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Abstract
In this paper, we optimize vapor compression system power consumption through the ap-
plication of a newlydeveloped proportional–integral extremum seeking controller (PI-ESC)
that converges at the same timescale as the process. This method modifies the control law
to include terms proportional to the estimated gradient, but this modification of the control
law requires a more sophisticated gradient estimator in order to avoid bias. We develop a
PI-ESC for which this bias is eliminated. PI-ESC is applied to the problem of compressor
discharge temperature setpoint selection for a vapor compression system where setpoints are
automatically determined so that power consumption is minimized. The vapor compression
system operates with a regulating feedback controller configured to drive the compressor
discharge temperature to setpoints selected by the PI-ESC, and we use a physics-based sim-
ulation model to demonstrate that power consumption is minimized dramatically faster than
by traditional perturbation-based methods.
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Proportional–Integral Extremum Seeking for Vapor Compression
Systems

Daniel J. Burns†, Christopher R. Laughman, and Martin Guay

Abstract— In this paper, we optimize vapor compression
system power consumption through the application of a newly-
developed proportional–integral extremum seeking controller
(PI-ESC) that converges at the same timescale as the process.
This method modifies the control law to include terms propor-
tional to the estimated gradient, but this modification of the
control law requires a more sophisticated gradient estimator in
order to avoid bias. We develop a PI-ESC for which this bias
is eliminated. PI-ESC is applied to the problem of compressor
discharge temperature setpoint selection for a vapor compres-
sion system where setpoints are automatically determined so
that power consumption is minimized. The vapor compres-
sion system operates with a regulating feedback controller
configured to drive the compressor discharge temperature to
setpoints selected by the PI-ESC, and we use a physics-based
simulation model to demonstrate that power consumption is
minimized dramatically faster than by traditional perturbation-
based methods.

I. INTRODUCTION

Vapor compression machines (Fig. 1A) move thermal
energy from a low temperature zone to a high temperature
zone, performing either cooling or heating depending on the
configuration of the refrigerant piping. The relative simplicity
of the machine and its effective and robust performance has
enabled the vapor compression machine in various forms and
packages to become widely deployed, and it is critical to
modern comfort standards and the global food production
and distribution industries.

In many control formulations for vapor compression ma-
chines the evaporator superheat temperature is selected as a
regulated variable for cycle efficiency and equipment protec-
tion [1], [2], [3]. However, for the commercial system con-
sidered herein, a measurement of the evaporator superheat is
not available. Instead, cycle efficiency is maintained through
the regulation of the compressor discharge temperature to a
setpoint that depends on disturbances such as the heat load
and the outdoor air temperature. The discharge temperature
is often measured for equipment protection making it a
commonly available signal, and because the refrigerant state
at this location in the cycle is always superheated, this signal
is a one-to-one function of the disturbances over the full
range of expected operating points [4]. Because discharge
temperature changes with heat loads and outdoor air tem-
peratures, its setpoint cannot be regulated to a constant, but
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instead must vary with external conditions. It is the aim of
this paper to automate the generation of such setpoints in
order to maximize energy efficiency.

More specifically, the optimization target for PI-ESC is the
closed-loop system consisting of a vapor compression system
and feedback controller (Fig. 1B). The feedback controller
is configured to regulate the zone temperature to a setpoint
determined by an occupant and the compressor discharge
temperature to a setpoint determined by the extremum seek-
ing controller. The feedback controller manipulates a variable
speed compressor, the electronic expansion valve and both
the evaporator and condenser fans. With this multivariable
feedback controller, and because of the coupling between
the system actuators and regulated variables, all actuators
are changed as a result of changes to the discharge temper-
ature setpoint, and therefore a energy consumption for the
entire machine is minimized, given the set of outdoor air
temperature and heat load disturbances.

However, determining these energy-optimal setpoints is
not straightforward. Models of the vapor compression system
that attempt to describe the influence of commanded inputs
on thermodynamic behavior and power consumption are of-
ten low in fidelity, and while they may have useful predictive
capabilities near the conditions at which they were calibrated,
the environments into which these systems are deployed
are so diverse as to render comprehensive calibration and
model tuning intractable. Therefore, relying on model-based
strategies for realtime optimization is tenuous.

Recently, model-free extremum seeking methods that op-
erate in realtime and aim to optimize a cost have received
increased attention and have demonstrated improvements in
the optimization of vapor compression systems and other
HVAC applications [5], [6], [7], [8]. To date, the dominant
extremum seeking algorithm that appears in the HVAC
research literature is the traditional perturbation-based algo-
rithm first developed in the 1920s [9] and re-popularized
in the late 1990s by an elegant proof of convergence for a
general class of nonlinear systems [10].

