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Abstract

We develop an indirect adaptive model predictive control algorithm for uncertain linear sys-
tems subject to constraints. The system is modeled as a polytopic linear parameter varying
system where the convex combination vector is constant but unknown. The terminal cost
and set are constructed from a parameter-dependent Lyapunov function and the associated
control law, and robust control invariant set constraints are enforced. The proposed design
ensures robust constraint satisfaction and recursive feasibility, is input-to-state stable with
respect to the parameter estimation error and it only requires the online solution of quadratic
programs.
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Indirect Adaptive Model Predictive Control
for Linear Systems with Polytopic Uncertainty

Stefano Di Cairano

Abstract—We develop an indirect adaptive model predic- We build upon the results in [13] for calibrating the MPC
tive contrc_)l algorithm for ur_lcertain linear systems s_ubj_ed model after dep|0yment’ yet not Concurrenﬂy to the p|ant
to constraints. The system is modeled as a polytopic linear operation. For uncertain systems represented as polytopic

parameter varying system where the convex combination veot I diff inclusi LD desi t
is constant but unknown. The terminal cost and set are 'N€ar diiierence inciusions (pLDI) we design a parameter-

constructed from a parameter-dependent Lyapunov function dependent quadratic terminal cost and a robust terminal
and the associated control law, and robust control invariahset ~ constraint using a parameter-dependent Lyapunov function

constraints are enforced. The proposed design ensures rosu  (pLF) [14] and its corresponding stabilizing control law.
constraint satisfaction and recursive feasibility, is int-to-state Robust constraint satisfaction in presence of parameter es
stable with respect to the parameter estimation error and itonly Hi is obtained b forci bust trol inggti
requires the online solution of quadratic programs. mation error IS obtained by entorcing ro _us_ controt inaat .
set constraints [15]. A parameter prediction update law is
. INTRODUCTION also designed to ensure the desired properties. The IAMPC
allows uncertainty in the system dynamics, as opposed to

- ijﬁnpgrg/ln?gfelrzrz?elctlz\;ec ;?;tnro;t(l\gz;;ﬁl]{i ;(;mi S‘g;?;ﬂ?ditive disturbances in [7], [9], and only solves quadrati
' rograms (QPs), as opposed to LMIs in [4]-[6].

in factory automation, automotive, and aerospace applicg . L
tions [2], [3], where the control algorithm needs also todav. The paper is structured as follows. After the preliminaries

| . . . in Section IlI, in Section Il we design the cost function
ow complexity and computational effort. For uncertain mod ) . :

suring the unconstrained IAMPC to be ISS with respect to
els, robust MPC methods have been proposed, see, e.g., [t e estimation error. For constrained IAMPC, in Section IV
[7]. Some of the limitations of these methods are either @ th ' ’

computational cost. due to solving linear matrix ineqigsit V€ design the terminal set and the robust constraints ergsuri
(LMIE) at each cor;trol step [4]_[3] or in applying gnly to recursive feasibility. In Section V we combine the cost func

additive disturbances [7]. These limitations are often tue tion and the cor!stralnts with a parameter. estimate predicti
o . update. In Section VI we show a numerical example and a
considering constantly changing parameters.

Alternatively, when the parameters are unknown but corsase study in air conditioning control. Conclusions andrfeit

. . - developments are discussed in Section VII.
stant or slowly varying, one can learn their values. Adaptiv

MPC algorithms have been recently proposed based on gig.Noaton: R, Roy, Ry, Z, Zoy, Z are the sets of
. . “real, nonnegative real, positive real, and integer, noating
ferent methods, such as min-max approaches [8], learning .c?f

constant offsets [9], and set membership identificatiorj.[10|r?u$§l)eer’rspl?:i'r?ven(;?£gﬁrs I?lgﬁmberi. {We; §§n0t<e |n<tel:}/al of
Another class of adaptive MPC algorithms is related to con- (X}, andi t%)(} denote the[ltl:’g)n;exilull aﬁdatﬁezinteric;r of
trolling the uncertain system while guaranteeing sufficien - ' . : . ; :
excitation for identification, see, e.g., [11], [12]. setX. For vectors, inequalities are intended componentwise,

