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need for an inner-loop attitude controller, and how these separate systems work together to
achieve all the controller’s objectives.
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MPC for Coupled Station Keeping, Attitude Control, and Momentum
Management of Low-Thrust Geostationary Satellites

Alex Walsh‹, Stefano Di Cairano: and Avishai Weiss;

Abstract— This paper develops a model predictive control
(MPC) policy for simultaneous station keeping, attitude control,
and momentum management of a nadir-pointing geostationary
satellite equipped with three reaction wheels and four gimbaled
electric thrusters that are located on the anti-nadir face of the
satellite. The MPC policy works in combination with an inner-
loop SOp3q-based attitude controller that ensures the satellite
maintains a nadir-pointing attitude. The MPC policy is able
to maintain the satellite’s position within a prescribed latitude
and longitude window, while minimizing the ∆v required by
the thrusters. The MPC policy also enforces thruster pointing
constraints and manages the satellite’s stored momentum. With
reference to simulation results, we explain how the MPC is
tuned for station keeping, the need for an inner-loop attitude
controller, and how these separate systems work together to
achieve all the controller’s objectives.

I. INTRODUCTION

Recently, there has been significant interest in the utiliza-
tion of low-thrust, high-specific-impulse electric engines for
satellite control – both for propellant-efficient interplanetary
trajectory design [1], [2], and for routine orbital station
keeping [3]–[8]. Electric thrusters have considerably higher
specific impulse than that of chemical thrusters, allowing for
a reduction in propellant mass, thereby lowering launch costs
and enabling larger payloads [9]. Conventional chemical
thrusters produce hundreds of newtons for orbit control [10],
and in geostationary Earth orbit (GEO), may be fired open-
loop once every two weeks to compensate for satellite drift
[11]. In contrast, the maximum thrust currently generated by
state-of-the-art electric propulsion systems is in the hundreds
of millinewtons [12], which for GEO, is on the order of
the perturbation forces [13]. Thus, the utilization of electric
thrusters poses new control challenges, requiring near con-
tinuous operation in order to provide the necessary imparted
impulse, and suggest the use of closed-loop feedback control
[3], [6], [7].

The problem of maintaining a low-thrust satellite in GEO
is treated in [6], where the authors propose a model predictive
control (MPC) policy for simultaneous station keeping and
momentum management. The authors develop their control
for a satellite equipped with three reaction wheels and six
dual-axis thrusters mounted on each face of the satellite,
enabling pure thrusts and torques applied in any direction and
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about any axis. In this paper, we expand on [6] to consider
a realistic thruster configuration with gimbaled thrusters
located on the satellite’s anti-nadir face [3], [14], [15]. This
arrangement leaves room on the satellite’s other faces for
antennas and solar panels, without the risk of thruster plume
impingement.

However, the configuration also poses new challenges
for control design, severely restricting the control action
and making it more difficult to reject orbital perturbations.
Furthermore, to both efficiently counteract the perturbation
forces and allow for momentum unloading, the thrusters are
permitted to gimbal. In doing so, they may also generate
undesirable torques on the satellite, significantly coupling
the satellite orbital and attitude dynamics. Thus, the need to
treat concurrently both the “fast” attitude dynamics and the
“slow” orbital dynamics present computational challenges in
resource constrained hardware. With fast dynamics, a small
discretization time-step is required. However, a long MPC
prediction horizon is necessary for station keeping. A small
discretization time step accompanied by a long prediction
horizon results in a large and computationally challenging
optimization problem.

The main contribution of this paper is the design of
an inner-outer loop control architecture that overcomes the
aforementioned challenges, where an outer-loop MPC policy
operates in conjunction with an inner-loop SOp3q-based
attitude controller for position, attitude, and momentum
control. The paper begins with the description of the satellite
model in Section II, followed by station-keeping MPC,
model linearization, and constraints in Section III. The inner-
loop attitude controller is introduced in Section IV. Closing
remarks follow the main contribution in Section V.

