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Indirect Adaptive Model Predictive Control
for Linear Systems with Polytopic Uncertainty

Stefano Di Cairano

Abstract— We develop an indirect adaptive model predic-
tive control algorithm for uncertain linear systems subject
to constraints. The system is modeled as a polytopic linear
parameter varying system where the convex combination vector
is constant but unknown. The terminal cost and set are
constructed from a parameter-dependent Lyapunov function
and the associated control law, and robust control invariant set
constraints are enforced. The proposed design ensures robust
constraint satisfaction and recursive feasibility, is input-to-state
stable with respect to the parameter estimation error and itonly
requires the online solution of quadratic programs.

I. I NTRODUCTION

Often in Model Predictive Control (MPC) [1], some of the
model parameters are uncertain at design time, especially
in factory automation, automotive, and aerospace applica-
tions [2], [3], where the control algorithm needs also to have
low complexity and computational effort. For uncertain mod-
els, robust MPC methods have been proposed, see, e.g., [4]–
[7]. Some of the limitations of these methods are either in the
computational cost, due to solving linear matrix inequalities
(LMIs) at each control step [4]–[6], or in applying only to
additive disturbances [7]. These limitations are often dueto
considering constantly changing parameters.

Alternatively, when the parameters are unknown but con-
stant or slowly varying, one can learn their values. Adaptive
MPC algorithms have been recently proposed based on dif-
ferent methods, such as min-max approaches [8], learning of
constant offsets [9], and set membership identification [10].
Another class of adaptive MPC algorithms is related to con-
trolling the uncertain system while guaranteeing sufficient
excitation for identification, see, e.g., [11], [12].

In this paper we propose a MPC design that operates
concurrently with a parameter estimation scheme, thus re-
sulting in an indirect adaptive MPC (IAMPC, for shortness)
approach, that retains constraint satisfaction guarantees and
certain stability properties. Motivated by the case of the
unknown but constant (or slowly varying) parameters and
by the need to limit the computational burden, here we do
not seek robust stability, but robust constraint satisfaction
and an input-to-state stable (ISS) closed-loop with respect
to the estimation error. ISS will hold with only minimal
assumptions on the estimates, and if the correct parameter
value will be eventually estimated the closed-loop will be-
come asymptotically stable (AS). Constraint satisfactionis
guaranteed even if the parameters change continuously.
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We build upon the results in [13] for calibrating the MPC
model after deployment, yet not concurrently to the plant
operation. For uncertain systems represented as polytopic
linear difference inclusions (pLDI) we design a parameter-
dependent quadratic terminal cost and a robust terminal
constraint using a parameter-dependent Lyapunov function
(pLF) [14] and its corresponding stabilizing control law.
Robust constraint satisfaction in presence of parameter esti-
mation error is obtained by enforcing robust control invariant
set constraints [15]. A parameter prediction update law is
also designed to ensure the desired properties. The IAMPC
allows uncertainty in the system dynamics, as opposed to
additive disturbances in [7], [9], and only solves quadratic
programs (QPs), as opposed to LMIs in [4]–[6].

The paper is structured as follows. After the preliminaries
in Section II, in Section III we design the cost function
ensuring the unconstrained IAMPC to be ISS with respect to
the estimation error. For constrained IAMPC, in Section IV
we design the terminal set and the robust constraints ensuring
recursive feasibility. In Section V we combine the cost func-
tion and the constraints with a parameter estimate prediction
update. In Section VI we show a numerical example and a
case study in air conditioning control. Conclusions and future
developments are discussed in Section VII.

Notation: R, R0+, R+, Z, Z0+, Z+ are the sets of
real, nonnegative real, positive real, and integer, nonnegative
integer, positive integer numbers. We denote interval of
numbers using notations likeZ[a,b) = {z ∈ Z : a ≤ z < b}.
co{X}, andint{X} denote the convex hull and the interior of
setX . For vectors, inequalities are intended componentwise,
while for matrices indicate (semi)definiteness, andλmin(Q)
is the smallest eigenvalue ofQ. By [x]i we denote thei-th
component of vectorx, and byI and0 the identity and the
“all-zero” matrices of appropriate dimension.‖ · ‖p denotes
the p-norm, and‖ · ‖ = ‖ · ‖2. For a discrete-time signal
x ∈ R

n with sampling periodTs, x(t) is the value a sampling
instantt, i.e., at timeTst, xk|t denotes the predicted value
at samplet + k, i.e., x(t+ k), based on data at samplet,
andx0|t = x(t). A functionα : R0+ → R0+ is of classK if
it is continuous, strictly increasing,α(0) = 0; if in addition
limc→∞ α(c) = ∞, α is of classK∞.