In this paper we propose a MPC design that operat(\a’\éh"e for matnce_s indicate (semi)definiteness, a)q,qn(_Q)
. - iS the smallest eigenvalue ¢j. By [z]; we denote the&-th
concurrently with a parameter estimation scheme, thus re-

sulting in an indirect adaptive MPC (IAMPC, for shortnesscomponent of vectox, and by and the identity and the

approach, that retains constraint satisfaction guararded all-zero" matrices of appropriate dlmer_13|o||h.~ H’? denqtes
the p-norm, and|| - || = || - ||2. For a discrete-time signal

certain stability properties. Motivated by the case of the ¢ R" with sampling period’, z() is the value a sampling

unknown but constant (or slowly varying) parameters and . : .
S . Instantt, i.e., at timeT,t, denotes the predicted value
by the need to limit the computational burden, here we dg st Tkt b

not seek robust stability, but robust constraint satigfact ztnjimplfet x?_t;g";\.?lll’”ﬁi;j)',ﬂgasf Ign dizt?)fzit';;%%e
and an input-to-state stable (ISS) closed-loop with respeg ol == =A%) Lot o+

to the estimation error. ISS will hold with only minimal Itis continuous, strictly increasingy(0) = 0 if in addition

assumptions on the estimates, and if the correct parame%lérrlc_)OO a(c) = 00, ais of classko.

value will be eventually estimated the closed-loop will be- 1. PRELIMINARIES AND PROBLEM DEEINITION

come asymptotically stable (AS). Constraint satisfacii®n We review some standard definitions and results. Eor
guaranteed even if the parameters change continuously. details, see, e.g., [1, Appendix B] '

S. Di Cairano is with Mitsubishi Electric Research Labori&®s, Cam- Definition 1: Given z(t + 1) = f(z(), w(t?)., x_e R_n’
bridge, MA, email:di cai rano@ eee. org w e W C R% asetS ¢ R" is robust positive invariant



(RPI) for f iff for all z € S, f(x,w) € S, for all w € W.
If w= {0}, S is called positive invariant (PI). O

Consider the finite time optimal control problem

MPC : /
o - ) = P + 3a
Definition 2: Given (t + 1) = f(x(t),u(t),w(t)), z € & ) =min e PEnien (32)
R", u el CR™, we W CR? asetS C R" is robust N-1
control invariant (RCI) forf iff for all = € S, there exists > 2, Qg + ujy Rugy, (3b)
u € U such thatf (z,u,w) € S, for allw € W. If w = {0}, k=0
S is called control invariant (ClI). O ¢ A 3
Definition 3: Given z(t + 1) = f(z(t)), € R", and a 8 Terale = Z;[gk‘t]i i@t + Buye (3¢)
Pl setS for f, 0 € S, a functionV : R™ — Ry such that =
. eu, exX 3d
there existsyy, as, an € K such thatoy (|lz]]) < V(z) < it hit (3d)
as(llz]), V(f(x) — V(@) < —aa(|z]]) for all z € S is a (@12, unle) € Cau (3e)
Lyapunov function forf in S. O TN € AN (3f)
Definition 4: Given z(t + 1) = f(z(t),w(t)), z € R", zopr = (1), (39)

we W C R? and a RPI sefS for f, 0 € S, a function
VY : R™ — Ry such that there exists;, az, an € K and
y € K such thaton (|lz[)) < V() < ax(|lz]), V(f(2)) -
V(z) < —aa(llz]]) + y(Jw||) for all z € S, w € W is an
input-to-state stable (ISS) Lyapunov function join S with
respect tow.