Most extremum seeking controllers can be viewed as
a gradient descent optimization algorithm implemented as
a feedback controller and therefore consists of two main
functional components: (1) a estimation part that determines
the local gradient of the performance metric with respect
to the decision variables, and (2) a control law part that
manipulates the decision variables to steer the system to
the optimum of the performance metric. In the traditional
perturbation-based method, a sinusoidal term is added to
the input at a slower frequency than the natural plant dy-
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Fig. 1. A. The vapor compression system under study consists of a variable
speed compressor, condensing heat exchanger, electronically controlled
expansion valve, and evaporating heating exchanger. The inputs to the
VCS that are manipulated by the control system include (i) the compressor
frequency, (ii) the condenser fan speed, (iii) the electronic expansion valve
position, and (iv) the evaporator fan speed. B. Actuator commands are
computed by the feedback regulator, which drives the the vapor compression
system toward setpoints that consist of external setpoints (e.g., a desired zone
temperature setpoint) and machine setpoints (e.g., a compressor discharge
temperature setpoint). The PI-ESC selects discharge temperature setpoints
uk that minimize the system power consumption yk in the presence of
disturbances such as changes in outdoor air temperature and heat load.

namics, inducing a sinusoidal response in the performance
metric [11] and introducing a timescale slower than the
process dynamics. The controller then filters and averages
this signal to obtain an estimate of the gradient. Averaging
the perturbation introduces yet another (and slower) time
scale in the optimization process. Using a gradient estimate
obtained in this way, the control law integrates the estimated
gradient (with appropriate sign that depends on the optimiza-
tion objective) to drive the gradient to zero.

As a result, the traditional perturbation-based extremum
seeking converges to the neighborhood of the optimum at
about two timescales slower than the plant dynamics due
to inefficient estimation of the gradient, and slow (integral-
action dominated) adaptation in the control law. For thermal
systems such as vapor compression machines where the
dynamics are already on the order of tens of minutes, the
slow convergence properties of perturbation-based extremum

seeking become impediments to wide-scale deployment.
However, convergence rates can be improved by address-

ing both components of the extremum seeking algorithm. A
more efficient method for estimating gradients has been de-
veloped that treats the gradient as an unknown time-varying
parameter to be identified. Time-varying extremum seeking
(TV-ESC) uses adaptive filtering techniques to estimate the
parameters of the gradient—eliminating the timescale associ-
ated with averaging perturbations [12]. Recently, the authors
successfully applied this technique to vapor compression sys-
tem optimization [4]. However, that method did not modify
the control law, and while convergence was significantly
improved compared to the perturbation-based method, the
control law of TV-ESC is still integral-action dominated.

In this paper, we apply a newly-developed PI-ESC to
vapor compression systems (Fig. 1B) in which the algorithm
estimates the gradient using the efficient time-varying ap-
proach, but also modifies the control law to include a term
proportional to the value of the estimated gradient. This term
drives the system toward the optimum operating point at the
same timescale as the vapor compression system dynamics.
However, naı̈ve modification of the control law to include
the proportional term will introduce bias in the estimated
gradient, and therefore the combined estimator–control law
structure is developed concurrently in order to eliminate bias.

The rest of the paper is as follows. In Section 2 we
derive the new PI-ESC. In Section 3 the performance of
PI-ESC is compared to both (i) perturbation-based and (ii)
time-varying extremum seeking in a simple example. Section
4 describes the simulation model used for validation and
present simulated results, and concluding remarks are offered
in Section 5.

II. PROPORTIONAL–INTEGRAL EXTREMUM SEEKING
CONTROLLER

This section outlines the development of an extremum
seeking controller based on a time-varying estimate of the
gradient of the cost and a PI control law to drive the
system to its optimum operating point. See [13] for the
full development and stability and convergence analysis in
discrete time.

A. PI-ESC Development

We consider a class of nonlinear systems of the form:

xk+1 = xk + f (xk)+g(xk)uk (1)
yk = h(xk) (2)

where xk ∈ Rn is the vector of state variables at time k, uk
is the input variable at time k taking values in U ⊂ R and
yk ∈ R is the objective function at step k, to be minimized.
It is assumed that f (xk) and g(xk) are smooth vector valued
functions and that h(xk) is a smooth function.

