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Further Results and Properties of Indirect Adaptive Model Predictive Control
for Linear Systems with Polytopic Uncertainty

Donglei Fan, Stefano Di Cairano

Abstract— We extend a recently developed design for indi-
rect adaptive model predictive control (IAMPC) and presents
additional results on its stability properties. IAMPC guarantees
constraints satisfaction including during the learning transient,
is input-to-state stable (ISS) with respect to the parameter
estimation error, and has computational burden comparable
to that of non-adaptive MPC. In this paper we extend IAMPC
to the case of uncertain input-to-state matrix, we provide anew
method to design robust constraints, and we show additional
stability results, in particular that asymptotic stabilit y does not
require the parameter estimation error to be zero, which also
allow us to derive a tighter ISS Lyapunov function.

I. I NTRODUCTION

The interest on model predictive control (MPC) in several
applications domains [1]–[3] is due to its capability of
achieving high performance control for multivariable systems
subject to constraints. However, MPC requires a reliable
prediction model, which may be hard to obtain before
controller deployment, especially in applications domains
such automotive, factory automation, and aerospace [2], [3],
due to part-to-part variability, aging, and manufacturingim-
precisions. Thus, often MPC needs to operate with uncertain
models and, for cost and verification requirements, it needs
to be restricted to execute with limited computational effort.

When the model parameters are unknown but constant
or slowly varying, a robust MPC approach [4]–[6] may be
unnecessarily conservative and computationally expensive,
e.g., due to assuming continuous changes in the parame-
ters or requiring solving linear matrix inequalities (LMIs).
Instead the uncertain parameters can be learned and the
prediction model, constraints and cost function corrected
accordingly, resulting in adaptive MPC. Some adaptive MPC
algorithms have been recently proposed [7]–[9], based on
different model assumptions and computational frameworks.

In [10], an Indirect Adaptive MPC (IAMPC) method was
proposed for uncertain systems modeled as polytopic linear
difference inclusions (pLDIs), where the uncertainty is asso-
ciated to the convex combination vector by which the vertex
models of the pLDI are combined to produce the actual
system dynamics. The unknown vector is assumed to be
constant or slowly varying, motivating the use of adaptation.
To achieve a computational burden similar to standard MPC,
IAMPC only solves online a quadratic programming (QP)
problem, exploits robust control invariant (RCI) sets [11]to
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enforce constraint satisfaction, and terminal cost and setde-
signed from parameter-dependent Lyapunov functions [12],
[13] for obtaining stability properties. The plant in closed-
loop with IAMPC satisfies input and state constraint even
during the learning transient, and is input-to-state stable (ISS)
with respect to the parameter estimation error. Since ISS
“parametrizes” the closed-loop behavior with respect to the
estimation error, IAMPC makes only minimal assumptions
on the estimator, basically, that the estimator provides a
convex combination vector, which allows to separate the
estimator and the control design.

In this paper, we extend IAMPC to the uncertainty present
also in the input-to-state matrix (i.e.,B), and show that with
appropriate changes to the design procedures, the IAMPC
properties still hold. Then, we prove a more stringent stability
result, where asymptotic stability (AS) is achieved also
with a small, yet, non-zero, estimation error, which results
in a tighter ISS Lyapunov function. Also, we propose an
alternative method for designing robust constraints to the
maximal RCI set in [10], which results in a computationally
simpler, albeit slightly more conservative, design.

In the rest of the paper, in Section II we describe the
IAMPC and the related control problem. In Section III we
extend the unconstrained IAMPC design to the case of
uncertainty in the input-to-state matrix, and derive tighter
stability results showing AS even under a (small) non-
zero estimation error. In Section IV we describe the new
design for the robust constraint for constrained IAMPC. In
Section V we show a numerical example and a case study in
satellite orbit control. Conclusion are drawn in Section VI.

Notation: R, R0+, R+, Z, Z0+, Z+ are the sets of
real, nonnegative real, positive real, and integer, nonnegative
integer, positive integer numbers. We denote intervals using
notations likeZ[a,b) = {z ∈ Z : a ≤ z < b}. co{X} denotes
the convex hull of the setX , and int(X ) its interior. For
vectors, inequalities are intended componentwise, while for
matrices indicate (semi)definiteness, andλmin(Q) denotes
the smallest eigenvalue ofQ. By [x]i we denote thei-th
component of vectorx, and byI and0 the identity and the
“all-zero” matrices of appropriate dimension.‖ · ‖p denotes
thep-norm, and‖ · ‖ = ‖ · ‖2. Br(0) ⊂ R

n denotes the open
ball centered at the origin with radiusr. For a discrete-time
signalx ∈ R

n with sampling periodTs, x(t) is the state a
sampling instantt, i.e., at timeTst, xk|t denotes the predicted
value ofx at samplet + k, i.e., x(t+ k), based on data at
samplet, andx0|t = x(t). A functionα : R0+ → R0+ is of
classK if it is continuous, strictly increasing,α(0) = 0; if
in addition limc→∞ α(c) = ∞, α is of classK∞.