The following notation will be used in all derivations.
A frame of reference Fa is defined by a set of three
orthonormal dextral basis vectors, and can be written as a
vectrix FÝÑa

, where FÝÑT

a
“ r aÝÑ1 aÝÑ2 aÝÑ3s. A physical vector

describing the position of a point y2 relative to point y1 is
written as vÝÑy2y1 . A physical vector can be resolved in any
reference frame, such as, vÝÑ “ aÝÑ1va1 ` aÝÑ2va2 ` aÝÑ3va3 “
rva1 va2 va3sFÝÑa

“ FÝÑT

a
va, where the subscript a on the

column matrix of components va indicates that the physical
vector vÝÑ is resolved in Fa. Since vÝÑ “ FÝÑT

a
va “ FÝÑT

b
vb,

applying a left dot-product with FÝÑb
yields vb “ FÝÑb

¨
FÝÑT

a
va “ Cbava. The matrix Cba P SOp3q is a direction

cosine matrix (DCM) defined by Cba
4“ FÝÑb

¨ FÝÑT

a
, where

SOp3q “ tC P R3ˆ3|CTC “ 1,det C “ 1u, and 1 is the
identity matrix. Principal rotations about the aÝÑi basis vector



by an angle α are denoted by Cba “ Cipαq.
The “cross” operator maps a three-dimensional vector to

a skew symmetric matrix, that is p¨qˆ : R3 Ñ sop3q, where
sop3q “ tU P R3ˆ3|U “ ´UTu. The “uncross” map does the
opposite where p¨qv : sop3q Ñ R3, where pvˆqv “ v,@v P
R3. The skew-symmetric projection operator is PapUq “
1
2 pU´ UTq, for all U P Rnˆn.

II. SATELLITE MODEL

Consider the satellite depicted in Fig. 1 that has three
axisymmetric reaction wheels attached to a rigid bus in an
orthogonal and mass balanced configuration. Four electric
thrusters are located on the anti-nadir face of the satellite.
The thrusters provide thrust in a line coincident with their
position and the center of mass of the satellite, but are able
to gimbal away from this nominal direction. The satellite’s
center of mass is denoted by c and has a bus-fixed frame Fp.
The frame Fg is the Earth Centred Inertial (ECI) frame, w is
an unforced particle, and it is assumed that w is collocated
with the center of the Earth. Each thruster has a frame Fi,
located at point ti for thrusters i “ 1, . . . , 4.
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Fig. 1: Satellite B with platform P showing electric thrusters.
A force fÝÑ

t1 is shown when the thrust is perfectly in line
with the center of mass of the satellite.

The equations of motion of the satellite are given by

:rcwg ` µ rcwg››rcwg
››3 “ ap

g `
1

mB
fthrust
g ,

JBc
p 9ωpg

p ` ωpgˆ

p

`
JBc
p ω

pg
p ` Js 9γ

˘` Jsη “ τ p
p ` τ thrust

p ,

9Cpg “ ´ωpgˆ

p Cpg,

:γ “ η, (1)

where rcwg is the position of the satellite and γ is a column
matrix containing the angle of rotation of each reaction
wheel. The vector ωpg

p is the angular velocity of Fp relative
to Fg resolved in Fp. The matrix JBc

p is the moment of inertia
of the satellite B relative to its center of mass, resolved
in Fp. Each thruster applies a force fÝÑ

ti at each point ti,
and is resolved in a frame dedicated to each thruster Fi.
The reaction wheel array has a moment of inertia Js and
the wheels are controlled with an acceleration η. The term

ap
g represents the external perturbations on the satellite due

to Earth’s non spherical gravitational field, solar and lunar
gravitational attraction, solar radiation pressure (SRP), and
are defined in [6, Eq. (2)]. The term τ p

p represents the SRP
perturbation torque, which assumes total absorption, and is
given by [16, p. 229].

The thrusters are placed on the rear side of the satellite,
and each thruster has a position rÝÑtib. The nominal thrust
direction is along the vector rÝÑtic. The frame Fi has its iÝÑ2

unit vector defined such that iÝÑ2 “ rÝÑtic{| rÝÑtic|. The DCM
Cip is defined using the geometry of the satellite. Each force
fÝÑ

ti is applied at point ti. The total force due to the thrusters
applied to the satellite resolved in Fg is given by

fthrust
g “

4ÿ

i“1

ftig “ CT
pg

4ÿ

i“1

CT
ipftii . (2)