II. PRELIMINARIES AND PROBLEM DEFINITION

We review some standard definitions and results. For
details, see, e.g., [1, Appendix B].

Definition 1: Given x(t + 1) = f(x(t), w(t)), x ∈ R
n,

w ∈ W ⊆ R
d, a setS ⊂ R

n is robust positive invariant



(RPI) for f iff for all x ∈ S, f(x,w) ∈ S, for all w ∈ W .
If w = {0}, S is called positive invariant (PI). �

Definition 2: Given x(t + 1) = f(x(t), u(t), w(t)), x ∈
R

n, u ∈ U ⊆ R
m, w ∈ W ⊆ R

d, a setS ⊂ R
n is robust

control invariant (RCI) forf iff for all x ∈ S, there exists
u ∈ U such thatf(x, u, w) ∈ S, for all w ∈ W . If w = {0},
S is called control invariant (CI). �

Definition 3: Given x(t + 1) = f(x(t)), x ∈ R
n, and a

PI setS for f , 0 ∈ S, a functionV : Rn → R0+ such that
there existsα1, α2, α∆ ∈ K∞ such thatα1(‖x‖) ≤ V(x) ≤
α2(‖x‖), V(f(x)) − V(x) ≤ −α∆(‖x‖) for all x ∈ S is a
Lyapunov function forf in S. �

Definition 4: Given x(t + 1) = f(x(t), w(t)), x ∈ R
n,

w ∈ W ⊆ R
d, and a RPI setS for f , 0 ∈ S, a function

V : Rn → R+ such that there existsα1, α2, α∆ ∈ K∞ and
γ ∈ K such thatα1(‖x‖) ≤ V(x) ≤ α2(‖x‖), V(f(x)) −
V(x) ≤ −α∆(‖x‖) + γ(‖w‖) for all x ∈ S, w ∈ W is an
input-to-state stable (ISS) Lyapunov function forf in S with
respect tow.

Result 1: Givenx(t+1) = f(x(t)), x ∈ R
n, and a PI set

S for f , 0 ∈ S, if there exists a Lyapunov function forf in S,
the origin is asymptotically stable (AS) forf with domain
of attractionS. Given x(t + 1) = f(x(t), w(t)), x ∈ R

n,
w ∈ W ⊆ R

d, and a RPI setS for f , 0 ∈ S, if there exists
a ISS Lyapunov function forf in S, the origin is ISS forf
with respect tow with domain of attractionS.

We consider the uncertain constrained discrete-time sys-
tem with sampling periodTs,

x(t+ 1) =

ℓ
∑

i=1

[ξ̄]iAix(t) +Bu(t), (1a)

x ∈ X , u ∈ U (1b)

whereAi ∈ R
n×n, i ∈ Z[1,ℓ] andB are known matrices of

appropriate size, andX ⊆ R
n, U ⊆ R

m are constraints on
system states and inputs. In (1), the uncertainty is associated
to ξ̄ ∈ Ξ ⊂ R

ℓ, which is unknown and constant or changing
slowly with respect to the system dynamics, andΞ = {ξ ∈
R

ℓ : 0 ≤ [ξ]i ≤ 1,
∑ℓ

i=1[ξ]i = 1}. We call ξ̄ convex
combination vector, since it describes a convex combination
of the “vertex systems”fi(x, u) = Aix+Bu, i ∈ Z[1,ℓ].

Assumption 1:An estimator is computing the estimate
ξ(t) of ξ̄ such thatξ(t) ∈ Ξ for all t ∈ Z0+.

We denote bỹξ(t) = ξ̄(t)− ξ, the estimation error at time
t for which ξ̃(t)+ξ ∈ Ξ. Givenξ ∈ Ξ, for shortness we write
ξ̃ ∈ Ξ̃(ξ), whereΞ̃(ξ) = {ξ̃ ∈ R

ℓ : ∃ξ̄ ∈ Ξ, ξ̃ = ξ̄−ξ} is the
set of possible estimation error vectors. Assumption 1 is the
only estimator property required for the developments in this
paper to hold. Some comments on how to design estimators
that satisfy Assumption 1 are given later, in Section V.

