
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Stability and feasibility of MPC for switched linear systems
with dwell-time constraints

Bridgeman, L.; Danielson, C.; Di Cairano, S.

TR2016-045 July 2016

Abstract
This paper considers the control of discretetime switched linear systems using model predictive
control.A model predictive controller is designed with terminal cost and constraints depending
on the terminal mode of the switched linear system. Conditions on the terminal cost and
constraints are presented to ensure persistent feasibility and stability of the closed-loop system
given sufficiently long dwell-time. A procedure is proposed to numerically compute admissible
terminal costs and constraint sets.

2016 American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139





Stability and feasibility of MPC for switched linear systems with
dwell-time constraints

Leila Jasmine Bridgeman1, Claus Danielson2, Stefano Di Cairano2

Abstract— This paper considers the control of discrete-
time switched linear systems using model predictive con-
trol. A model predictive controller is designed with ter-
minal cost and constraints depending on the terminal
mode of the switched linear system. Conditions on the
terminal cost and constraints are presented to ensure
persistent feasibility and stability of the closed-loop system
given sufficiently long dwell-time. A procedure is proposed
to numerically compute admissible terminal costs and
constraint sets.

I. INTRODUCTION

Model predictive control (MPC) is an effective
method for controlling systems with input and state con-
straints [1], [2]. In MPC, control inputs are obtained by
solving a constrained finite-time optimal control prob-
lem. This approach allows the explicit consideration of
input and state constraints, applies to multi-input multi-
output systems, and typically provides good closed-loop
performance by optimizing the control input.

Many industrial control problems involve systems
with distinct dynamic modes that can be modeled as
switched systems. A switched system is a family of
dynamic systems with a switching signal specifying
which dynamic mode is active as a function of time
[3]. Switched linear systems are used in a variety of
applications. For instance, in automotive applications
driveline dynamics evolve through distinct modes during
gearshifts [4]. In heating, ventilation, and air condition-
ing of buildings, the heating/cooling to a zone may be
engaged or disengaged [5], changing the overall system
structure. Switched linear models are also commonly
used for modeling the dynamics of walking [6], [7].

It is well known that the stability of all individual
dynamic modes does not guarantee stability of the
overall switched system under arbitrary switching [3].
Different approaches have been proposed in the literature
for guaranteeing the stability of such systems. If the
frequency of modes switches is limited, this knowledge
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can often be used to prove stability. The lower-bound
on the amount of time that the system spends in each
mode is called the dwell-time.

This paper considers the use of model predictive
control to stabilize switched systems where input or
state constraints must be satisfied. In [8], a model pre-
dictive controller was developed for a switched system
with an a-priori known switching signal. Stability was
established using a variable prediction horizon which
planned the input and state trajectories until the next
mode transition. This result was extended in [9] where
the switching times are unknown but lie in a known
interval. In [10], a model predictive controller was pro-
posed for continuous-time nonlinear switched systems
with switching signals that were not known a priori. It
was shown that if the switched signal satisfied certain
dwell-time restrictions and the switching signal could be
measured or estimated quickly enough, then the closed-
loop system was ultimately bounded.

Analysis and design methods developed for polytopic
linear parameter varying systems can be applied to
switched linear systems [11], [12]. In fact, switched
linear systems can be interpreted as special executions
of polytopic linear parameter varying systems, where the
dynamics change only between a discrete set of systems
in the polytope, including the vertices and possibly
some interior points. In [13]–[17] parameter-dependent
Lyapunov functions guaranteed stability for system dy-
namics evolving inside a polytopic set of dynamic
systems. However, the use of parameter-dependent Lya-
punov functions may be unnecessarily conservative since
all dynamics in the polytope are considered, and no
restriction is placed on how often the dynamics change.

In this paper, model predictive control is explored for
switched linear systems with switching signals known
a priori only over a prediction horizon, i.e., there is a
finite preview of the switching signal for a fixed number
of steps but no information is available afterwards.
This applies for instance to gearshifts in vehicles and
to zone engagement/disengagement in building control,
since in those applications the timing and sequence of
the events leading to mode switches is scheduled slightly



in advance, but no information is available for the “far”
future. In the proposed method, the terminal cost and
constraints change based on the terminal mode of the
switched linear system. Unlike existing work, discrete
time systems are considered. The advantage of the
proposed MPC lies in a terminal cost and constraints that
are selected to ensure persistent feasibility and closed-
loop, asymptotic stability. In contrast to existing works,
there are no additional requirements, such as a common
Lyapunov function or optimization constraints enforcing
stability. A procedure is proposed to compute admissible
terminal cost functions and constraint sets.