We assume that the cost h(x) is relative order one and
satisfies the optimality conditions:

1) ∂h(x∗)
∂x = 0

2) ∂ 2h(x)
∂x∂xT > β I, ∀x ∈ Rn
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Fig. 2. Overview of the PI-ESC algorithm.

where β is a strictly positive constant.
We let α(xk, ûk) = xk+ f (xk)+g(xk)ûk. The rate of change

of the cost function yk = h(xk+1) is given by:

h(xk+1)−h(xk) = h(xk + f (xk)+g(xk)uk)

−h(α(xk))+h(α(xk), ûk)−h(xk).

Using a second order Taylor expansion on the first two
terms we can rewrite the cost dynamics as:

yk+1− yk = Ψ0,k(xk, ûk)+Ψ1,k(xk,uk, ûk)(uk− ûk).

where Ψ0,k(xk, ûk) = h(α(xk, ûk)) − h(xk), and
Ψ1,k(xk,uk, ûk) = (∇h(α(xk, ûk))g(xk) + 1

2 (uk −
ûk)
>g(xk)

>∇2h(ỹk)g(xk) where ỹk = α(xk, ûk)+θg(xk)(uk−
ûk) for θ ∈ (0,1). By the relative order one assumption on
h(x), the system’s dynamics can be decomposed and written
as:

ξk+1 = ξk +ψ(ξk,yk) (3)
yk+1 = yk +Ψ0,k(xk, ûk)+Ψ1,k(xk,uk, ûk)(uk− ûk) (4)

where ξk ∈ Rn−1 and ψ(ξk, yk) is a smooth vector valued
function. By Equation (4), the cost function dynamics are
parameterized as follows:

yk+1 = yk +θ0,k +θ1,k(uk− ûk)

where the time-varying parameters θ0,k and θ1,k represent
Ψ0,k and Ψ1,k, and are to be identified. Importantly, in order
to estimate the gradient θ1,k without bias, θ0,k must also be
determined.

Let θ̂0,k and θ̂1,k denote the estimates of θ0,k and θ1,k,
respectively, and consider the following state predictor

ŷk+1 = ŷk + θ̂0,k + θ̂1,k(uk− ûk)

+ Kkek−ωk+1(θ̂k− θ̂k+1) (5)

where θ̂k = [θ̂0,k, θ̂
T
1,k]

T is the vector of parameter estimates
at time step k given by any update law, Kk is a correction
factor at time step k, ek = yk− ŷk is the state estimation error.

We let φk = [1,(uk− ûk)
T ]T . The variable wk is the following

output filter at time step k

wk+1 = wk +φk−Kkwk, (6)

with ω0 = 0. Using the state predictor defined in (5) and the
output filter defined in (6), the prediction error ek = yk− ŷk
is given by

ek+1 = ek +φkθ̃k+1−Kkek

+ ωk+1(θ̂k− θ̂k+1)+wk+1(θk+1−θk)

e0 = y0− ŷ0. (7)

An auxiliary variable ηk is introduced which is defined as
ηk = ek−wT

k θ̃k. Its dynamics are given by

ηk+1 = ek+1−wk+1θ̃k+1

η0 = e0. (8)

Since ηk is unknown, it is necessary to use an estimate,
η̂ , which is generated by the recursion:

η̂k+1 = η̂k−Kkη̂k (9)

Let the identifier matrix Σk be defined as

Σk+1 = αΣk +wT
k wk, Σ0 = αI � 0 (10)

with an inverse generated by the recursion

Σ
−1
k+1 =Σ

−1
k +

(
1
α
−1

)
Σ
−1
k

− 1
α2 Σ

−1
k wk(1+

1
α

wT
k Σ
−1
k wk)

−1wT
k Σ
−1
k (11)

Using (5), (6), and (9), the parameter update law is

θ̂k+1 = θ̂k +
1
α

Σ
−1
k ω

T
k

(
I +

1
α

wkΣ
−1
k wT

k

)−1

(ek− η̂k) (12)

And to ensure that the parameter estimates remain within the
constraint set Θk, we use a projection operator [12], [14]

¯̂
θk+1 = Proj{θ̂k +Σ

−1
k wT

k
(
I +wkΣ

−1
k wT

k
)−1

(ek− η̂k),Θk}.
(13)



The algorithm for the projection operator must be designed
to ensure that estimates are bounded within the constraint set
and guarantee stability. The design of projection algorithms
in discrete-time systems must be done with care—it cannot
be designed as in the continuous-time case. A suitable
discrete-time projection algorithm is presented in [13].