The torque produced by the electric thrusters relative to the
satellite’s center of mass, resolved in the bus fixed frame Fp

is given by

τ thrust
p “

4ÿ

i“1

rtic
ˆ

p CT
ipftii . (3)

The gimbal angle of the thruster is a quantity that can be
evaluated once the controller has found the control input ftii .
The gimbal angles comprise two angles, α1 and α3, which
are depicted in Fig. 2. The angles are defined such that ftii
can be described by two principal rotations, yielding

ftii “ ´CT
3 pα3qCT

1 pα1q12
››ftii

›› . (4)

The negative sign is due to the convention that at zero gimbal
angle, the thrust is in the ´ iÝÑ2 direction. The controller
computes the thrust components resolved in Fi, rather than
a magnitude and two angles, because the latter produces a
nonlinear problem and makes the optimization much more
difficult.

iÝÑ3

t1

iÝÑ1

fÝÑ
t1

´α3

α1

iÝÑ2

Fi

Fig. 2: A satellite thruster with gimbal angle and linear
pointing constraint. In this figure, the force fÝÑ

ti does not
satisfy the pointing constraint as it is outside the blue shaded
pyramid.

III. MPC FOR STATION KEEPING, MOMENTUM
MANAGEMENT, AND ATTITUDE CONTROL

The main contribution of this paper is the design of an
architecture that allows for simultaneous station keeping,
attitude control, and momentum management for the satellite
shown in Fig. 1. The controller’s objectives are to



1) maintain the satellite in the station keeping window,
2) minimize fuel consumption of the satellite,
3) ensure thrust remains within prescribed constraints,
4) maintain a nadir-pointing attitude, and
5) manage the reaction wheel speeds.

Following [6], an MPC policy is ideal for this task as it is
naturally able to handle these objectives. The MPC controller
solves a receding-horizon finite-time optimal control problem
that is based on a system model subject to pointwise-in-
time state and control constraints and a user-defined cost
function. By using linearized equations of motion, linear
equality and inequality constraints, and quadratic costs on the
states and control, the MPC can be formulated as a quadratic
programming (QP) problem. A QP can be solved quickly
and efficiently, which makes it suited for satellites where
on-board computing power may be limited.

A. Linearization for MPC

The dynamics (1) are resolved in Hill’s frame Fh and
linearized about a nominal circular orbit with mean motion n,
angular velocity ω0, in a nadir-pointing configuration defined
by Fd with zero reaction wheel speed. The attitude error is
parametrized by a 3 ´ 2 ´ 1 Euler angle sequence given
by Cpd “ CpgCT

dg “ C1pφqC2pθqC3pψq, where the angles
ψ, θ and φ correspond to the yaw, pitch and roll of the
satellite. The Euler angles are condensed to a column matrix
δθ

4“ rδφ δθ δψsT. Defining Ω
4“ diagp´3n2, 0, n2q, the

linearized equations of motion are given by

δ:r “ ´Ωδr´ 2ωˆ0 δ 9r` ap
h `

1

mB
CT

dh

4ÿ

i“1

CT
ipftii (5a)

δ 9θ “ ´ωˆ0 δθ ` δω (5b)

δ 9ω “ ´JBc´1

p pωˆ0 JBc
p ´ pJBc

p ω0qˆqδω

´ JBc´1

p ωˆ0 Jsδ 9γ ´ JBc´1

p Jsη `
4ÿ

i“1

rtic
ˆ

p CT
ipftii . (5c)

The discrete-time linear model with time step ∆t is

xk`1 “ Axk ` Bw,dwk ` Buk, (6)

where wk models the disturbances ap
h. Equation (6) is

used along a prediction horizon k “ 1, . . . , N . During the
prediction horizon, we can approximate the disturbances
wk, k “ 1, . . . , N as the disturbances associated with the
satellite at its desired position, since the satellite will always
be kept very close to the desired position during correct
operation. The control input uk is uk “ rft

T
1
1 . . . ft

T
4
4 ηTsT.

B. Constraints

The linearized dynamics are resolved in Fh, with δr “
rr1 r2 r3sT. As such, the station keeping constraints are
given by |δr2| ď r0 tanpλ1,maxq, |δr3| ď r0 tanpλ2,maxq,
where λ1,max and λ2,max are the maximum tolerable lon-
gitude and latitude errors, respectively, and where r0 is the
nominal orbital radius.