This paper is organized as follows. In Section II
switched linear systems, dwell-time, and relevant con-
cepts from constrained control are defined. Section III
presentsa switched model predictive controller that se-
lects the optimal control input as a function of the cur-
rent system state and future evolution of the switching
signal over the prediction horizon. The persistent feasi-
bility and asymptotic stability of such model predictive
controller are then proved. In Section IV a numerical
procedure is proposed for computing a terminal cost and
constraints that satisfy the conditions for stability and
feasibility. Finally in Section V the control algorithm is
demonstrated in a numerical example.

II. PROBLEM STATEMENT

This paper considers the asymptotic stabilization of
the following switched discrete-time constrained linear
systems,

x(t+ 1) =fσ(t)(x(t), u(t)) = Aσ(t)x(t) +Bu(t). (1)

The switching signal, σ : Z → M, is a known ex-
ogenous input to the system that switches the dynamics
matrix, Aσ(t) ∈ Rn×n, between a finite number of
modes, i ∈ M = {1, . . . ,M}. All pairs, (Ai, B) with
i ∈M, are assumed to be stabilizable.

The state, x ∈ Rn, and input, u ∈ Rm, are constrained
to compact polytopic sets,

x ∈ X =
{
x ∈ Rn |Hxx ≤ Fx

}
⊂ Rn (2a)

u ∈ U =
{
u ∈ Rm |Huu ≤ Fu

}
⊂ Rm. (2b)

The switching signal, σ, is drawn from the set,

Σ =
{
σ : Z[0,∞) →M | dwell(σ) ≥ d

}
,

where t0 = 0 and ti+1 = min{t > ti |σ(t) 6= σ(ti)} are
the switching times for the signal σ and the dwell-time,
dwell(σ), is the minimum time between switches,

dwell(σ) = min {ti+1−ti | i ∈ Z+} .

It is well known that for sufficiently large dwell-times,
dwell(σ) ≥ d, the switched linear system (1) can be
stabilized by independently stabilizing each mode, i ∈
M, using a linear controller, u(t) = Kix(t) [3]. This
paper extends the result to the use of model predictive
control by providing conditions that guarantee persistent
feasibility and closed-loop stability.

A. Notation and Definitions

For mode i ∈ M, a set Si ⊆ X is called control
invariant if for all x ∈ Si there exist u ∈ U such that
Aix + Bu ∈ Si. It is positive invariant for the control-
law u = κi(x) if Aix+Bκi(x) ∈ Si for all x ∈ Si.

The set of all states, x ∈ X , that can be steered into
the set S under the mode i ∈ M dynamics (Ai, B) is
the pre-set of S,

Pre(S, i) =
{
x ∈ X | ∃u ∈ U s.t. Aix+Bu ∈ S

}
.

The k-step pre-set is defined recursively as

Prek(S, i) =

{
S if k = 0, and
Pre(Prek−1(S, i), i) if k ∈ Z[1,∞).

III. SWITCHED MODEL PREDICTIVE CONTROLLER

This section presents a switched model predictive
controller that uses the current system state, x(t), and
future switching sequence, σ(t), . . . , σ(t + N), to sta-
bilize the switched linear system (1) while ensuring
constraint satisfaction. Persistent feasibility and stability
of the closed-loop system are proven for sufficiently long
dwell-time.

A. Model Predictive Controller

A switched model predictive controller is designed for
the switched constrained linear system (1). The future
switching sequence is assumed to be known over the
prediction horizon, N , and possibly unknown afterward.
The control input, u(t) = κ(x(t), σ(t), . . . , σ(t + N)),
to (1) is a function the system state, x(t), and the future
switching sequence, σ(t), . . . , σ(t + N). The model
predictive controller obtains the control input by solving
the following constrained finite-time optimal control
problem