Finally, the proposed control law is given by:

uk =−kgθ̂1,k + ûk (14)

ûk+1 = ûk−
1
τI

θ̂1,k. (15)

where kg and τI are positive constants to be assigned. One
aspect of the proposed adaptive controller (14) is that the
quantity θ̂1,k estimates the term θ1,k which itself depends on
the input. As a result, once estimation of θ1,k is achieved,
the resulting control action defines a recursive map that
converges to the implicitly defined state-feedback controller
uk = α(xk, ûk). The proof of convergence provided in [13]
demonstrates how the effect of the dependence of θ1,k on uk
can be handled in the design of the PI-ESC.

B. PI-ESC Summary

The final PI-ESC algorithm consists of a time varying
parameter estimation routine for determining θ̂0,k and θ̂1,k
and consists of Equations (5), (6), (9), (11), and (13) with
tuning parameters K and α . The control law is given by
Equations (14) and (15) and contains terms proportional to
the estimated gradient and with integral action necessary to
identify optimal equilibrium conditions, and is tuned using
the parameters kg and τI . A block diagram of the PI-ESC
algorithm summarizing signal flow is shown in Figure 2.

III. COMPARISON OF EXTREMUM SEEKING METHODS

This section presents the convergence performance of
three extremum seeking controllers applied to a previously
published example problem [4]. Traditional perturbation-
based extremum seeking control [15], time-varying ex-
tremum seeking control [12] and proportional–integral ex-
tremum seeking control [13] are each applied to the problem
of finding input values to a simple Hammerstein system that
minimize its output, where the controllers have no knowledge
of the plant model (see Fig. 3A). The system equations are

xk+1 = 0.8xk +uk

yk = (xk−3)2 +1,

which has a single optimum point at u∗ = 0.6, y∗ = 1.
The pole near the unit circle represents the dominant

process dynamics and establishes a fundamental limit on
convergence rate. Reasonable effort is made to obtain pa-
rameters for all ESC methods that achieve the best possible
convergence rates. The perturbation ESC parameters are

dk = 0.2sin(0.1k)

ωLP = 0.03
K =−0.005
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Fig. 3. A. A simple Hammerstein system under extremum seeking control.
B. A comparison of the convergence performance of three extremum seeking
algorithms. The top plot shows the control variable uk and the bottom plot
shows the performance metric yk . The perturbation-based ESC (light gray)
converges to the optimum after about 4000 steps (not shown), Time-varying
ESC (gray) converges in about 100 steps, while the PI-ESC (red) converges
in about 15 steps—roughly 10 steps longer than the bang-bang method
(black) with prior knowledge of the optimizer. The inset figure in the bottom
plot shows a detailed view of the convergence.

Where dk is the sinusoidal perturbation, ωLP is the cutoff
frequency for a first-order low-pass averaging filter, and K
is the (integral-action) adaptation gain. A high-pass washout
filter is not used as convergence rate is improved without it.

The parameters used for the TV-ESC are

dk = 0.001sin(0.1k) ki = 0.001
α = 0.1 ε = 0.4,

where ki is the (integral-action) adaptation gain, α is the
estimator forgetting factor, and ε is the estimator timescale
separation parameter.

The parameters used for the PI-ESC are

dk = 0.001sin(0.2k), τI = 60,
α = 0.5, kg = 0.0003, K = 0.1,

where τI is the integral time constant, kg is the proportional
gain and is computed from the relationship kg = 1/(τ2

I ), α is
the estimator forgetting factor, and K is the estimation gain.

Simulations are performed starting from an initial input
value of u0 = 2 and the ESC methods are turned on after



100 steps. The resulting simulations are shown in Fig. 3B.
The perturbation ESC method converges to a neighborhood
around the optimum in about 4000 steps (not shown in the
figure), the TV-ESC method converges in about 100 steps,
while the PI-ESC method converges in about 15 steps. The
resulting controller performance is compared to the response
obtained from a controller that has a priori knowledge of the
system optimizer and applied directly in one time step, for
which the output settles in about 10 steps.

The fast convergence characteristic of PI-ESC is well
suited to the optimization of thermal systems with their asso-
ciated long time constants. In the next section, we apply the
PI-ESC algorithm to the problem of selecting setpoints for
the discharge temperature of a vapor compression machine
and present simulation results.