Remark 1:The trajectories produced by (1a) are a subset
of those of the pLDI

x(t + 1) ∈ co{Aix(t) +Bu(t)}ℓi=1. (2)

The pLDI (2) is equivalent to (1a) if a varying parameter
vector, i.e.,ξ̄(t) ∈ Ξ, is considered.

Consider the finite time optimal control problem

VMPC
ξNt

(x(t)) = min
Ut

x′
N |tP(ξN |t)xN |t + (3a)

N−1
∑

k=0

x′
k|tQxk|t + u′

k|tRuk|t (3b)

s.t. xk+1|t =

ℓ
∑

i=1

[ξk|t]iAixk|t +Buk|t (3c)

uk|t ∈ U , xk|t ∈ X (3d)

(xk|t, uk|t) ∈ Cxu (3e)

xN |t ∈ XN (3f)

x0|t = x(t), (3g)

whereN ∈ R+ is the prediction horizon,Q ∈ R
n×n, R ∈

R
m×m, Q,R > 0, P(ξ) ∈ R

n×n, P(ξ) > 0, for all ξ ∈
Ξ, Cx,u ⊆ X × U , Ut = [u0|t . . . uN−1|t] is the sequence
of control inputs along the prediction horizon, andξNt =
[ξ0|t . . . ξN |t] ∈ ΞN+1 is a sequence of predicted parameters,
not necessarily constant. LetU∗

t = [u∗
0|t . . . u∗

N−1|t] be the
solution of (3) att ∈ Z0+.

Problem 1: Given (1) and an estimator producing the
sequence of estimates{ξ(t)}t such thatξ(t) ∈ Ξ for all
t ∈ Z0+ according to Assumption 1, design the sequence of
predicted convex combination vectorsξNt , the terminal cost
P(ξ), the robust terminal setXN , and the robust constraint
set Cxu in (3) so that the IAMPC controller that at any
t ∈ Z0+ solves (3) and appliesu(t) = u∗

0|t achieves:(i) ISS

of the closed-loop with respect tõξ0|t = ξ̄− ξ0|t, (ii) robust
constraint satisfaction even wheñξ0|t 6= 0, (iii) guaranteed
convergence of the runtime numerical algorithms and com-
putational load comparable to a (non-adaptive) MPC.�

The rationale for seeking ISS in Problem 1 is that, when
the unknown parameters do not change or change slowly,
a “well designed” estimator will eventually converge, and
hence, the closed-loop becomes AS. However, in Prob-
lem 1 ISS and constraint satisfaction hold regardless of
the estimator convergence. The expansion term in the ISS
Lyapunov function captures the dependency of the closed-
loop performance on estimation error while allowing for an
independent estimator design.

Consider the linear parameter-varying (LPV) system

x(t+ 1) =
ℓ
∑

i=1

[ξ(t)]iAix(t) +Bu(t), (4)

where for all t ∈ Z+, ξ(t) ∈ Ξ, the parameter-dependent
(linear) control law

u = κ(ξ)x =

(

ℓ
∑

i=1

[ξ]iKi

)

x, (5)

and the parameter-dependent (quadratic) function

Vξ(x) = x′P(ξ)x = x′

(

ℓ
∑

i=1

[ξ]iPi

)

x, (6)

wherePi > 0, i ∈ Z[1,ℓ].



Definition 5 ( [14]): function (6) such thatVξ(t+1)(x(t+
1)) − Vξ(t)(x(t)) ≤ 0, for all ξ(t), ξ(t + 1) ∈ Ξ, where
equality holds only ifx = 0, is a parameter-dependent
Lyapunov function(pLF) for (4) in closed-loop with (5).�

By [5], [13], [14], givenQ ∈ R
n×n, R ∈ R

m×m Q,R >
0, any solutionGi, Si ∈ R

n×n, Si > 0, Ei ∈ R
m×n, i ∈

Z[1,ℓ], of




Gi+G′

i−Si (AiGi+BEi)
′ E′

i G′

i

(AiGi+BEi) Sj 0 0

Ei 0 R−1 0

Gi 0 0 Q−1



 > 0, ∀i, j ∈ Z[1,ℓ].