Result 1: Givenx(t+1) = f(z(t)), x € R", and a PI set
Sfor f,0 € S, if there exists a Lyapunov function fgrin S,
the origin is asymptotically stable (AS) fof with domain
of attractionS. Givenz(t + 1) = f(z(t),w(t)), = € R",
w e W CRY and a RPI seS§ for f, 0 € S, if there exists

where N € R, is the prediction horizon@) € R"*", R €
R™*™ Q,R > 0, P(§) € R"™™, P(§) > 0, for all £ €
g, Cou € X XU, Uy = [ugy -..un—1p is the sequence
of control inputs along the prediction horizon, agff =
[€oj¢ ---Enye] € ENTLis a sequence of predicted parameters,
not necessarily constant. L&Y = [ug, ...uy_,,] be the
solution of (3) att € Zg .

Problem 1: Given (1) and an estimator producing the
sequence of estimatelg(¢)}, such thaté(¢t) € = for all
t € Zo+ according to Assumption 1, design the sequence of
) _ o predicted convex combination vectqs, the terminal cost
a ISS Lyapunov function fof in &, the origin is ISS forf P(€), the robust terminal set’y, and %Zhe robust constraint

with respegt tow with doma|_n of attraguors.. . set C, in (3) so that the IAMPC controller that at any
We consider the uncertain constrained discrete-time sys- Zo, solves (3) and applies(t) = u,, achieves(i) ISS
tem with sampling period’, ol¢

¢
Z[g]iAix(t) + Bu(t),
i1

zreX, ueld

of the closed-loop with respect ﬁa‘t =£— &oje (i1) robust
constraint satisfaction even Whe§~51|t # 0, (#i7) guaranteed
convergence of the runtime numerical algorithms and com-
1b putational load comparable to a (non-adaptive) MPC.(J
(1b) The rationale for seeking ISS in Problem 1 is that, when
where A; € R"*", i € Zp; 4 and B are known matrices of the unknown parameters do not change or change slowly,
appropriate size, and C R", ¢/ C R™ are constraints on a “well designed” estimator will eventually converge, and
system states and inputs. In (1), the uncertainty is aseacia hence, the closed-loop becomes AS. However, in Prob-
to £ € Z C R¢, which is unknown and constant or changingem 1 ISS and constraint satisfaction hold regardless of
slowly with respect to the system dynamics, ae= {{ € the estimator convergence. The expansion term in the ISS
RC: 0 < [€]; <1, ¥0_,[€li = 1}. We call € convex Lyapunov function captures the dependency of the closed-
combination vectqrsince it describes a convex combinatiorloop performance on estimation error while allowing for an
of the “vertex systems;(z,u) = A;x + Bu, i € Zp 4. independent estimator design.

Assumption 1:An estimator is computing the estimate Consider the linear parameter-varying (LPV) system
&(t) of € such thatt(t) € = for all t € Zo., . ¢

We denote by (t) = £(t) — &, the estimation error at time 2(t+1) =Y [E(B)]iAi(t) + Bu(t),
t for which{(t)+¢ € =. Given{ € =, for shortness we write i=1
¢ € 2(), whereS(§) = {C € R": I E, E=—¢}isthe  \yhere for allt e Z., &(t) € E, the parameter-dependent
set of possible estimation error vectors. Assumption 1és th(linear) control law
only estimator property required for the developmentsis th

z(t+1) (1a)

(4)

. . 14
paper to hold. Some comments on how to design estimators B B
that satisfy Assumption 1 are given later, in Section V. u=r(E)r = ;[E]sz— ) ©)
Remark 1:The trajectories produced by (1a) are a subset = , )
of those of the pLDI and the parameter-dependent (quadratic) function
, ‘
2t +1) € cof Aw(t) + Bu(®) iy @ Ve(x) = «/P(€)x = o <Z[5]ia NG
i=1

The pLDI (2) is equivalent to (1a) if a varying parameter
vector, i.e.£(t) € =, is considered. whereP; > 0, i € Zy 4.