II. PRELIMINARIES AND PROBLEM DEFINITION

We introduce definitions and results used in the subsequent
developments, see, e.g., [14, Appendix B] for details.

Definition 1: Given x(t + 1) = f(x(t), w(t)), x ∈ R
n,

w ∈ W ⊆ R
d, a setS ⊂ R

n is robust positive invariant
(RPI) for f iff for all x ∈ S, f(x,w) ∈ S, for all w ∈ W .
If w = {0}, S is called positive invariant (PI). �

Definition 2: Given x(t + 1) = f(x(t), u(t), w(t)), x ∈
R

n, u ∈ U ⊆ R
m, w ∈ W ⊆ R

d, a setS ⊂ R
n is robust

control invariant (RCI) forf iff for all x ∈ S, there exists
u ∈ U such thatf(x, u, w) ∈ S, for all w ∈ W . If w = {0},
S is called control invariant (CI). �

Definition 3: Given x(t + 1) = f(x(t)), x ∈ R
n, and a

PI setS for f , with 0 ∈ S, a functionV : Rn → R0+ such
that there existsα1, α2, α∆ ∈ K∞ andα1(‖x‖) ≤ V(x) ≤
α2(‖x‖), V(f(x)) − V(x) ≤ −α∆(‖x‖) for all x ∈ S is a
Lypaunov function forf in S. �

Definition 4: Given x(t + 1) = f(x(t), w(t)), x ∈ R
n,

w ∈ W ⊆ R
d, and a RPI setS for f , with 0 ∈ S, a

function V : Rn → R+ such that there existsα1, α2, α∆ ∈
K∞ and γ ∈ K such thatα1(‖x‖) ≤ V(x) ≤ α2(‖x‖),
V(f(x)) − V(x) ≤ −α∆(‖x‖) + γ(‖w‖) for all w ∈ W
and for allx ∈ S is an input-to-state stable (ISS) Lyapunov
function for f in S with respect tow. �

Result 1: Given x(t+ 1) = f(x(t)), x ∈ R
n, and a PIS

for f , with 0 ∈ S, if there exists a Lyapunov function for
f in S, the origin is asymptotically stable (AS) forf with
domain of attractionS. Given x(t + 1) = f(x(t), w(t)),
x ∈ R

n, w ∈ W ⊆ R
d, and a RPIS for f , with 0 ∈ S, if

there exists a ISS Lyapunov function forf in S, the origin
is ISS forf with respect tow with domain of attractionS.
�

A. Indirect adaptive model predictive control

IAMPC was developed in [10] for systems with uncer-
tainty in the state matrix. Here we extend the framework to
the case where the uncertainty is present also in the input
matrix. Thus, we consider the class of constrained uncertain
discrete-time systems

x(t+ 1) =
ℓ
∑

i=1

[ξ̄]i(Aix(t) +Biu(t)), (1a)

x ∈ X , u ∈ U (1b)

where Ai ∈ R
n×n, Bi ∈ R

n×m, i ∈ Z[1,ℓ] are known
matrices, andX ⊆ R

n, U ⊆ R
m are constraints on system

states and inputs. In (1), the uncertainty is associated to
ξ̄ ∈ Ξ ⊂ R

ℓ, which is unknown and constant or changing
much more slowly than the system dynamics, andΞ = {ξ ∈
R

ℓ : 0 ≤ ξ ≤ 1,
∑ℓ

i=1[ξ]i = 1}. Essentially,Ξ contains all
convex combination vectors of dimensionℓ for the vertex
systemsAix(t) +Biu(t).

It is assumed that an estimator generates a (time varying)
estimateξ(t) of ξ̄ such thatξ(t) ∈ Ξ for all t ∈ Z0+, and
we define the (parameter) estimation error

ξ̃t = ξ̄ − ξt, ξ̃(t) ∈ Ξ̃(ξt) (2)

where Ξ̃(ξ) = {ξ̃ : ξ̄ − ξ, ξ̄ ∈ Ξ} is the set of admissible
estimation errors. The IAMPC does not require a specific
estimator choice, but only thatξ(t) ∈ Ξ for all t ∈ Z0+.