(7)

is such that (5), (6) wherePi = S−1
i , Ki = EiG

−1
i , i ∈

Z[1,ℓ], satisfy

V(x(t+ 1), ξ(t+ 1))− V(x(t), ξ(t)) ≤ (8)

− x(t)′(Q+ κ(ξ(t))′Rκ(ξ(t)))x(t), ∀ξ(t), ξ(t+ 1) ∈ Ξ

for the closed-loop (4), (5).
Assumption 2:For the givenAi, i ∈ Z[1,ℓ], B, Q, R, (7)

admits a feasible solution
The LMI (7) is a relaxation of those in [4]–[6]. Thus,

Assumption 2 is implied by the existence of an (uncon-
strained) stabilizing linear control law for (1a). Indeed,if
the uncertainty is too large, (7) may be infeasible. However,
(7) is used here for design, and hence such situation will be
recognized and can be corrected before controller execution.
By using (7) only for design, the proposed method solves
online only QPs, which makes it feasible also for applications
with fast dynamics and low-cost microcontrollers [2], [3].

Due to limited space, in what follows the full proofs are
omitted, and their key steps are briefly discussed.

III. U NCONSTRAINED IAMPC: ISS PROPERTY

We start with the unconstrained case,X = R
n, U = R

m.

A. Stability with parameter prediction along the horizon

Consider first the caseξk|t = ξ̄(t+ k), k ∈ Z[0,N ], where
it is possible thatξk1|t 6= ξk2|t, for k1, k2 ∈ Z[0,N ]. This
amounts to controlling an LPV system withN steps of
parameter preview, but no information afterwards.

Lemma 1:Let Assumption 2 hold and consider (4) and
the MPC that att ∈ Z0+ solves (3) whereXN = X = R

n,
U = R

m, Cxu = R
n+m, U = R

m, ξk|t = ξ̄(t+k), andP(ξ),
κ(ξ) are from (7). Then, the origin is AS for the closed loop
with domain of attractionRn for every sequence{ξ̄(t)}t,
such thatξ̄(t) ∈ Ξ, for all t ∈ R0+. �

The proof of Lemma 1 is obtained by adapting the proofs
for unconstrained MPC extended to time-varying systems,
see, [1, Sec.2.4], for the terminal cost designed as in (7).

By Lemma 1, the MPC based on (3) with perfect preview
along the horizon is stabilizing. Next, we account for the
effect of the parameter estimation error.

B. ISS with respect to parameter estimation error

Consider now the case relevant to Problem 1 whereξ̄(t) is
constant, i.e.,̄ξ(t) = ξ̄, for all t ∈ Z0+, unknown, and being
estimated. Thus,̃ξ0|t = ξ̄− ξ0|t is the error in the parameter

estimate, which may be time-varying, andξ̃0|t ∈ Ξ(ξ0|t). The
parameter estimation error induces a state prediction error

εx =

ℓ
∑

i=1

[ξ̄]iAix−

ℓ
∑

i=1

[ξ0|t]iAix =

ℓ
∑

i=1

[ξ̃0|t]iAix. (9)

Indeed,

‖εx‖ =

∥

∥

∥

∥

∥

ℓ
∑

i=1

[ξ̃0|t]iAix

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

ℓ
∑

i=1

[ξ̃0|t]iAi

∥

∥

∥

∥

∥

· ‖x‖

≤

(

ℓ
∑

i=1

|[ξ̃0|t]i| ‖Ai‖

)

‖x‖ ≤ γA‖ξ̃0|t‖1‖x‖ (10)

whereγA = maxi=1,...,ℓ ‖Ai‖.
For the value functionVMPC

ξN
of (3), the following result

is straightforward from [1].
Result 2: For every compactXL ⊆ R

n, the value function
of (3), whereP(ξ) is designed according to (7), is Lipschitz-
continuous inx ∈ XL, that is, there existsL ∈ R+ such
that for everyx1, x2 ∈ XL, ‖VMPC

ξN
(x1) − VMPC

ξN
(x2)‖ ≤

L‖x1 − x2‖, for everyξN ∈ ΞN+1.
Result 2 follows directly from the fact that for every

ξN ∈ ΞN+1, VMPC
ξN

is piecewise quadratic [1] and hence
it is Lipschitz continuous in any compact setXL. Thus, for
any XL ⊆ R

n and ξN ∈ ΞN+1, there exists a Lipschitz
parameterLξN ∈ R+. SinceΞN+1 is compact, i.e., closed
and bounded, there exists a maximum ofLξN ∈ R+ for
ξN ∈ ΞN+1, which gives a Lipschitz constantL for VMPC

ξN
.