Definition 5 ( [14]): function (6) such thaVe ;1) (= (t +
1)) = Ve (z(t)) < 0, for all £(),£(t +1) € E, where

equality holds only ifx = 0, is a parameter-dependent

Lyapunov functior{pLF) for (4) in closed-loop with (5)[]

By [5], [13], [14], given@ € R™*"™, R € R™*™ ), R >
0, any solutionG;, S; € R"*", S, > 0, E; € R™*", i €
Z[l_’g], of

(A;Gi+BE;) S 0 0 ..
B O] R-1 o > 0, VZ,] S Z[l,f]-
G 0 0o Q!

(7
is such that (5), (6) wher®;, = S;!, K; = E,G;', i €
Zp g, satisfy

V(x(t+1),8(+1)) = V(x(t), (1) < 8)

— () (Q + k(&) Rr(&(1)))=(t), VE(),€(t+1) € 2
for the closed-loop (4), (5).

Assumption 2:For the givenA;, i € Zj1 4, B, Q, R, (7)

admits a feasible solution
The LMI (7) is a relaxation of those in [4]-[6]. Thus,

Assumption 2 is implied by the existence of an (uncon

strained) stabilizing linear control law for (1a). Indee,

the uncertainty is too large, (7) may be infeasible. Howgver

(7) is used here for design, and hence such situation will

recognized and can be corrected before controller exelrt:utioD
By using (7) only for design, the proposed method solve

online only QPs, which makes it feasible also for appliaatio
with fast dynamics and low-cost microcontrollers [2], [3].

Due to limited space, in what follows the full proofs are

omitted, and their key steps are briefly discussed.

IIl. UNCONSTRAINEDIAMPC: ISS FROPERTY
We start with the unconstrained caggé= R"”, I/ = R™.

A. Stability with parameter prediction along the horizon

Consider first the cas§,; = {(t + k), k € Zjp, N, Where
it is possible thaty, |, # &, fOr ki, k2 € Zjo ny. This
amounts to controlling an LPV system witlV steps of
parameter preview, but no information afterwards.

Lemma 1:Let Assumption 2 hold and consider (4) andis Rp| with respect td|; for the closed loop.

the MPC that at € Zy; solves (3) wherety = X = R",

U=R",Cpy =R"™ U =R™, &, = E(t+k), andP(§),

be

estimate, which may be time-varying, afwlt € E(&op)- The
parameter estimation error induces a state prediction erro

4 4 4
Ee = Z[g]zAzx - Z[ﬁo\t]ix‘lﬂ? = Z[go‘t]iAia:. (9)
=1 i=1 i=1
Indeed,
14 _ Vi ~
lexll = || [opelidiz|| < (D [EopeliAi - Izl
i=1 i=1

‘

< <Z |[€oyelal |Az||> [zl < valléopellall=]  (10)
1=1

WherevA = maX;=1,... ¢ HAZH

For the value function”’™F¢ of (3), the following result
is straightforward from [ﬁ.

Result 2: For every compact’;, C R", the value function
of (3), whereP(¢) is designed according to (7), is Lipschitz-
continuous inx € Xy, that is, there existd, € R, such
that for everyxi,zo € &z, [[VENFC(z1) — VA C(22)|| <
L|z1 — x|, for every¢™ e ZN+L,

Result 2 follows directly from the fact that for every
NV e BN+ Ven'© is piecewise quadratic [1] and hence
it is Lipschitz continuous in any compact s&. Thus, for
any X; C R and ¢V € ZV*L) there exists a Lipschitz
arameterL,v € Ry. SinceEN*! is compact, i.e., closed
and bounded, there exists a maximumlofv € R, for
N € EN*1, which gives a Lipschitz constadt for V7.