At time t ∈ Z0+, given the sequence of estimates{ξ(t)}t,
the IAMPC constructs estimate prediction sequenceξNt ∈
ΞN+1 and solves the finite time optimal control problem

VMPC
ξN
t

(x(t)) = (3a)

min
Ut

x′
N |tP(ξN |t)xN |t + (3b)

N−1
∑

k=0

x′
k|tQxk|t + u′

k|tRuk|t (3c)

s.t. xk+1|t =

ℓ
∑

i=1

[ξk|t]i(Aixk|t +Biuk|t) (3d)

(xk|t, uk|t) ∈ Cxu, k ∈ Z[0,N−1] (3e)

xN |t ∈ XN (3f)

x0|t = x(t), (3g)

whereN ∈ Z+ is the prediction horizon,Q ∈ R
n×n, R ∈

R
m×m, Q,R > 0, P(ξ) ∈ R

n×n, P(ξ) > 0, for all ξ ∈
Ξ, Cxu ⊆ X × U , Ut = [u0|t . . . uN−1|t] is the sequence
of control inputs along the prediction horizon, andU∗

t =
[u∗

0|t . . . u∗
N−1|t] is the optimal solution of (3). The control

input at timet ∈ Z0+ by IAMPC is thenu(t) = u∗
0|t. The

IAMPC design problem can be formalized as follows.
Problem 1: Given (1) and an estimator producing{ξ(t)}t

such thatξ(t) ∈ Ξ for all t ∈ Z0+, design the (causal)
sequence of predicted convex combination vectorsξNt , the
terminal costP(ξ), the robust terminal setXN , and the
robust constraint setCxu in (3) so that the IAMPC that at
any t ∈ Z0+ solves (3) and appliesu(t) = u∗

0|t achieves:

(i) ISS of the closed-loop with respect tõξ0|t, (ii) robust
satisfaction of the constraints including whenξ̃0|t 6= 0, (iii)
runtime computational load comparable to a (non-adaptive)
MPC requiring only the solution of QPs,(iv) AS of the
origin of the closed-loop system when‖ξ(t)− ξ̄‖1 ≤ ∆ for
some∆ > 0. �

In [10] a design that achieves(i)−(iii) of Problem 1 was
proposed for whenBi = B for all i ∈ Z[1,ℓ] in (1). Next
we modify such design to overcome such restriction, which
results in a more conservative design for the terminal set, but
enables enable an alternative simpler calculation of the robust
constraintsCxu. We show here that the design achieves also
(iv). As in [10] we select as parameter prediction rule

ξk|t = ξ(t−N + k), ∀k ∈ Z[0,N ], (4)

ensuringξk|t = ξk+1|t−1, for all t ∈ Z+, k ∈ Z[0,N−1].
In what follows only sketches of the proofs of the main

results are shown, due to limited space.

III. U NCONSTRAINED IAMPC:
DESIGN AND STABILITY RESULTS

Due to the increased uncertainty in (1), the procedure for
the design of the terminal cost is more conservative than



in [10].The terminal cost is designed from the parameter-
dependent Lyapunov function

Vξ(x) = x′

(

l
∑

i=1

[ξ]iPi

)

x = x′P(ξ)x, (5)

wherePi > 0, for all i ∈ Z[1,l], but the associated stabilizing
control law needs to be linear

u = Kx. (6)

Given (1a), the following gives a design of (5), (6) for (3).
Proposition 1: Given system (1a), letG,Si ∈ R

n×n,
Si > 0, i ∈ Z[1,l], E ∈ R

m×n, be such that








G+G′ − Si (AiG+BiE)′ E′ G′

AiG+BiE Sj 0 0
E 0 R−1 0
G 0 0 Q−1









> 0 (7)

for all i, j ∈ Z[1,l]. Then,G is full rank, andPi = S−1
i ,

i ∈ Z[1,l], K = EG−1 satisfy

(
l
∑

i=1

[ξ]i(Ai +BiK))′(
l
∑

i=1

[ς ]iPi)(
l
∑

i=1

[ξ]i(Ai +BiK))

+Q+K ′RK −

l
∑

i=1

[ξ]iPi < 0, (8)

for any ξ, ς ∈ Ξ. �

For the subsequent developments we assume that the
following holds for (1a).