Lemma 2:Let ξk−1|t+1 = ξk|t, for all k ∈ Z[1,N ], t ∈
Z0+. Then, there existsγL > 0, such that for everyx ∈ XL,

VMPC
ξN
t+1

(x(t+ 1)) ≤VMPC
ξNt

(x(t)) − λmin(Q)‖x(t)‖2

+ γL‖ξ̃0|t‖1‖x(t)‖. (11)
Theorem 1:Let Assumptions 1, 2 hold, andξk|t+1 =

ξk+1|t, for all k ∈ Z[0,N−1], and all t ∈ Z0+. For the MPC
that at any step solves (3) whereP(ξ) is designed according
to (7), XN = X = R

n, U = R
m, Cxu = R

n+m, U = R
m,

VMPC
ξN

(x) is an ISS-Lyapunov function with respect to the

estimation error̃ξ0|t = ξ̄ − ξ0|t ∈ Ξ̃(ξ0|t) for (1) in closed
loop with the MPC based on (3) in anyXη ⊆ XL, whereXη

is RPI with respect tõξ0|t for the closed loop. �

The proof of Lemma 2 follows from Lemma 1 and Lips-
chitz continuity. That of Theorem 1 follows from Lemma 2,
compactness ofXL and the properties of the norms.

IV. CONSTRAINED IAMPC: ROBUST CONSTRAINTS

In Section III we obtained an unconstrained IAMPC
that guarantees ISS with respect toξ̃0|t. Next, we consider
constrained IAMPC, i.e.,X × U ⊂ R

n × R
m.

Assumption 3:X ,U are compact polyhedra with0 ∈
int(X ), 0 ∈ int(U).

Under Assumption 3, we designXN such that the LPV
system (4) with perfect preview along the prediction horizon,
i.e., ξk|t = ξ̄(t + k) for all k ∈ Z[0,N ], recursively satisfies
the constraints. Then, we designCxu to enforce constraint
satisfaction wheñξ0|t 6= 0.



A. Terminal set design for nominal terminal constraint

Consider (4) whereξ(t) is known at t ∈ Z0+ and the
control law (5) resulting in the closed-loop LPV system

x(t+ 1) =

ℓ
∑

i=1

[ξ(t)]i(Ai +BKi)x(t). (12)

The trajectories of (12) are contained in those of the pLDI

x(t+ 1) ∈ co{(Ai +BKi)x(t)}
ℓ
i=1. (13)

For (13) in closed loop with (5) designed by (7) subject
to (1b), in [13] it was shown that the maximum constraint
admissible setX∞ ⊆ X̄ , whereX̄ = {x ∈ X : κ(ξ)x ∈
U , ∀ξ ∈ Ξ} is polyhedral, finitely determined and has non-
empty interior with0 ∈ int(X∞). X∞ is RPI for (12) for all
ξ ∈ Ξ, and is the limit of a sequence of backward reachable
sets. LetXxu be a given set of feasible states and inputs
Xxu ⊆ X × U , 0 ∈ int(Xxu), and let

X (0) = {x : (x,Kix) ∈ Xxu, ∀i ∈ Z[1,ℓ]}

X (h+1) = {x : (Ai +BKi)x ∈ X (h), ∀i ∈ Z[1,ℓ]} ∩ X (h)

X∞ = lim
h→∞

X (h). (14)

Due to the finite determination ofX∞ there exists a finite
h̄ ∈ Z0+ such thatX (h̄+1) = X (h̄) = X∞.

Lemma 3:Consider (4) and the MPC that att ∈ Z0+

solves (3) whereX ⊂ R
n, U ⊂ R

m, Cxu = R
n+m,

ξk|t = ξ̄(t+k), P(ξ), κ(ξ) are designed according to (7) and
XN = X∞, whereX∞ is from (14). At a givent ∈ Z0+,
let x(t) ∈ X , ξNt ∈ ΞN+1 be such that (3) is feasible. Then,
(3) is feasible for anyτ ≥ t, i.e., Xf (ξ

N ) = {x ∈ X :
(3) feasible for x0|t = x, ξk|t = ξk ∈ Ξ, k ∈ Z[0,N ]} is a
PI set, and the origin is AS inXf (ξ

N ). �

The proof of Lemma 3 is based on proving thatXf (ξ
N )

is PI, due to the terminal setXN from (14), thus ensuring
recursive feasibility. Combined with Theorem 1, this proves
AS in Xf (ξ

N ).