The thrust pointing constraint is enforced by constraining
the thrust to remain in the interior of four planes, and is
described by the element-wise constraints

Diftii ě 0, (7)

where each of the four rows of Di contains a normal vector
describing a plane. The four planes in (7) are visualized in
Fig. 2. The thrust magnitude constraint is a norm constraint››ftii

›› ď fmax, which is nonlinear. This can be approximated
as linear by imposing the constraint

ˇ̌
ftii
ˇ̌ ď fmax, where

fmax “ r1 1 1sTfmax, and fmax is the maximum allowable
thrust. Note that while this approximation works well in our
case, several other approximations of the norm are possible.

The attitude error of the satellite is also subject to the
element-wise constraint |δθ| ď θmax, where θmax is the
maximum allowable attitude error.

C. MPC for Station Keeping With Attitude Control

The MPC policy solves the finite-horizon optimal control
problem at time t

min
Ut

xTN |tPxN |t `
N´1ÿ

k“0

xTk|tQxk|t ` uT
k|tRuk|t, (8)

subject to

xk`1|t “ Axk|t ` Bw,dwk|t ` Buk|t, k “ 0, . . . , N ´ 1,

x0|t “ xptq, ˇ̌
δr2k|t

ˇ̌ ď r0 tanpλ1,maxq,ˇ̌
δθk|t

ˇ̌ ď θmax,
ˇ̌
δr3k|t

ˇ̌ ď r0 tanpλ2,maxq,
Diftiik|t ě 0,

ˇ̌
ˇftiik|t

ˇ̌
ˇ ď fmax, i “ 1, . . . , 4,

where N is the prediction horizon, Ut “ tu0|t, . . . ,uN´1|tu,
and Ut̊ “ tu˚0|t, . . . ,u˚N´1|tu is the optimizer of (8). The
matrices Q ě 0 and R ą 0 are state and control weights, and
P ą 0 is the terminal cost determined from the solution of the
Discrete Algebraic Riccati Equation (DARE) for the infinite
horizon problem. The control is selected as uptq “ u˚0|t.

Since the terminal cost P is a solution of the DARE, local
stability of the equilibrium is guaranteed. Near equilibria, if
state and control constraints are inactive, the solution of (8) is
equivalent to that of an LQR. Feasibility of (8) is guaranteed
by relaxing the state constraints to soft constraints with the
introduction of slack variables.

D. Simulation Results

The purpose of the first simulation is to produce results
similar to [6], demonstrating that MPC applied to the nonlin-
ear dynamics (1) is able satisfy control objectives 1-5. The
satellite’s mass is mB “ 4000 kg. The mean surface area is
S “ 200 m2, surface reflectance crefl “ 0.6, and the solar
facing area is Sfacing “ 37.5 m2. Each reaction wheel has a
mass mWk

“ 20 kg, a radius rWk
“ 0.75 m, and a height

of `Wk
“ 0.2 m. For simplicity, the three reaction wheels

are assumed to coincide with the satellite’s center of mass.
Earth’s gravitational parameter is µE “ 398600 km3/s2, the
Sun’s is µS “ 132712440018 km3/s2, the Moon’s is µM “
4902.8 km3/s2. Earth’s J2 parameter is J2 “ 1.081874¨10´3,



its radius is RE “ 6378 km, and the solar radiation pressure
constant is Csrp “ 4.5 ¨ 10´6 N/m2.

The simulation time is set to 90 minutes with ∆t “ 5
minutes. The satellite must remain in a station keeping
window of ˘0.01˝ in latitude and longitude. The maximum
thrust is fmax “ 0.1 N, with a pointing angle α1 “
α3 “ 36˝. The maximum allowable error on the Euler
angles is ˘0.02˝. The weighting matrices for the states in
the simulation are Qr “ Q9r “ 1 ¨ 10´3, Qθ “ 1 ¨ 104,
Qω “ 1 ¨ 102, and Q 9γ “ 1 ¨ 105. The initial condition is set
on January 1, 2000 with a semimajor axis of 42164.2 km and
all other orbital elements zero. The attitude initial conditions
are Cpg “ C3p180˝q, ωpg