Lemma 2:Let & 1441 = &, fOr all k € Zp n), t €
Zo+. Then, there exists;, > 0, such that for every: € X7,

VPO (e + 1)) SVRFC(0) = Min( @)l ()]

+ vl l2(0)]l- (12)

Theorem 1:Let Assumptions 1, 2 hold, angy;+1 =
Ekt1yes for all k € Zjg y—q), and allt € Zo. For the MPC
that at any step solves (3) wheRé¢) is designed according
to (7), Xn = X =R", U = R™, Cpy = R*"™™, U = R™,
VMPC(x) is an ISS-Lyapunov function with respect to the
estimation error§~0|t = ot € §(§0|t) for (1) in closed
loop with the MPC based on (3) in ary, C X7, where),
O

The proof of Lemma 2 follows from Lemma 1 and Lips-
chitz continuity. That of Theorem 1 follows from Lemma 2,

k(&) are from (7). Then, the origin is AS for the closed |°0pcompactness af;, and the properties of the norms.

with domain of attractionR™ for every sequencés(t)}:,
such that{(t) € E, for all t € Ro.. O

IV. CONSTRAINEDIAMPC: ROBUST CONSTRAINTS

The proof of Lemma 1 is obtained by adapting the proofs ) ) _
for unconstrained MPC extended to time-varying systems, I Section Ill we obtained an unconstrained IAMPC

see, [1, Sec.2.4], for the terminal cost designed as in (7).

that guarantees ISS with respect{tg)t. Next, we consider

By Lemma 1, the MPC based on (3) with perfect previey$onstrained IAMPC, i.e.t x U C R™ x R™. .
along the horizon is stabilizing. Next, we account for the Assumption 3:¥',2/ are compact polyhedra with &

effect of the parameter estimation error.

B. ISS with respect to parameter estimation error

Consider now the case relevant to Problem 1 wijérgis
constant, i.e.{(t) = ¢, for all t € Zy., unknown, and being

int(X),0 € int(U).

Under Assumption 3, we desigh’y such that the LPV
system (4) with perfect preview along the prediction hamizo
i.e., & = (t+ k) for all k € Zjy v}, recursively satisfies
the constraints. Then, we desigh, to enforce constraint

estimated. Thu§0‘t = §—§0|t is the error in the parameter satisfaction whelfmt #0.



A. Terminal set design for nominal terminal constraint C can be computed as the maximal RCI set for (2) from

) ) the sequence [15],
Consider (4) wher€(t) is known att € Zy, and the

control law (5) resulting in the closed-loop LPV system cO=x, (16a)
¢ ¢t —fz: Juel,
2(t+1) = > [EB)]i(Ai + BK)x(t). (12) Az +Bue ™, VieZy gy nc™. (16b)

i=1
; : : ; The maximal RCI set it is the fixpoint of (16), i.e.C>* =
The trajectories of (12) are contained in those of the pLDIC(E) such thatc™ D — ¢®  and Iias the Iérggst sect within
z(t +1) € co{(A; + BK;)z(t)}i_,. (13) X that can be made invariant for (2) with inputstif
) ) ) ) To guarantee satisfaction of the terminal constraint when
For (13) in closed loop with (5) designed by (7) subjeckxk‘t ugjt) € Cry IS |mposed in (3),(z, k(£)x) € Cyy for
to (1b), in [13] it was shown that the maximum constramgveryx € Xy, € € = must hold, and the horizoW must
adm|SS|tLIe Se™ C X, whereX = {z € X : £k(§)r € pg selected such that for everyc C and¢yN € EN+L there
U,¥¢ € E} is polyhedral, finitely determined and has nonyists[u(0) ... u(N — 1)] such that for (4) W|th:c(0) —

emptylntenor withO € int(X>°). X is RPI for (12) for all (k) = & for all k € Z ny, (x(k),u(k)) € Cyy for all
§ € E, and is the limit of a sequence of backward reachablg - Zio.n— 1), andz(N) € Xy. Let

sets. LetX,, be a given set of feasible states and inputs

Xew CX xU, 0 € int(X,,), and let SO =y,
X ={z: (v,Kix) € Xpu, Vi € Ly g} s = {x €X: Juel, Aiw+BuesSM},
XD = (3. (A + BE;)z € X Vi€ Zp g} nx™ St _ ﬂ S0, 17
X = lim X", (14)
h—o0
Due to the finite determination ot there exists a finite The setS"") is such that for any:(0) € S, given any
h € Zo,. such thaty P +1) = x () — yoo ¢h=1 € =" there exists a sequenge(0) ... u(h — 1)] such