B. Robust constraints design

In order to ensure robust constraint satisfaction in the
presence of parameter estimation error we design the con-
straint (3e) from a RCI set for the pLDI (2). Based on
Definition 2, letC ⊆ X be a convex set such that for any
x ∈ C there existsu ∈ U such thatAix + Bu ∈ C for all
i ∈ Z[1,ℓ]. GivenC, we designCxu in (3e) as

Cxu = {(x, u) ∈ C ×U , Aix+Bu ∈ C, ∀i ∈ Z[1,ℓ]}, (15)

that is, the state-input pairs that result in states within the
RCI set for any vertex system of the pLDI (2).

Lemma 4:Consider (3) whereXN = R
n, andCxu in (3e)

is defined by (15). Ifx(t) ∈ C, (3) is feasible for allτ ≥ t,
for any ξNτ ∈ ΞN+1 and anyξ̃0|τ ∈ Ξ̃(ξ0|τ ). �

The proof of Lemma 4 follows from the convexity ofCxu,
and the pLDI update equation (2).

C can be computed as the maximal RCI set for (2) from
the sequence [15],

C(0) = X , (16a)

C(h+1) = {x : ∃u ∈ U ,

Aix+Bu ∈ C(h), ∀i ∈ Z[1,ℓ]} ∩ C(h). (16b)

The maximal RCI set inX is the fixpoint of (16), i.e.,C∞ =
C(h̄) such thatC(h̄+1) = C(h̄), and is the largest set within
X that can be made invariant for (2) with inputs inU .

To guarantee satisfaction of the terminal constraint when
(xk|t, uk|t) ∈ Cxu is imposed in (3),(x, κ(ξ)x) ∈ Cxu for
everyx ∈ XN , ξ ∈ Ξ must hold, and the horizonN must
be selected such that for everyx ∈ C andξN ∈ ΞN+1, there
exists [u(0) . . . u(N − 1)] such that for (4) withx(0) = x,
ξ(k) = ξk for all k ∈ Z[0,N ], (x(k), u(k)) ∈ Cxu for all
k ∈ Z[0,N−1], andx(N) ∈ XN . Let

S(0) = XN ,

S
(h+1)
i = {x ∈ X : ∃u ∈ U , Aix+Bu ∈ S(h)},

S(h+1) =

ℓ
⋂

i=1

S
(h+1)
i . (17)

The setS(h) is such that for anyx(0) ∈ S(h), given any
ξh−1 ∈ Ξh, there exists a sequence[u(0) . . . u(h− 1)] such
that for (4) withx(0) = x andξ(k) = ξk for all k ∈ Z[0,N ],
(x(k), u(k)) ∈ Cxu andx(h) ∈ XN .

Theorem 2:Consider (3), leth̄ ∈ Z0+ be such that
C(h̄+1) = C(h̄) = C in (16), and letCxu be defined by (15).
Let XN = X∞ from (14), whereXxu = Cxu, andN ∈ Z0+

be such thatS(N) ⊇ C. If x(t) ∈ C at t ∈ Z0+, and
ξNτ ∈ ΞN+1, ξ̃0|τ ∈ Ξ̃(ξ0|τ ) for all τ ≥ t, (3) is feasible for
all τ ≥ t. If there existst ∈ Z0+ such thatξk|τ = ξ̄(τ + k)
for all τ ≥ t, k ∈ Z[0,N ], (1) in closed-loop with the MPC
that solves (3) is also AS inC. �

The proof of Theorem 2 follows from combining the
results of Lemma 3 with the robust invariance ofC and the
fact thatN is such thatC ⊆ S(N). In the construction of
S(h), i.e., (17), the parameter sequenceξh is known since
the terminal set is enforced with respect to the nominal
dynamics. The robust invariance ofC and the choice ofN
such thatS(N) ⊇ C guarantee that, even in presence of a
parameter estimation error,XN can be reached inN steps.

Conditions for existence ofC∞ are related to the existence
of a nonlinear stabilizing law for (1a), and are discussed in
details in [15]. Theorem 2 ensures robust feasibility of (3),
robust satisfaction of (1b), and nominal asymptotic stability,
i.e., if there existst ∈ Z0+ such thatξ̃k|τ = 0, for all τ ≥ t,
k ∈ Z[0,N ], the closed loop is AS.

V. I NDIRECT ADAPTIVE MPC: COMPLETE ALGORITHM

The last design element in (3) is the construction of the
parameter prediction vectorξNt .