p “ ω0, and 9γp0q “ r50 50 50sT
rad/s, which corresponds to Cpd “ 1 and ωpd

p “ 0.
The results are shown in Fig. 3. As in [6], the MPC policy

is able to drive the reaction wheel speed to zero (Fig. 3a).
However, the optimal control uk causes the pointing con-
straint to be violated, and this is due to several reasons. First,
the dynamics of the nonlinear system and the linear system
diverge with nonzero reaction wheel speeds. For example,
when the reaction wheel speeds increase from 0 to 50 rad/s,
a lightly damped mode appears at 0.5 rad/s, and a higher
damped mode appears at 95.3 rad/s. Since there is a large
difference between the linearized and nonlinear systems, the
MPC policy predicts that the attitude constraints are satisfied
when the linear dynamics are propagated forward in time, as
shown by the dot-dashed line in Fig. 3b. However, when the
control is applied to the nonlinear system, the constraints
are in fact violated. Second, in [6], the thrusters are able
to create pure torques that are decoupled from body forces.
With the thruster configuration in this paper, a thruster torque
simultaneously creates a net body force. This effect couples
the orbital and attitude dynamics, which complicates control.

This simulation identifies additional key problems with an
MPC control policy that handles both attitude control and
station keeping. For attitude control in [6], ∆t “ 10 min,
and here ∆t “ 5 min are used to handle the relatively
“fast” attitude dynamics. Station keeping dynamics are much
slower than the attitude dynamics, and thus the discretization
of the orbital dynamics do not require small time steps. To
take advantage of the station keeping dynamics, a horizon
of at least half an orbit is needed. A small time step
(∆t “ 5 min) coupled with a large prediction horizon (15 h)
dramatically increases the size of the optimization problem
(N “ 180). Moreover, this optimization would need to be
solved every 5 minutes instead of every hour, which would
require a considerable increased use of onboard resources.

IV. MPC WITH INNER-LOOP ATTITUDE CONTROL

To overcome the problems discussed in the previous sec-
tion, an inner-loop attitude controller is proposed, with con-
trol architecture described in Fig. 4. The inner-loop controls
the attitude via the reaction wheels, while the MPC policy
controls the closed-loop satellite/attitude controller system.
Therefore, the linearization of the open-loop system (5) is
no longer adequate, and the MPC requires the closed-loop
satellite/attitude controller to be linearized.
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Fig. 3: Simulation for MPC controller without inner-loop
control and ∆t “ 5 min.

A non-adaptive form of the controller proposed in [17]
is used for the inner-loop attitude controller as it provides
almost global asymptotic stability for attitude tracking and
is capable of harmonic disturbance rejection. For an explana-
tion of “almost global”, see [17]. With respect to the attitude
controller, the SRP torque and the torques due to the electric
thrusters are considered to be attitude disturbances.

It is assumed that the torque disturbance is the output
of an LTI system Ad,Cd. Defining S 4“ ´PapCpdqv, we
obtain 9S “ Papωpdˆ

p Cpdqv, and ωpd
p “ ωpg

p ´Cpdω
dg
d . The

disturbance τ p
p is estimated by

9̂d “ Add̂` Bdpωpd
p `K1Sq, (9a)

τ̂dist “ Cdd̂, (9b)

where K1 “ KT
1 ą 0 is a gain and where Bd is designed

such that (9) is positive real. Next define

ν1
4“ ωpgˆ

p pJBc
p ω

pg
p ` Js 9γq ´ JBc

p pK1
9S` ωpdˆ

p ωpg
p q,

ν2
4“ ´τ̂dist, (10)

ν3
4“ ´Kvpωpd

p `K1Sq ´KpS,

where Kv “ KT
v ą 0 and Kp “ KT

p ą 0. The attitude control
law is given by

η “ ´J´1
s pν1 ` ν2 ` ν3q. (11)



Substituting the linearization of (11) into (5c) yields

δ 9ω “ τ thrust
p ` r´K1 ` ωˆ0 ´ JBc´1

p Kvsδω ´ JBc´1

p Cdd̂

`
”
K1ω

ˆ
0 ´ ωˆ0 ωˆ0
` JBc´1

p pKvω
ˆ
0 ´KvK1 ´Kpq

ı
δθ, (12)

where the SRP torque disturbance has been ignored. The
term Cdd̂ is the output of (10), and so the linearization of (9)
is also required, and is given by