J?(x,σ0|t, . . . , σN |t) =

min xᵀN |tPσN|txN |t+

N−1∑
k=0

xᵀk|tQxk|t+u
ᵀ
k|tRuk|t (3a)

s.t. xk+1|t = Aσk|txk|t +Buk|t, k ∈ Z[0,N−1] (3b)

xk|t ∈ X , k ∈ Z[1,N ] (3c)
uk|t ∈ U , k ∈ Z[0,N−1] (3d)
xN |t ∈ TσN|t,st , (3e)
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where x0|t = x(t) is the current state of the system
(1), xk|t is the predicted state under the control actions
uk|t over the horizon N , and σk|t = σ(t + k) is the
future switching sequence. The cost matrices are positive
definite PσN|t , Q,R � 0. The control input is the first
element of the optimal input sequence as a function of
the current state,

u(t) = u?0|t
(
x(t), σ(t), . . . , σ(t+N)

)
. (4)

The domain of the controller, (4), is the set X0(σ) ⊆ X
of initial conditions, x(t) = x0 ∈ X0(σ), for which
the optimal control problem (3) has a solution. The set
X0(σ) = X0(σ0|0, . . . , σN |0) ⊆ X depends on the initial
N + 1 steps, σ0|0, . . . , σN |0, of the switching signal,
σ ∈ Σ. The shorthand J?(t) = J?(x(t), σ0|t, . . . , σN |t)
will be used for the value function at time t ∈ Z[0,∞).

The terminal constraint set, TσN|t,st , depends on the
terminal mode, σN |t = σ(t + N), and the minimum
amount of time, st, after the predictive horizon N that
the system must spend in the terminal mode so that σ ∈
Σ. This minimum time is calculated as

st = min
{
k ∈Z[0,d−1] |

σN−d+1+j |t = σN |t ∀j ∈ Z[k,d]

}
.

The following assumptions are made about the terminal
sets. In Section IV we will provide a method for
computing terminal sets Ti,k that satisfy this assumption.

Assumption 1: For each mode, i ∈ M, the set,
Ti,0 ⊆ X , is control invariant under the dynamics
(Ai, B) and contains the origin in its interior. For
k ∈ Z[0,d−1] the terminal sets, Ti,k, satisfy Ti,k+1 ⊆
Pre(Ti,k, i). For each pair of modes, i, j ∈ M, the
terminal sets satisfy Ti,0 ⊆ Tj,d.

The terminal sets, Ti,k, relax the constraints after a
mode switch, σN |t 6= σN |t+1. When the terminal mode
switches, the condition, Ti,0 ⊆ Tj,d, ensures that the
terminal state, xN |t+1, can reach the new terminal set,
Tj,d, for xN |t ∈ Ti,0. When the system remains in
the same terminal mode, σN |t = σN |t+1, the terminal
constraints become more restrictive over time, Ti,k ⊆
Ti,k+1, to ensure that after d time-steps the next mode
transition is feasible. In Section III-B we will show that
Assumption 1 guarantees the persistent feasibility of the
optimal control problem (3).

One potential choice for the terminal sets Ti,k that
satisfy Assumption 1 is a common control invariant
set Ti,k = T for i ∈ M and k ∈ Z[0,d−1]. This
choice automatically satisfies Tj,k = T ⊆ Pre(Ti,k, i) =
Pre(T , i) since T is a control invariant set for each set of
dynamics. However, this choice can be overly restrictive
and may not be possible if the mode dynamics are very

different. A less restrictive procedure for choosing the
terminal sets will be presented in Section IV

The terminal cost, xᵀN |tPσN|txN |t, depends on the
terminal mode, σN |t. The following assumptions are
made about the terminal cost.

Assumption 2: For all x ∈ Ti,k where k ∈ Z[0,d−1],
there exists u ∈ U such that fi(x, u) ∈ Ti,max{k−1,0}
and

fi(x, u)ᵀPifi(x, u)− xᵀPix+ xᵀQx+ uᵀRu ≤ 0.
(5)

Since Ti,0 is control invariant, Ti,0 ⊆ Pre(Ti,0, i).
Therefore, Assumption 2 implies that for all x ∈ Ti,0
there exists u ∈ U such that (5) holds. This is the stan-
dard condition for guaranteeing the stability in model
predictive control [1]. Thus Assumption 2 guarantees
the stability of each mode i ∈M when mode switching
does not occur. In Section III-C we will provide a
lower-bound on the dwell-time dwell(σ) that guarantees
stability when switching between modes.

B. Persistent Feasibility

In this section the switched linear system (1) in
closed-loop with the model predictive controller (4) is
shown to be persistently feasible.