Sinceξ̄ in (1) is assumed to be constant or slowly varying,
an obvious choice would beξk|t = ξ(t), for all k ∈ Z[0,N ],
for all t ∈ Z0+. However, this choice violates the assumption
of Theorem 1 (and implicitly those of Lemmas 1 and 3) that



requiresξk|t+1 = ξk+1|t, for all k ∈ Z[0,N−1], t ∈ Z0+. Such
an assumption is required because if the entire parameter
prediction vectorξNt suddenly changes, the value function
VMPC
N may not be decreasing.
Thus, we introduce aN -step delay in the parameter

prediction,

ξk|t = ξ(t−N + k), ∀k ∈ Z[0,N ]. (18)

Due to (18), at each timet, the new estimate is added as
last element ofξNt , i.e.,ξN |t = ξ(t) andξk|t = ξk+1|t−1, for
all k ∈ Z[0,N−1], t ∈ Z0+. We can now state the complete
properties of IAMPC.

Theorem 3:Let Assumptions 1–3 hold. Consider (1),
where ξ̄ ∈ Ξ, in closed loop with the IAMPC controller
that at everyt ∈ Z0+ solves (3), whereP(ξ) defined
by (6) andκ(ξ) defined by (5) are from (7),C, XN , and
N are designed according to Theorem 2 andξNt ∈ ΞN+1

is obtained from (18). If for somet ∈ Z0+, x(t) ∈ C, the
closed-loop satisfies (1b), and (3) is recursively feasiblefor
any τ ≥ t. Furthermore, the closed loop is ISS in the RPI
setC with respect tõξ0|t = ξ̄−ξ0|t, i.e., theN -steps delayed
estimation error̃ξ0|t = ξ̄ − ξ(t−N).

Proof: The proof follows by combining Theorem 1
with Theorem 2. By Theorem 2,C is RCI, and if x(t) ∈
C, (3) is feasible for allτ ≥ t, for any ξNτ ∈ ΞN+1 that
satisfies (18), since (18) implies thatξk|τ = ξk+1|τ−1, for
all k ∈ Z[0,N−1]. Thus, by (15) enforced in (3),C ⊆ X is a
compact RPI for the closed-loop system, and hence (1b) is
satisfied for allτ ≥ t. SinceVMPC

ξN
is piecewise quadratic for

every ξN ∈ ΞN+1, by takingXη = XL = C, which is RPI
for the closed-loop system and compact sinceC ⊆ X , the
existence of a Lipschitz constantL is guaranteed, according
to Result 2. Hence, Theorem 1 holds withinC, proving ISS
with respect toξ̃0|t = ξ̄ − ξ0|t = ξ̄ − ξ(t − N), i.e., the
delayed estimation error.

Based on Theorem 3, from any initial statex(t) ∈ C, the
closed-loop system robustly satisfies the constraints for any
admissible estimation error, and the expansion term in the
ISS Lyapunov function is proportional to the norm of the
delayed parameter estimation error. Thus, if the parameter
estimate converges at timet∗ and such value is maintained
for all t ≥ t∗, for all t ≥ t∗ + N , ξ̃Nt = 0 and hence the
closed-loop is AS. Finally, note that at runtime, the IAMPC
only solves a QP as a standard (non-adaptive) linear MPC.
Thus, based on Theorem 3 we can state the following.

Result 3: The IAMPC designed according to Theorem 3
solves Problem 1.

The ISS property established in Theorem 3 implies that
when the estimator converges to the true parameter value the
closed-loop becomes AS. But ISS also ensures that, even if
the estimate never converges, the ultimate bound on the state
is proportional to the estimation error. Thus, ISS allows to
state properties that hold regardless of the convergence of
the estimator and do not require a specific choice for the
estimator design. On the other hand, it is required for the
estimator to provideξ(t) ∈ Ξ, for all t ∈ Z0+, as per
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Fig. 1. IAMPC simulations on the numerical example. Trajectories (black),
X∞ (green),C (blue),X (red).
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Fig. 2. Simulations with fast (ς = 1/2, upper plot) and slow (ς = 1/20,
lower plot) parameter estimator,[x]1 blue, [x]2 black.