9̂d “ Add̂` Bdδω ` BdpK1 ´ ωˆ0 qδθ, (13a)

τ̂dist “ Cdd̂. (13b)

The linearized prediction model for MPC is
based on (5a), (5b), (12), (13), with states x “
rδrT δ 9rT δθT δωT δ 9γT d̂TsT. The change to the
MPC policy (8) is that while the regulation of reaction
wheel speeds 9γ is still an objective, their acceleration
η is no longer a control input determined as part of the
optimization, but is now prescribed by the inner-loop control
(11). This ensures that the MPC operates by controlling
the thrusters in a way that causes the attitude controller
(11) to reduce the reaction wheel speeds, and is possible
because the MPC policy uses a closed-loop attitude model
that captures the action of the attitude controller.
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Fig. 4: MPC with inner-loop controller.

A. Simulation Results

The simulation with the inner-loop controller has almost
all the same parameters as in Section III-D. The weighting
matrices of these simulations are Qr “ diagp0, 1, 1q, Q9r “ 0
and R “ 1 ¨ 104 to ensure that control is heavily penal-
ized. The state weight is placed on longitude and latitude
deviations. It is possible to use minimal weighting on the
states because the station keeping constraints are built into
the MPC policy. The weighting for the attitude related states
are Qθ “ Qω “ 1 ¨ 10´3, Q 9γ “ 1 ¨ 10´2, and Qd̂ “ 0. The
matrix Bd is determined by choosing Qd “ 1 ¨ 0.05, solving
AT

dPd`PdAd “ ´Qd for Pd, and then setting Bd “ CT
dP´1

d .
The horizon for MPC is chosen to be 15 hours to exploit
the periodicity of the orbital disturbances. In addition, the
dynamics are discretized using ∆t “ 1 h, as in [6], which is
now possible because the fast attitude dynamics are managed
by the inner-loop controller, and thus N “ 15. The initial
conditions are the same as Section III-D, except with 9γ “ 0.

The simulation is run for 425 orbits, but only the last year
(365 orbits) is used for analysis to isolate the steady state of
the system (see Fig. 5).

Fig. 5a shows that the satellite remains within the station
keeping window. Fig. 5c shows the attitude error, which
remains within 0.02˝. Fig. 5d shows that the reaction wheel
speed is controlled and does not increase without bound, as is
the case in simulations where momentum management is not
performed. Fig. 5b shows the cumulative ∆v produced by
each thruster, and the ∆v due to the net force of the thrusters,
resolved in Fh. The ∆v3 is slightly less than 60 m/s, which
is expected due to the out-of-plane perturbations. The total
∆v “ 100.97 m/s is 22.3 m/s more than required for station
keeping only. The extra thrust is needed to counteract the
solar radiation pressure torque and to manage the momentum
of the reaction wheels.

Fig. 6 shows the last five orbits are plotted for enhanced
detail. The reaction wheel speeds are cyclic over an orbit as
expected. The thrusters are held constant over a one hour
period, and the MPC solution results in only two thrusters
being active at a time, as shown in Fig. 6d. Either the
two North thrusters (forces at t1 and t2), or the two South
thrusters (forces at t3 and t4) are active simultaneously. Note
that due to the nature of the MPC policy, the thrust is held
constant for one hour, and thus the gimbal angles are also
constant. Gimbal angles do not change from `36˝ to ´36˝
from one hour to the next, but do so in increments. The
gimbal angles are often at their limits, which indicates that
the thrusters are almost always creating some sort of torque,
and implying that the reaction wheels are always in use.

V. CLOSING REMARKS

Autonomous closed-loop feedback control for station
keeping operations will increase the safety, robustness, and
reliability of satellites. In this paper, we presented an MPC
policy with an inner-loop SOp3q-based attitude controller
that is able to satisfy station keeping constraints, while
also providing momentum management. The SOp3q-based
attitude controller is also able to keep the satellite’s attitude
error within the pointing constraints. All this can be achieved
for a satellite configuration with the thrusters located on
the anti-nadir face of the satellite, which is convenient for
satellite design but challenging for control.
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