but does not
necessarily describe how well the posterior is estimated. In
this problem, the dynamics is governed by an approximately
circular orbit; hence, combined with the measurements, it is
possible to conclude that the posterior should be approx-
imately directed along the orbit. Fig. 3 displays particle
clouds for FPF and ALG1 at two instants in time. The first
snapshot is during prediction phase (when no measurements
are available), after roughly 450 min (left part of figure).
The second snapshot is after five orbits, when the satellite
is within the visibility cone of the first sensor (right part
of figure). Also shown is the actual position and estimated
mean, respectively, at both time instants. We use N = 100
in this simulation. The mean estimate of the POD-based FPF
is close to the actual position, and the particle cloud aligns
along the true orbit during both time instants. The constant-
gain FPF predicts a skewed particle cloud during prediction
phase, and it is also more scattered. When mesurements are
available, FPF accurately predicts the posterior to be located
along the orbit. However, the particle cloud covers almost
a quarter of the orbit, whereas the estimated posterior for
ALG1 is more concentrated around the true mean.

To validate against ground truth, Fig. 4 compares the
particle clouds after five orbits for ALG1 (N = 100) with
a Rao-Blackwellized particle filter (RBPF) using N = 1000
particles. The posteriors are similar in size and shape. In
this particular realization, the mean is slightly more accurate
with the RBPF. This can partly be explained by the resulting
coarse discretization when only using 100 particles in ALG1.
Note that in [11] we showed that the RBPF with N = 100
was severily biased, but for 1000 particles it performed well.

V. CONCLUSION

We proposed a data-driven approach for choosing basis
functions that approximate the gain function present in the
FPF, which is the main difficulty when implementing the
FPF. This is the first paper that proposes a general method
for how to choose the basis functions. The key idea is that
the evolution of the particle cloud gives information about
how to locally adjust the particles. Because the method is
data driven, we believe that it can be applied to a range of
estimation problems.

REFERENCES

[1] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” Radar and Signal
Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107–113, 1993.

[2] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, 2002.

−8000 −6000 −4000 −2000 0 2000 4000 6000

−1500

0

1500

3000

4500

6000

X [km]

Y [km]

FPF

Truth

ALG1

Fig. 3. Particle clouds (N = 100) and mean values (+) after roughly four and a half orbits (left) and five orbits (right), respectively. True path is in solid
gray and earth surface is in dash-dotted gray. Our proposed FPF (ALG1) predicts posteriors that are aligned with the orbit, concentrated around the true
mean. FPF predicts posteriors misaligned with the orbit (left) and overestimates the uncertainty.

6500 7000

−1000

−500

0

500

1000

1500

X [km]

Y [km]

(a)

6500 7000

−1000

−500

0

500

1000

1500

X [km]

Y [km]

(b)

Fig. 4. POD-based FPF (left) for N = 100 compared with RBPF using
N = 1000 after five orbits. Same notation as in Fig. 3. The estimated
posteriors are similar in shape and size. Since the RBPF uses ten times
more particles, the particle cloud is more dense for the RBPF.

[3] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with Rao-Blackwellized particle filters,” IEEE Trans.
Robot., vol. 23, no. 1, pp. 34–46, 2007.

[4] F. Gustafsson, “Particle filter theory and practice with positioning
applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp.
53–82, 2010.

[5] K. Berntorp, “Particle filter for combined wheel-slip and vehicle-
motion estimation,” in Am. Control Conf., Chicago, IL, Jul. 2015.

[6] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and computing,
vol. 10, no. 3, pp. 197–208, 2000.

[7] T. Yang, P. G. Mehta, and S. P. Meyn, “A mean-field control-oriented
approach to particle filtering,” in Am. Control Conf., San Francisco,
CA, Jun. 2011.

[8] T. Yang, H. Blom, and P. Mehta, “The continuous-discrete time
feedback particle filter,” in Am Control conf., Portland, OR, Jun. 2014.

[9] T. Yang, R. Laugesen, P. Mehta, and S. Meyn, “Multivariable feedback
particle filter,” in 51st Conf. Decision and Control, Grand Wailea,
Maui, Hawaii, Dec. 2012.

[10] T. Yang, P. Mehta, and S. Meyn, “Feedback particle filter,” IEEE Trans.
Autom. Control, vol. 58, no. 10, pp. 2465–2480, 2013.

[11] K. Berntorp, “Feedback particle filter: Application and evaluation,” in
18th Int. Conf. Information Fusion, Washington, DC, Jul. 2015.

[12] A. K. Tilton, S. Ghiotto, and P. G. Mehta, “A comparative study of
nonlinear filtering techniques,” in 16th Int. Conf. Information Fusion,
Istanbul, Turkey, Jul. 2013.

[13] G. Tessitore and J. Zabczyk, “Wong-Zakai approximations of stochas-
tic evolution equations,” J. evolution eqs., vol. 6, no. 4, pp. 621–655,
2006.

[14] A. Ern, Theory and practice of finite elements. Springer, 2004.
[15] G. Kerschen, J.-c. Golinval, A. F. Vakakis, and L. A. Bergman, “The

method of proper orthogonal decomposition for dynamical charac-
terization and order reduction of mechanical systems: An overview,”
Nonlinear Dynamics, vol. 41, no. 1-3, pp. 147–169, 2005.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, Maryland: The Johns Hopkins University Press, 1996.

[17] T. B. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle
filters for mixed linear nonlinear state-space models,” IEEE Trans.
Signal Process., vol. 53, no. 7, pp. 2279–2289, 2005.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-050.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