Lemma 3:Consider (4) and the MPC that ate Z,, thatfor (4) withz(0) =z and{(k) = & for all k € Zj vy,
solves (3) whereX C R", U C R™, Cp = R™™, (ffgl_kh)v u(k ))ggﬂw agdx((s))elxtj\lfz _ o that
Eoie = E(t+E), P(€), K(€) are designed according to (7) and ' 1€0rem z:Lonsiaer elth € Zoy De such tha
X]t = X°°, where X is from (14). At a givent € Zg., ) = ¢ =Cin (16), and letC;,, be defined by (15).
let z(t) € X, &} € ZV+1 be such that (3) is feasible. Then, L&t v = A from (14), wheret,, = Cu., and .V & Zoy
(3) is feasible for anyr > ¢, i.e., Xp(¢N) = {z € X : bf[ S”fgflha'is 2 C It at) € Catt € Zyy, and
(3) feasible for woy = z, &y = & €, k € Zyg 1} IS @ & €=V, Gor € (50‘7) for all 7 > ¢, (3) is feasible for
Pl set, and the origin is AS i, (£V). all 7 > ¢. If there existst € Zo, such thaty,, = (7 + k)

) ) forall 7 > ¢, k € Zjy n}, (1) in closed-loop with the MPC
The proof of Lemma 3 is based on proving theg(¢Y) that solves (3) is also AS id. O

is Pl, due to the terminal sety from (14), thus ensuring — the proof of Theorem 2 follows from combining the
recqrsive feasibility. Combined with Theorem 1, this pr®ve .oqits of Lemma 3 with the robust invarianceand the
AS in Xy (&7). fact that NV is such thatC € S®Y). In the construction of
S ie., (17), the parameter sequerieis known since
the terminal set is enforced with respect to the nominal
dynamics. The robust invariance 6fand the choice ofV

In order to ensure robust constraint satisfaction in thguch thatS(") O C guarantee that, even in presence of a
presence of parameter estimation error we design the cdparameter estimation erroky can be reached itV steps.
straint (3e) from a RCI set for the pLDI (2). Based on Conditions for existence af* are related to the existence
Definition 2, letC C X be a convex set such that for anyOf a nonlinear stabilizing law for (1a), and are discussed in
x € C there existsu € U such that4;z + Bu € C for all ~ details in [15]. Theorem 2 ensures robust feasibility of (3)
i € Zjy 4. GivenC, we desigrC,,, in (3e) as robust satisfaction of (1b), and nominal asymptotic sigbil

' . i.e., if there exists € Zo, such thatf,. = 0, for all 7 > ¢,
Cow ={(z,u) €CxU, Aix+BueC, ViecZpy}, (15) fe Zo, N, the closed loop is AS.

that iS, the State-input pairs that result in states withia t V. INDIRECT ADAPTIVE MPC: COMPLETEALGORITHM

RCI set for any ve_rtex system of the pLDI (2). ) The last design element in (3) is the construction of the
. Lemma 4:Consider (3) Where\?]\_; = R”., andC,, in (3e) parameter prediction vectay .

is defined by (15). Ifz(t) € C, (3) is feasible for allr > ¢, Since¢ in (1) is assumed to be constant or slowly varying,
for any & € ¥ and anygo|, € =(6oj-)- L) an obvious choice would bg, . = &(t), for all k € Zjy n),
The proof of Lemma 4 follows from the convexity 6f.,, forall ¢t € Zy. However, this choice violates the assumption
and the pLDI update equation (2). of Theorem 1 (and implicitly those of Lemmas 1 and 3) that

B. Robust constraints design



requiresSy ;1 = g1y, forallk € Zyg n—1), t € Zoy. Such 15
an assumption is required because if the entire parame
prediction vectoré¥ suddenly changes, the value function
VMFC may not be decreasing. g
Thus, we introduce aN-step delay in the parameter
prediction, 10

§k|t ={(t—N+k), Vk € Z[O,N]- (18) s

Due to (18), at each time, the new estimate is added as
last element o€}, i.e., & = &(t) and&yy = Eppr)e—1, for

all k € Zjy n_1), t € Zo+. We can now state the complete
properties of IAMPC.