Assumption 1:For the givenAi, Bi, i ∈ Z[1,ℓ], Q, R,
(7) admits a feasible solution. �

Assumption 1 is related to the existence of an (uncon-
strained, local) stabilizing linear control law for the uncertain
system (1a), see, e.g., [4], [5], [12]. Indeed, if the uncertainty
is too large, i.e., the vertex systems are excessively different,
(7) may be infeasible, because a stabilizing controller forthe
uncertain system does not exist. Being solved at design time,
the infeasibility of (7) will be recognized before controller
execution and the system can be re-engineered, or a different
control method can be chosen.

A. ISS with respect to Parameter Estimation Error

First, we observe that the value function in (3) is Lipschitz-
continuous in any bounded set. While such property may
be inferred from the case of linear systems with known
parameters, an explicit derivation for (1a) allows to obtain
useful intermediate results that will be exploited later.

Lemma 1:Consider problem (3), whereXN = X = R
n,

U = R
m, Cxu = R

n+m, andU = R
m. For everyr ∈ R+,

there isL ∈ R+, such that for everyξN ∈ ΞN+1, the value
functionVMPC

ξN (x) of (3), whereP(ξ) is designed according
to (5), is Lipschitz-continuous with constantL in Br(0) for
any finiter ∈ R+,

|VMPC
ξN (x1)−VMPC

ξN (x2)| ≤ L‖x1−x2‖, ∀x1, x2 ∈ Br(0).
(9)

Proof (sketch):Let x1, x2 ∈ Br(0), U∗
t = [u∗

0|t . . . u∗
N−1|t]

be the solution of (3) whenx0|t = x1, and x1
k|t, kZ[0,N ]

be the corresponding the predicted state trajectory. Letx2
k|t,

k ∈ [0, N ] be the predicted state trajectory obtained byU∗
t

from x0|t = x2. From the value function one can show

‖x2
k|t − x1

k|t‖ ≤ max(γA, 1)
N‖x2 − x1‖, Z[0,N ], (10)

whereγA := max{i ∈ Z[1,l] : ‖Ai‖}.
It can be shown that‖x1

k|t‖ is bounded for allk ∈ Z[0,N ].
From the predicted unforced responsex3

k|t,

VMPC
ξN (x1) ≤ (γP +N‖Q‖)(max(γA, 1)

N‖x1‖)
2. (11)

where γP := max{i ∈ Z[1,l] : ‖Pi‖}, and

‖x1
k|t‖ ≤

(

γP+N‖Q‖
λmin(Q)

)1/2

(max(γA, 1)
N )‖x1‖, ‖x1

N |t‖ ≤
(

γP+N‖Q‖
ϑP

)1/2

(max(γA, 1)
N )‖x1‖, whereϑP := min{i ∈

Z[1,l] : λmin(Pi)}. Thus,

‖x1
k|t‖ ≤ C1‖x1‖, k ∈ Z[0,N ], (12)

whereC1 =
(

γP+N‖Q‖
min{λmin(Q),γPλ

}

)1/2

(max(γA, 1)
N ).

For x1, x2 ∈ Br(0), ‖x2
k|t‖ ≤ C1r + max(γA, 1)

N2r =

C2r. HenceVMPC
ξN (x2)−VMPC

ξN (x1) ≤ ((C1 +C2)r(γP +

N‖Q‖)(max(γA, 1)
N ))‖x2 − x1‖ = C3‖x2 − x1‖. The

reverse inequality is shown in a similar way to conclude
that for everyξN ∈ ΞN+1, |VMPC

ξN (x1) − VMPC
ξN (x2)| ≤

L‖x1 − x2‖ whereL = C3.
Next, we obtain the ISS property of IAMPC .
Theorem 1:Let Assumption 1 hold, and letXL be any

compact set inRn. For the IAMPC with parameter up-
date (4), that at every step solves (3) whereP(ξ) is designed
according to (5) and (7),XN = X = R

n, U = R
m,

Cxu = R
n+m, U = R

m, VMPC
ξN
t

(x(t)) is such that

VMPC
ξN
t+1

(x(t+ 1))−VMPC
ξN
t

(x(t)) ≤

− λmin(Q)‖x(t)‖2 + γISS‖ξ̃0|t‖ (13)

where γISS ∈ R+. Thus, VMPC
ξN (x) is an ISS-Lyapunov

function with respect to the estimation errorξ̃0|t = ξ̄−ξ0|t ∈

Ξ̃(ξ0|t) for (1) in closed loop with the IAMPC based on (3)
in any Xη ⊆ XL, whereXη is RPI with respect tõξ0|t for
the closed loop.