Theorem 1: Let Assumption 1 hold. If (3) has a
solution for x(t) then it has a solution for x(t + 1) =
Aσ(t)x(t) +Bu(t) where u(t) = u?0|t

(
x(t)

)
.

Proof: Since (3) has a solution at time t ∈ Z[0,∞)

we have a feasible input sequence u?0|t, . . . , u
?
N−1|t ∈

U that generates a state trajectory x?1|t, . . . , x
?
N |t that

satisfies the dynamics and state constraints

x?k+1|t = Aσ(t+k)x
?
k|t +Bu?k|t ∈ X

for k ∈ Z[0,N−1] where x0|t = x(t) and

x?N |t ∈ TσN|t,st .

This solution will be used to construct a feasible solution
to (3) at time t+1 ∈ Z[0,∞) where x0|t+1 = Aσ(t)x(t)+
Bu?0|t.

First consider the case that σN |t = σN |t+1 and
st = 0 i.e. xN |t ∈ TσN|t,0. Since TσN|t,0 is control
invariant, there exists a feasible input v ∈ U such that
AσN|txN + Bv ∈ TσN|t,0. Thus the input sequence
uk−1|t+1 = u?k|t for k = Z[1,N−1] and uN−1|t+1 = v is
a feasible solution to (3).

Next, consider the case that σN |t = σN |t+1 and
st > 0 i.e. xN |t ∈ TσN|t,st ⊆ Pre(TσN|t,st−1, σN |t). In
this case, the index decreases st+1 = st−1 from time t
to time t + 1. By definition of Pre(TσN|t,st−1, σN |t),
there exists an input, v ∈ U , such that AσN|txN +
Bv ∈ Pre(TσN|t,st−1, σN |t). Thus the input sequence
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uk−1|t+1 = u?k|t for k = Z[1,N−1] and uN−1|t+1 = v is
a feasible solution to (3).

Finally, consider the case that σN |t 6= σN |t+1, im-
plying st = 0 and st+1 = d − 1. Since TσN|t,0 ⊆
TσN|t+1,d ⊆ Pre(TσN|t+1,d−1, σN |t+1) there exists an
input v ∈ U such that AσN|txN + Bv ∈ TσN|t+1,d−1.
Thus the input sequence uk−1|t+1 = u?k|t for k =
1, . . . , N −1 and uN−1|t+1 = v is a feasible solution to
(3).

According to Theorem 1, for any initial condi-
tion, x(0) ∈ X0(σ), in the feasible set X0(σ) =
X0(σ0|0, . . . , σN |0) of the constrained finite-time opti-
mal control problem (3), the state and input are guaran-
teed to satisfy the constraints x(t) ∈ X and u(t) ∈ U
for all switching signals σ(t) ∈ Σ and time t ∈ Z[0,∞).

C. Stability

This section demonstrates that for sufficiently long
dwell-time, the switched linear system (1) in closed-loop
with the model predictive controller (4) is asymptotically
stable. First, in Lemma 1, the value function is bounded
in terms of the stage cost for any switching signal. This
bound is used to prove closed-loop asymptotic stability
for switching signals with adequately large dwell times.

Lemma 1: Let Q � 0 and let the compact set D ⊆
X0(σ) contain the origin in its interior. Then the optimal
value function J?(x, σ0|t, . . . , σN |t) is bounded by the
stage-cost

xᵀQx ≤ J?(x, σ) ≤ γxᵀQx (6)

for all x ∈ D and all switching signals σ ∈ Σ where
1 < γ <∞.

Proof: See [18].
Next the bound (6) is used to show that, for suffi-

ciently long dwell-time, the the closed-loop system is
stable. Unlike traditional model predictive control, the
optimal value function J?(x, σ) of the switched model
predictive control problem (3) may increase when the
system (1) switches modes. However, the decay of the
value function between each switch dominates the jumps
in the value function during switching.

Theorem 2: Let the dwell-time d satisfy

d >
log(γ)

log (1− γ−1)
+ 1. (7)

Then the switched linear system (1) in closed-loop with
the model predictive controller (4) is asymptotically
stable.

Proof: Asymptotic stability will be shown by
bounding the optimal value function.