Theorem 3:Let Assumptions 1-3 hold. Consider (1),
where ¢ € Z, in closed loop with the IAMPC controller
that at everyt € Zy, solves (3), whereP(¢) defined
by (6) andx (&) defined by (5) are from (7)¢, X, and
N are designed according to Theorem 2 gid ¢ =V +!
is obtained from (18). If for some € Zy., z(t) € C, the
closed-loop satisfies (1b), and (3) is recursively feasibte
any 7 > t. Furthermore, the closed loop is ISS in the RP ) |
setC with respect tofo‘t = E_—&Ju, i.e., theN-steps delayed s i s EO % % w0
estimation errog,; = ¢ — £(t — N).

Proof: The proof follows by combining Theorem 1 rig 2. Simulations with fast«(= 1,2, upper plot) and slowe(= 1,20,
with Theorem 2. By Theorem 27 is RCI, and ifxz(¢) € lower plot) parameter estimato]; blue, [2]2 black.
C, (3) is feasible for allr > t, for any ¢¥ € =V*! that
satisfies (18), since (18) implies thg{;, = &i41/-—1, for

all k € Zjp,n 1) Thus, by (15) enforced in (3], € X' is @  agsymption 1. To enforce Assumption 1 one can always
compact RPI for the closed-loop system, and hence (1b) igign an estimator that produces the unconstrained gstima
satisfied for allr > ¢. SmceVé“PC is piecewise quadratic for o € R’ and provides to the IAMPC the projection onto
every¢™ € EN*, by taking X, = A = C, which is RPl = je ¢ — proj=(0). By using o € R’ in the estimator
for the closed-loop system and compact sigce X, the  ypdate and providing = proj=(n) to the controller, this
existence of a Lipschitz constafitis guaranteed, according gmounts to a standard (unconstrained) estimator with an out
to Result 2. Hence, Theorem 1 holds withiin provmg ISS  put nonlinearity. Thus, the convergence conditions arélaim
with respect toy, = & — & = £ — &(t — N), i.e., the g those for standard estimators, in particular, identiigb
delayed estimation error. ®  and persistent excitation [11], [12]. As for identifiahyliit is

Based on Theorem 3, from any initial stat¢t) € C, the  worth noticing that the true value of the parametenay not
closed-loop system robustly satisfies the constraintsrigr abe uniquely defined due to the polytopic representation (1).
admissible estimation error, and the expansion term in th&nhile not proved here due to limited space, in this case
ISS Lyapunov function is proportional to the norm of thea slightly modified ISS Lyapunov function can be provided,
delayed parameter estimation error. Thus, if the parametgflated to the smallest error between the current estinmate a
estimate converges at tiné and such value is maintained all the convex parameter vectors corresponding to the kctua
for all ¢ > ¢*, for all t > t* + N, £ = 0 and hence the system matrices. Thus, it is not necessary to reconstruct a
closed-loop is AS. Finally, note that at runtime, the IAMPCspecific value, but rather any value that is associated to the
only solves a QP as a standard (non-adaptive) linear MP&ctual system matrices.
Thus, based on Theorem 3 we can state the following.