Proof (sketch): The prediction error is ‖εx‖ ≤
γA‖ξ̃0|t‖1‖x(t)‖+ γB‖ξ̃0|t‖1‖u

∗
0|t‖, whereγA is defined in

the proof of Lemma 1, andγB = maxi=1,...l ‖Bi‖.
By Lemma 1 we obtain

VMPC
ξN
t+1

(x(t + 1))− VMPC
ξN
t

(x(t)) ≤ −λmin(Q)‖x(t)‖2

+ L(γA‖x(t)‖+ γB‖u
∗
0|t‖)‖ξ̃0|t‖1. (14)

and by the bounds on the value function we have‖u∗
k|t‖ ≤

(

γP+N‖Q‖
λmin(R)

)1/2
(

max(γA, 1)
N
)

‖x(t)‖ = Lu‖x(t)‖. Due
to compactness ofXL , there existsγ ∈ R+ such that
‖x‖ ≤ γ, and, due to the norm equivalence in finite dimen-
sional spaces, there existsγp such that‖ξ̃0|t‖1 ≤ γp‖ξ̃0|t‖.



Combining with (14), we conclude thatVMPC
ξN
t+1

(x(t +

1))−VMPC
ξN
t

(x(t)) ≤ −λmin(Q)‖x(t)‖2 + γISS‖ξ̃0|t‖, with
γISS = L(γA + LuγB)γpγ.

B. Asymptotic stability with bounded estimation error

By the ISS result in Theorem 1, if eventually the esti-
mation error vanishes, i.e.,̃ξ(t) = 0 for all t ≥ τ , the
closed loop of (1a) with IAMPC is AS. Next, we show
thatVMPC

ξN
t

(x(t)) is a Lyapunov function for the closed-loop

system when‖ξ̃0|t‖ is sufficiently small, and therefore the
closed loop is AS even in presence of a small, yet non-zero,
estimation error.

Theorem 2:Given system (1) with unknown parameterξ̄,
let the assumptions of Theorem 1 hold, and letu(t) = u∗

0|t

be determined by the IAMPC with parameter update (4) that
at every step solves (3), whereP(ξ) is designed according
to (5),XN = X = R

n, U = R
m, Cxu = R

n+m. There exists
δ > 0 such that if‖ξ̃0|t‖1 ≤ ∆ < δ for some∆ > 0, for all
t ∈ Z0+, the closed loop is AS.

Proof (sketch):For any x1, x2 ∈ R
n, ‖x1

k|t + x2
k|t‖ ≤

2C1‖x1‖+max(γA, 1)
N‖x2 − x1‖, for k ∈ Z[0,N ]. Hence,

VMPC
ξN (x2)− VMPC

ξN (x1) ≤ (γP +N‖Q‖)(2C1‖x1‖

+max(γA, 1)
N‖x2 − x1‖) ·max(γA, 1)

N‖x2 − x1‖

:= C4‖x1‖ · ‖x2 − x1‖+ C5‖x2 − x1‖
2. (15)

From (15),VMPC
ξN (x(t + 1)) − VMPC

ξN (x1|t) = C4‖x1|t‖ ·

‖εx‖+ C5‖εx‖
2. From the bounds onεx with C6 := Lu.

VMPC
ξN (x(t + 1))− VMPC

ξN (x1|t) ≤ (C4C1(γA + γBC6)

+ 2C5(γA + γBC6)
2)‖ξ̃0|t‖1‖x(t)‖

2 (16)

Let

‖ξ̃0|t‖1 ≤ ∆ <
λmin(Q)

C4C1(γA + γBC6) + 2C5(γA + γBC6)2
,

(17)
thenVMPC

ξN
t+1

(x(t + 1)) − VMPC
ξN
t

(x(t)) ≤ −ǫ‖x(t)‖2, hence
the origin of the closed-loop system is AS.

The next result follows directly from Theorem 2 and [10].
Result 2: IAMPC based on (3), (4), whereP(ξ) is de-

signed according to (5), achieves(i) − (iv) in Problem 1.
�

Based on Theorem 2, an alternative ISS Lyapunov function
can be constructed for the closed-loop system.

Corollary 1: Given (1), let the assumptions of Theorem 1
hold. For anyα ∈ (0, 1), there exists∆(α) ∈ R+ such that

VMPC
ξN
t+1

(x(t + 1))− VMPC
ξN
t

(x(t)) ≤ −α · λmin(Q)‖x(t)‖2

+ γ′
ISS max{0, ‖ξ̃0|t‖1 −∆(α)} (18)

whereγ′
ISS ∈ R+. �

IV. CONSTRAINED IAMPC: ROBUST CONSTRAINT

DESIGN AND STABILITY RESULTS

Next we consider the case when (1) is subject to con-
straints, i.e.,X × U ⊂ R

n × R
m, and make the following

assumption on the constraint sets.