If the terminal mode does not change, σN |t = σN |t+1,
then using Assumption 2 the value function is bounded
as

J
?
(t+ 1)− J?(t) ≤ −x(t)ᵀQx(t). (8)

This bound can be simplified using Lemma 1

J
?
(t+ 1) ≤

(
1− γ−1)

J
?
(t) (9)

for σN |t = σN |t+1. If the terminal mode changes σN |t 6=
σN |t+1 then (8) and Lemma 1 imply that

J
?
(t+ 1) = J

?
(x(t+ 1), σ0|t+1, · · · , σN|t+1)

≤ γxᵀ
(t+ 1)Qx(t+ 1)

≤ γJ?(x(t+ 1), σ0|t+1, · · · , σN−1|t+1, σN−1|t+1)

≤ γJ?(x(t), σ0|t, · · · , σN|t) = γJ
?
(t) (10)

for σN |t 6= σN |t+1. From (9) and (10), it can be seen
that

J
?
(t) ≤ γs(t)

(
1− γ−1

)t−s(t)
J
?
(0),

where s(t) is the number of switches up to time t

s(t) =
∣∣{τ ∈ Z[1,t] |σN|τ 6= σN|τ+1}

∣∣.
The number of switches s(t) < t

d + 1 is bounded in
terms of the dwell-time d = dwell(σ). This implies

J
?
(t) <

(
γ
(
1− γ−1

)d−1
) t
d γ2

γ − 1
J
?
(0)

where γ(1− γ−1)d−1 < 1 due to the dwell-time bound
(7). Therefore, the value function converges asymptoti-
cally to zero since

0 ≤ lim
t→0

J
?
(t) ≤

(
γ
(
1− γ−1

)d−1
) t
d γ2J?(0)

γ − 1
= 0.

By Lemma 1, this implies that the state converges to
the origin since J?(t) ≥ x(t)ᵀQx(t) ≥ 0 and Q �
0. Moreover, the closed-loop system is stable; if the
initial condition, x(0), satisfies ‖x(0)‖2 ≤ δ where
δ = min

{
r, ελ(Q)

λ(Q)

(γ−1)
γ3

}
and r > 0 is the radius of

the stability domain D ⊇ Br(0) then the state trajectory
x(t) satisfies ‖x(t)‖2 ≤ ε for all t ∈ Z[0,∞) since

‖x(t)‖2 ≤
1

λ(Q)
J
?
(t) ≤

1

λ(Q)

γ2

γ − 1
J
?
(0)

≤
1

λ(Q)

γ3

γ − 1
x(0)

ᵀ
Qx(0) ≤

λ(Q)

λ(Q)

γ3

γ − 1
‖x(0)‖2 ≤ ε.

IV. DESIGN OF TERMINAL COST AND CONSTRAINTS

This section presents a numerical procedure for se-
lecting the terminal costs and terminal constraint sets for
the constrained optimal control problem (3). We assume
the pair (Ai, B) is stabilizable and the state and input
constraints are polyhedral. MATLAB toolboxes such as
MPT3 [19], YALMIP [20], and SeDuMi [21] can be
used for the numerical computations.
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The terminal cost matrices Pi are obtained by solving
the following linear matrix inequalities

P−1

i AiP
−1

i +BKP−1

i 0 0
∗ P−1 (KP−1

i )ᵀ P−1

∗ ∗ R−1 0
∗ ∗ ∗ Q−1

 � 0,

(11a)
P−1

i � 0. (11b)

where the decision variables are P−1i ∈ Rn×n and
KP−1

i ∈ Rm×n for i ∈ M. The terminal sets Ti,k are
chosen using Algorithm 1. Algorithm 1 chooses Ti,0 as
the maximal positive invariant subset of D for the linear
controller u = Kix

Ti,0 =
{
x ∈ D | (Ai +BKi)x ∈ D and Kix ∈ U

}
for i ∈ M. The maximal positive invariant subset can
be computed using the techniques from [22], [23]. The
sets Ti,k for k ∈ Z[1,d] are the k-step pre-sets of Ti,0
under the controller Ki,

Ti,k+1 = (Ai +BKi)
−1Ti,k ∩ X ,

where (Ai + BKi)
−1 is the pre-image of the matrix

(Ai + BKi). Algorithm 1 reduces the set D until the
sets Ti,k satisfy Ti,0 ⊆ Ti,d for i, j ∈M. The following
proposition shows that the terminal cost and constraints
satisfy Assumptions 1 and 2.