Result 3: The IAMPC designed according to Theorem 3 VI. NUMERICAL SIMULATIONS
solves Problem 1. We consider (1), wheré = 5, and A; = [} %2], 4A; =

The ISS property established in Theorem 3 implies that.1 - A;, Az = 0.6 - Ay, Ay = [39923] A5 = [%% %],
when the estimator converges to the true parameter value ted B = [-0.035 —0.905]". While being only constructed
closed-loop becomes AS. But ISS also ensures that, everfriom 2" order systems, this example is challenging because
the estimate never converges, the ultimate bound on the stabme of the dynamics are stable and some unstable, and
is proportional to the estimation error. Thus, ISS allows téhe system matrices are in some cases significantly differen
state properties that hold regardless of the convergence Tie constraints are defined by (1b), whe¥e= {z € R? :
the estimator and do not require a specific choice for thigz|;| < 15, i = 1,2}, U = {u € R : |[u]] < 10}.
estimator design. On the other hand, it is required for thé/e have implemented a simple estimator that computes the
estimator to provide((t) € Z, for all ¢ € Zo4+, as per least squares solutiop(t) based on past data window of
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Fig. 1. IAMPC simulations on the numerical example. Trajées (black),
X°° (green),C (blue), X (red).

L L
30 35 40




N,, steps and applies a first order filter on the projection ¢
o(t) onto =, i.e., {(t + 1) = (1 —¢)&(t) + < - proj=(o(t)),
wheres € R 1y, and[§(0)]; = 1/4, i € Zp . Such simple
estimator satisfies Assumption 1 and requires only solving
(small) QP. In the simulations we use the QP solver in [1€
for both estimation and control computation. We design th
controller according to Theorem 2, whefe= C*°, and we
selectN,, = 3 and N = 8, which is the smallest value such
that SN) O C> by (17). Figure 1 shows the simulations
where the initial conditions are the vertices ©fand for
each initial condition4 different simulations with different
(random) values of < = are executed. Figure 2 compares
the cases where=1/2 and¢ = 1/16, i.e., fast versus slow
estimation, thus showing the impact of the estimation errc
on the closed-loop behavior.

As an additional case study, we consider the compressor

Tr[°C]

T.[°C]

Crl[HZ]

control of a variable refrigerant flow air conditioner (VRF- Fig. 3. IAMPC control of air conditioning system. Time treferies (solid)

AC). The model is a simplification of that in [17], obtained
by first principles and data, where the valve and the fan
speeds are kept constant. The resultiiy order model
is linearized around the setpoifit,s,uss) where the state
coordinates are chosen as= [T, T, T. (], T,[deq] is the
room temperature].[deg] is the evaporating temperature, [4]
T4[deq] is the compressor discharge temperatyrds a
nonphysical state related to internal conditions of theair- 5
ditioner, and the control input is the compressor frequency
u = Cp[Hz]. The setpoint istss = [22 9 72 62], ugs = 45.

The controller must enforce upper and lower bounds on staté(,s]
T =1[35520],z=—[0.53 10 20], and inputm = —u = 20.
We consider uncertainty in the thermal mass of the room b
+50% and in the efficiency of the energy transfer from the
evaporator to the room by20%, obtaining (1) with? = 4.
We design the IAMPC and the parameter estimator With-

8, Ts = 1min, N,,, = 2. The simulation results from multiple
initial conditions for different realizations of the untainty
are shown in Figure (3). As regards implementability of
IAMPC, it is worth remarking that the QP solver [16], asqyq
opposed to LMI solvers, is feasible for implementation on
the air conditioner microcontroller [17].

(3]

7]
(8]

El

[11]
VII. CONCLUSIONS ANDFUTURE WORK

We have proposed an indirect adaptive MPC that guarah-2l
tees robust constraint satisfaction, recursive feasipidind
ISS with respect to the parameter estimation error, and hag]
computational requirements similar to standard MPC. The
IAMPC designs exploits a terminal cost designed as a lerll,4
a robust PI terminal set, and a RCI set for ensuring robust
constraint satisfaction. The control design allows to cioo [15]
any parameter estimation algorithm as long as the estinnate[%]
the parameter used for prediction lies in a specified seghvhi

can be obtained by projecting the unconstrained estimate.[ﬂ]
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