Assumption 2:X , U are compact polyhedra with0 ∈
int(X ), 0 ∈ int(U). �

For achieving recursive feasibility and stability properties
in presence of constraints, appropriate designs for the termi-
nal setXN and the robust constraint setCxu are needed. For
Cxu, the maximal RCI set for (1a) was used in [10]. Such
design achieves the least restrictive setCxu, which however
can be arbitrarily complex in terms of number of describing
inequalities, and hence very expensive to compute and use.
Further, using the maximal RCI imposes a lower bound on
the prediction horizonN ∈ Z+ in the MPC problem (3).

Here, by exploiting the LMI (7) we propose an alternative
based on constructing theN -step backward reachable set of
a specific RPI set. LetXxu = X × U be a set of feasible
states and inputs with0 ∈ int(Xxu). Let K be determined
from Proposition 1 and construct the set sequence

X (0) = {x : (x,Kx) ∈ Xxu}

X (h+1) = {x : (Ai +BiK)x ∈ X (h), ∀i ∈ Z[1,ℓ]} ∩ X (h)

X∞ = lim
h→∞

X (h). (19)

In [13] it was proved that the sequence in (19) reaches a
fixpoint in a finite number of steps, i.e., there exists a finite
h̄ ∈ Z0+ such thatX (h̄+1) = X (h̄) = X∞.

Lemma 2:Consider (1), for which (6) is computed
from (7), andX∞ is computed from (19) withXxu = X×U .
Then,X∞ is RPI for (1) in closed loop with (6) for every
ξ̃0|t ∈ Ξ̃(ξ0|t). �

The proof of Lemma (2) follows from the definition and
the convexity ofX∞, and from usingu = Kx.
X∞ is RPI for (1) in closed loop with (6) for every

ξ̃0|t ∈ Ξ̃(ξ0|t) because (6) is a linear feedback, as op-
posed to the parameter-dependent linear feedback in [10].
Using a parameter-dependent feedback does not guarantee,
in general, robustness in the case of errors in the parameter
estimate, i.e., if the parameter used for the input computation
is different from the one in the actual system dynamics.
However, since here we restrict ourselves to use (6), such
an issue cannot occur.

We construct an RCI set for (1), from the RPI setX∞.
Compute the robust backward reachable set sequence

R(0) = X∞, (20)

R(h+1) = {x ∈ X : ∃u ∈ U , Aix+Biu ∈ R(h), ∀i ∈ Z[1,ℓ]},

whereR(h) is the set of states that can be brought toR(0)

in h steps by using state feedback, while satisfying state
and input constraints, for any unknownξh ∈ Ξh and any
ξ̃h ∈ Ξ̃h(ξh). Due toR(0) being RPI,R(h+1) ⊇ R(h) and
R(h) is RCI for everyh ∈ Z0+.

From X∞ and {R(h)}h we design the terminal setXN

and the robust constraint setCxu in (3) as

XN =X∞, (21)

Cxu ={(x, u) : x ∈ R(N), u ∈ U ,

Aix+Biu ∈ R(N), ∀i ∈ Z[1,ℓ]}, (22)

respectively, that are shown next to achieve(ii) in Problem 1.



Lemma 3:Consider (3), (6) computed from (7), and
XN = X∞ computed from (19) withXxu = X × U . Given
N ∈ Z+, let Cxu in (3e) be defined by (22) withR(N)

defined in (20). Ifx(t) ∈ R(N) at t ∈ Z0+, andξNτ ∈ ΞN+1,
ξ̃0|τ ∈ Ξ̃(ξ0|τ ) for all τ ≥ t, (3) is feasible for allτ ≥ t. �

The proof of Lemma (3) follows from the RCI properties,
andR(N) being theN -steps backward reachable set ofXN .

When compared to the design based on the maximal RCI
set proposed in [10], the advantages of the design forCxu
proposed here are that the prediction horizonN is a free
design variable, and, since all the setsR(h) are RCI,N can
be chosen to control the complexity ofCxu, which is finite for
any finiteN [11]. On the other handCxu will be in general
smaller than the maximal RCI, thus reducing the domain of
attraction of the closed loop.