IV. PI-ESC FOR VAPOR COMPRESSION SYSTEMS

While the proposed algorithm is general and applicable
to a wide range of problems, the fast convergence prop-
erty is particularly appropriate for thermal systems and
their characteristically slow dynamics. To demonstrate, we
apply PI-ESC to the problem of determining a setpoint
for discharge temperature such that power consumption is
minimized, while other feedback loops maintain the setpoints
of regulated variables in the presence of disturbances such
as changes in outdoor air temperature and heat load (see
Fig. 1B). In this section, we briefly describe a realistic
nonlinear physics-based model of the vapor compression
cycle that models the thermofluid dynamics, and then present
the results of applying this PI-ESC method to determine
the optimal compressor discharge setpoint for this vapor
compression cycle model, and compare these results to the
performance of a traditional perturbation-based extremum
seeking method.

A. Model Description

A detailed model describing the nonlinear dynamics of the
vapor compression cycle is developed using the equation-
oriented modeling language Modelica [16]. Physics-based
models are constructed for the four principal components: the
evaporating and condensing heat exchangers, the compressor,
and the electronic expansion valve. Algebraic models are
used for the compressor and the expansion valve because
the dynamics of these components are much faster than that
of the heat exchangers. The partial differential equations
representing the mass, momentum, and energy balances for
the refrigerant in the heat exchangers are discretized into
48 volumes along the direction of flow using the 1-D finite
volume method. A real gas model of the refrigerant R410a
was used for the primary working fluid, and a moist air
model was used to describe the changes in the temperature
and relative humidity of the secondary working fluid due to
heat transfer between the refrigerant and the air through the
discretized tube wall. Additional details for this model are
found in [17].

The PI-ESC algorithm is implemented in the Model-
ica language for the purposes of testing the PI-ESC con-
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Fig. 4. A simulation of discharge temperature setpoint optimization using
PI-ESC and perturbation ESC. Starting with a compressor temperature hotter
than optimal for the particular set of boundary conditions, PI-ESC discovers
values that minimize the power consumption. PI-ESC drives the system to
its optimum operating point about 20 minutes after the algorithm is switched
on, whereas perturbation-based ESC settles in about 900 min (not shown).

trol method on the vapor compression cycle. Because
this algorithm is cast in discrete-time while the model
of the vapor compression cycle is in continuous-time, the
Modelica.Synchronous library is used to interface
between these two paradigms by using a clocked approach.
The resulting cycle and control system comprise a set of
8,663 differential algebraic equations with 124 state vari-
ables, and is compiled and simulated using the Dymola 2016
compiler [18] running on an i7 desktop machine with 8GB
of memory.

B. Simulation results

This section describes simulation results wherein PI-ESC
is compared to perturbation-based ESC for the problem
of determining compressor discharge temperature setpoints
that minimize power consumption. The simulation model
described in the previous section is used for evaluation.

Initially, the discharge temperature setpoint is slowly
ramped from 82◦C to about 42◦C in order to obtain the steady
state mapping of power vs. Td setpoint and demonstrate con-
vexity (black line of Fig. 5). The room temperature tracking
error and discharge temperature tracking errors are monitored
during the ramp to ensure no dynamics are excited. Note that
the steady state map has a unique global minimum, several
local minima, regions of very small gradients, and sharp
changes in power (at least one of which corresponding to
a loss of superheating in the evaporator).

Simulations with the two extremum seeking algorithms are
initialized with the discharge temperature setpoint at 78 ◦C,
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ESC are shown with the steady state map (black). After a transient, PI-ESC
quickly converges to the true minimum power, whereas perturbation ESC
converges to a local minimum for these simulation conditions.

and the system was run to steady state. At t = 35 min, both
extremum seeking algorithms are bumplessly switched on.
The transient responses are shown in Fig. 4, and the evolution
of optimization is shown with steady state map in Fig. 5.

The perturbation based extremum seeking control system
settles at about t = 900 min (Fig. 4) and ultimately becomes
trapped in a local minima (Fig. 5). In contrast, the PI-
ESC converges to the correct minimum in about only 20
minutes (shown in red in Figs. 4 and 5). This period is on
the same order as the dominant plant time constant, rep-
resenting convergence rates that enable realtime application
of extremum seeking for thermodynamic applications where
previous algorithms acted too slowly.

V. CONCLUSION

We have developed a new extremum seeking algorithm
that converges at the same timescale as the dominant plant
dynamics, which requires an estimation routine designed
in conjunction with the proportional-integral control law.
With the gradient appropriately estimated, convergence can
proceed much faster than alternative approaches. The PI-
ESC algorithm is applied to the problem of compressor
temperature setpoint selection such that the power consump-
tion is minimized at timescales that can ultimately enable
deployment beyond controlled laboratory conditions.
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[9] M. Leblanc, “Sur l’électrification des chemins de fer au moyen
de courants alternatifs de fréquence élevée,” Revue Générale de
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