Assumption 1. To enforce Assumption 1 one can always
design an estimator that produces the unconstrained estimate
̺ ∈ R

ℓ, and provides to the IAMPC the projection onto
Ξ, i.e., ξ = projΞ(̺). By using ̺ ∈ R

ℓ in the estimator
update and providingξ = projΞ(η) to the controller, this
amounts to a standard (unconstrained) estimator with an out-
put nonlinearity. Thus, the convergence conditions are similar
to those for standard estimators, in particular, identifiability
and persistent excitation [11], [12]. As for identifiability, it is
worth noticing that the true value of the parameterξ̄ may not
be uniquely defined due to the polytopic representation (1).
While not proved here due to limited space, in this case
a slightly modified ISS Lyapunov function can be provided,
related to the smallest error between the current estimate and
all the convex parameter vectors corresponding to the actual
system matrices. Thus, it is not necessary to reconstruct a
specific valuēξ, but rather any value that is associated to the
actual system matrices.

VI. N UMERICAL SIMULATIONS

We consider (1), whereℓ = 5, andA1 = [ 1 0.2
0 1 ], A2 =

1.1 · A1, A3 = 0.6 · A1, A4 = [ 0.9 0.3
0.4 0.6 ] A5 = [ 0.95 0

0.8 1.02 ],
and B = [−0.035 −0.905 ]′. While being only constructed
from 2nd order systems, this example is challenging because
some of the dynamics are stable and some unstable, and
the system matrices are in some cases significantly different.
The constraints are defined by (1b), whereX = {x ∈ R

2 :
|[x]i| ≤ 15, i = 1, 2}, U = {u ∈ R : |[u]| ≤ 10}.
We have implemented a simple estimator that computes the
least squares solution̺(t) based on past data window of



Nm steps and applies a first order filter on the projection of
̺(t) onto Ξ, i.e., ξ(t + 1) = (1 − ς)ξ(t) + ς · projΞ(̺(t)),
whereς ∈ R(0,1), and[ξ(0)]i = 1/ℓ, i ∈ Z[1,ℓ]. Such simple
estimator satisfies Assumption 1 and requires only solving a
(small) QP. In the simulations we use the QP solver in [16]
for both estimation and control computation. We design the
controller according to Theorem 2, whereC = C∞, and we
selectNm = 3 andN = 8, which is the smallest value such
that S(N) ⊇ C∞ by (17). Figure 1 shows the simulations
where the initial conditions are the vertices ofC and for
each initial condition,4 different simulations with different
(random) values of̄ξ ∈ Ξ are executed. Figure 2 compares
the cases whereς = 1/2 andς = 1/16, i.e., fast versus slow
estimation, thus showing the impact of the estimation error
on the closed-loop behavior.

As an additional case study, we consider the compressor
control of a variable refrigerant flow air conditioner (VRF-
AC). The model is a simplification of that in [17], obtained
by first principles and data, where the valve and the fan
speeds are kept constant. The resulting4th order model
is linearized around the setpoint(xss, uss) where the state
coordinates are chosen asx = [Tr Td Te ζ], Tr[deg] is the
room temperature,Te[deg] is the evaporating temperature,
Td[deg] is the compressor discharge temperature,ζ is a
nonphysical state related to internal conditions of the aircon-
ditioner, and the control input is the compressor frequency
u = CF [Hz]. The setpoint isxss = [22 9 72 62], uss = 45.
The controller must enforce upper and lower bounds on state,
x = [3 5 5 20], x = −[0.5 3 10 20], and inputu = −u = 20.
We consider uncertainty in the thermal mass of the room by
±50% and in the efficiency of the energy transfer from the
evaporator to the room by±20%, obtaining (1) withℓ = 4.
We design the IAMPC and the parameter estimator withN =
8, Ts = 1min,Nm = 2. The simulation results from multiple
initial conditions for different realizations of the uncertainty
are shown in Figure (3). As regards implementability of
IAMPC, it is worth remarking that the QP solver [16], as
opposed to LMI solvers, is feasible for implementation on
the air conditioner microcontroller [17].

VII. C ONCLUSIONS ANDFUTURE WORK

We have proposed an indirect adaptive MPC that guaran-
tees robust constraint satisfaction, recursive feasibility, and
ISS with respect to the parameter estimation error, and has
computational requirements similar to standard MPC. The
IAMPC designs exploits a terminal cost designed as a pLF,
a robust PI terminal set, and a RCI set for ensuring robust
constraint satisfaction. The control design allows to choose
any parameter estimation algorithm as long as the estimate of
the parameter used for prediction lies in a specified set, which
can be obtained by projecting the unconstrained estimate.
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