A. Asymptotic stability with bounded estimation error

Theorem 3:Given system (1) with unknown parameterξ̄,
let Assumptions 1 and 2 hold, and givenN ∈ Z+, consider
the optimal control problem (3). LetP(ξ) be designed
according to (5),XN , Cxu be determined by (21), (22),
respectively. Letu(t) = u∗

0|t be determined by the IAMPC
that at every step solves (3) with parameter update (4). If
x(t) ∈ R(N) at t ∈ Z0+, then the constraints (1b) are
satisfied for allτ ≥ t. Furthermore, there exists̄δ > 0 such
that if ‖ξ̃0|τ‖1 ≤ ∆ < δ̄ for all τ ≥ t, for some∆ > 0, then
the origin of the closed-loop system is AS.

Proof (sketch):The proof follows the lines of that of
Theorem 2. We consider again the predicted state sequences
x2
k|t, x

2
k|t from the proof of Lemma 1 which here need also

to satisfy (i), x2
k|t ∈ X , x3

k|t ∈ X , for all k ∈ Z[0,N−1],
(ii), x2

N |t ∈ XN , x3
N |t ∈ XN , (x2

k|t, u
∗
k|t) ∈ Cxu, (x

3
k|t, 0) ∈

Cxu, k ∈ Z[0,N−1]. Note that, by construction,0 ∈ int(Cxu).
By the properties ofX∞, there existsr1 > 0 such that

Br1(0) ⊂ XN ⊂ X . From the intermediate steps of Lemma 1
if max(γA, 1)

N‖x1‖ < r1, thenx3
k|t ∈ X for k ∈ Z[0,N−1],

x3
N |t ∈ XN . From ‖x2

k|t‖ ≤ C1‖x1‖ + max(γA, 1)
N‖x2 −

x1‖, if C1‖x1‖ < r1/2 andmax(γA, 1)
N‖x2−x1‖ < r1/2,

x2
k|t ∈ X for k ∈ Z[0,N−1], andx2

N |t ∈ XN . Thus (i), (ii)
hold locally.

Conditions for(iii) to hold are found similarly, using the
fact, from previous proofs,‖(x2

k|t, u
∗
k|t)‖ ≤ (C1‖[I 0]′‖ +

C6‖[0 I]′‖)‖x1‖ + ‖[I 0]′‖max(γA, 1)
N‖x2 − x1‖.

Since 0 ∈ int(Cxu), there existsr2 > 0 such that
Br2(0) ⊂ Cxu. If (C1‖[I 0]′‖ + C6‖[0 I]′‖)‖x1‖ < r2/2,
and ‖[I 0]′‖max(γA, 1)

N‖x2 − x1‖ < r2/2 then
(x2

k|t, u
∗
k|t) ∈ Cxu for k ∈ Z[0,N−1]. Similarly, if

‖[I 0]′‖max(γA, 1)
N‖x1‖ < r2, then (x3

k|t, 0) ∈ Cxu
for k ∈ Z[0,N−1]. Combining the above, there
exist r̄ > 0, ε̄ > 0 such that if ‖x1‖ < r̄,
‖x2 − x1‖ < ε̄, then (iii) is satisfied. In particular,̄r =
min{ r1

max(γA,1)N , r2
2(C1‖[I 0]′‖+C6‖[0 I]′‖) ,

r2
‖[I 0]′‖max(γA,1)N ,

r1
2C1

}, and ε̄ = min{ r1
2max(γA,1)N , r2

2‖[I 0]′‖max(γA,1)N }.

If ‖x(t)‖ < min{r̄, r̄
C1

} := r̃ and‖ξ̃0|t‖1 ≤ (C1ε̄)/((γA+

γBC6)r̄), thenVMPC
ξN
t+1

(x(t+1))−VMPC
ξN
t+1

(x1|t) ≤ C4‖x1|t‖·

‖εx‖ + C5‖εx‖
2, and with an argument similar to that for
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Fig. 1. Simulation of the IAMPC in closed loop with the numerical example
with R(N), N = 8, phase plane trajectories (black),X∞ (green),R(N)

(blue),X (red).

Theorem 2 there is∆ > 0 such that if‖x(t)‖ < r̃, and
‖ξ̃0|t‖1 ≤ ∆ < δ̄ then

VMPC
ξN
t+1

(x(t + 1))− VMPC
ξN
t

(x(t)) ≤ −ǫ‖x(t)‖2,

for some ǫ > 0, thus, AS is proved. Here
δ̄ = min{ C1ε̄

(γA+γBC6)r̄
, (λmin(Q))/(C4C1(γA + γBC6) +

2C5(γA + γBC6)
2)}.