Algorithm 1 Computation of terminal sets
1: Set D = X
2: repeat
3: for each mode i ∈M do
4: Set Ti,0 as the maximal positive invariant set

for controller Ki in D
5: for k = 0, . . . , d− 1 do
6: Set Ti,k+1 = (Ai + BKi)

−1Ti,k ∩ X as the
pre-set of Ti,k

7: end for
8: end for
9: Set D =

⋂
i∈M Ti,d

10: until Ti,0 ⊆ Tj,d for all i, j ∈M

Proposition 1: Suppose Algorithm 1 converges after
finitely many iterations. Then the terminal cost Pi and
sets Ti,k produced by (11) and Algorithm 1 respectively
satisfy Assumptions 1 and 2.

Proof: See [18].
Proposition 1 assumes that Algorithm 1 converges

after a finite number of iterations. In future work we
will study conditions on the dynamics and constraints
which guarantee finite convergence of Algorithm 1.

V. NUMERICAL EXAMPLE

This section presents a numerical example to illustrate
the proposed switched model predictive controller. We
consider a switched linear system of the form (1) where

A1 =

[
1.5 0
1.5 1

]
, A2 =

[
1 1.5
0 1.5

]
, B =

[
1

0.8

]
,

subject to polytopic constraints of the form (2) where

Hᵀ
x =

[
1 −1 −1 1
1 1 −1 −1

]
, F ᵀ

x =
[
4 4 4 4

]
,

Hᵀ
u =

[
1 1

]
, F ᵀ

u =
[
2 2

]
.

The stage-cost of the constrained optimal control prob-
lem (3) uses the penalty matrices Q = I and R = 0.164.
The terminal cost matrix Pi and terminal controller Ki

were chosen to satisfy the linear matrix inequalities (11)
and minimize the cost

trace
(
c1(P−1

i − I)ᵀ(P−1

i − I) + c2(KiP
−1
i )ᵀKiP

−1
i

)
where the constants c1, c2 > 0 are tuning parameters.
The parameter c1 keeps the terminal cost matrix near
identity Pi ≈ I . The parameter c2 penalizes the gain
of the terminal controller Ki ≈ KiP

−1

i for Pi ≈ I .
Minimizing the gain, Ki, increases the region where the
terminal controller, Kix ∈ U , is valid. For this example,
we selected c1 = 1 and c2 = 10. Figures 1 and 2 shown
the terminal sets Ti,k generated by Algorithm 1, which
converged after 2 iterations.

The switched linear system was controlled using
the switched model predictive controller (4) with a
prediction horizon of N = 10. With our choice of
terminal cost, controller, and sets, persistent feasibility
and asymptotic stability were guaranteed for some fi-
nite dwell-time in a neighborhood of the origin. The
domain of the controller X0(σ) was explored through
simulations. For a grid of initial conditions, the closed-
loop system was simulated with two different switching
signals

σ1(t) =
⌈
t+1
8

⌉
mod 2 + 1

σ2(t) =
⌈
t+9
8

⌉
mod 2 + 1.

Figure 3 shows the initial conditions, x(0), for which
the constrained finite-time optimal control problem (3)
was feasible. As expected, (3) is feasible for all initial
conditions x(0) ∈

⋂
i∈M Ti,0 in the intersection of ter-

minal sets
⋂
i∈M Ti,0 regardless of the switching signal

σ(t) ∈ Σ. Outside of this region
⋂
i∈M Ti,0 feasibility

of the initial optimal control problem (3) depends on the
initial switching signal σ0|0, . . . , σN |0. Figure 3 shows
the initial states x(0) for which (3) is feasible for the
switching signals σ1(t) and σ2(t).
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Fig. 1. Terminal sets of mode 1. Dotted re-
gions indicate T1,k where outlines become
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Fig. 2. Terminal sets of mode 2. Dotted re-
gions indicate T2,k where outlines become
lighter as k increases.

−4 −2 0 2 4

−4

−2

0

2

4

X

T1,0T2,0T2,d

T1,d

x1

x
2

Both
Signal 1
Signal 2
Neither

Fig. 3. Markers indicate whether (3) was
feasible for various initial conditions with
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Fig. 4. Trajectories of the mode σ(t), value function J?(t), and
norm ‖x(t)‖2 of the state x(t).

Figure 4 shows the cost and the norm of the closed-
loop states as functions of time. Semi-log plots were
used because convergence was extremely fast. It can be
seen that the value function J?(x(t)) and the closed-
loop state x(t) converge to zero as t→∞.
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