The next result follows directly from Theorem 3 and [10].
Result 3: IAMPC based on (3), (4), whereP(ξ) is de-

signed according to (5) andXN , Cxu are determined by (21),
(22), achieves(iv) in Problem 1. �

V. NUMERICAL SIMULATIONS

Example 1:We consider (1), whereℓ = 10, and the vertex
matrices are:A1+5i = [ 1 0.2

0 1 ], A2+5i = 1.1 ·A1+5i, A3+5i =
0.6 ·A1+5i, A4+5i = [ 0.9 0.3

0.4 0.6 ] A5+5i = [ 0.95 0
0.8 1.02 ], i ∈ {0, 1}

and Bj = [−0.035 −0.905 ]
′, Bj+5 = 0.9 · B1, j ∈ Z[1,5].

While being only of2nd order, the challenges in this example
are in some of the vertex systems being unstable, and some
vertex matrices being significantly different from the others.
For a similar system with uncertainty only inA, it was shown
in [13] that without proper cost adaptation, the closed-loop
may not be AS, even if the perfect model was estimated.
The constraints are defined by (1b), whereX = {x ∈ R

2 :
|[x]i| ≤ 15, i = 1, 2}, U = {u ∈ R : |[u]| ≤ 10}.

We have implemented a simple estimator that computes
the least squares solution̺(t) based on past data window of
Nm steps and applies a first order filter on the projection of
̺(t) onto Ξ, i.e., ξ(t + 1) = (1 − ς)ξ(t) + ς · projΞ(̺(t)),
where ς ∈ R(0,1), and [ξ(0)]i = 1/ℓ, i ∈ Z[1,ℓ]. Such
simple estimator guarantees thatξ(t) ∈ Ξ for all t ∈ Z0+

because projection and summation guarantee that the result
is a convex combination vector. We setς = 1/8, Nm = 5.

We design the controller according to Theorem 3, where
we imposeN = 8, where R(N) is determined by (20).
Figure 1 shows the simulations where the initial condition
lies withinR(N) and for each initial condition,4 simulations
with different (random) values of̄ξ ∈ Ξ are executed.
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Fig. 2. Simulation of the IAMPC in closed loop with the satellite example
with R

(N), N = 8, phase plane trajectories (black),X
∞ (green),R(N)
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Example 2:We consider the out-of-orbital-plane dynam-
ics of a satellite, which are naturally decoupled from the
in-orbital-plane dynamics, and are subject to significant per-
turbations for orbits within Earth’s orbital plane [15]. Hence,
the satellite may drift “far” from its desired value along such
axis. By the HCW equations of relative motion [15], the out-
of-orbital-plane (z-axis in HCW) dynamics are

ẋ(t) =

[

0 −n2

1 0

]

x(t) +

[

1
m
0

]

u(t) (23)

where [x]1 is the z-axis velocity [m/s], [x]2 is the z-axis
position [km], u is the z-axis thrust [N],n is the orbital
frequency andm is the mass of the satellite. We consider
uncertainty in the orbital frequency, i.e., the orbit, and
satellite mass. In particular, the nominal and vertex values of
n andm are :n0 = 9.5× 10−4, n1 = 0.8 ·n1, n2 = 1.2 ·n1;
m0 = 2000,m1 = 0.75 · m1,m2 = 1.25 · m1, where the
nominal valuen0 is in low earth orbit (LEO). The dynamics
are formulated in discrete time in the form of (1) with a
sampling period ofTs = 300 seconds, andℓ = 4. The
constraints are defined by (1b), whereX = {x ∈ R

2 :
|[x]1| ≤ 6 m/s, |[x]2| ≤ 4 km}, U = {u ∈ R : |u| ≤ 50 N}.

We design the controller according to Theorem 3, where
we imposeN = 8, whereR(N) is determined by (20). We
use the same parameter estimator as in Example 1, now with
Nm = 3, ς = 1/16, which are expected to give slower
convergence. Figure 2 and Figure 3 report the simulation
results, showing both constraint satisfaction and stabilization.

VI. CONCLUSIONS ANDFUTURE WORK

We have extended the recently developed IAMPC
method [10] to account for uncertainty in the input matrix
(B), and we have provided additional design procedures
and stability results. We have shown that the closed-loop
is AS even for small, yet non-zero, parameter estimator
errors, which also allowed to derive a tighter ISS Lypaunov
function. We have also proposed an alternative method to
design constraints based on constructing a RCI set as the
N -steps backward reachable set of the terminal set, which
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Fig. 3. Simulations of input (bottom) and state (top) trajectories against
time, [x]1 blue, [x]2 black. Constraints as dash lines

allows to maintain the MPC prediction horizon as a free
design choice, it is in general faster to compute, and has
a reduced complexity. In the future we plan to extend the
proposed method to tracking problems and to consider the
case of partial state information.
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