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Abstract
Conventional SLAM systems with an RGB-D sensor use depth measurements only in a lim-
ited depth range due to hardware limitation and noise of the sensor, ignoring regions that are
too far or too close from the sensor. Such systems introduce registration errors especially in
scenes with large depth variations. In this paper, we present a novel RGB-D SLAM system
that makes use of both 2D and 3D measurements. Our system first extracts keypoints from
RGB images and generates 2D and 3D point features from the keypoints with invalid and
valid depth values, respectively. It then establishes 3D-to-3D, 2D-to-3D, and 2D-to-2D point
correspondences among frames. For the 2D-to-3D point correspondences, we use the rays
defined by the 2D point features to ”pinpoint” the corresponding 3D point features, gener-
ating longer-range constraints than using only 3D-to-3D correspondences. For the 2D-to-2D
point correspondences, we triangulate the rays to generate 3D points that are used as 3D
point features in the subsequent process. We use the hybrid correspondences in both online
SLAM and offline postprocessing: the online SLAM focuses more on the speed by computing
correspondences among consecutive frames for real-time operations, while the offline post-
processing generates more correspondences among all the frames for higher accuracy. The
results on RGB-D SLAM benchmarks show that the online SLAM provides higher accuracy
than conventional SLAM systems, while the postprocessing further improves the accuracy.
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Pinpoint SLAM: A Hybrid of 2D and 3D Simultaneous Localization
and Mapping for RGB-D Sensors

Esra Ataer-Cansizoglu, Yuichi Taguchi, and Srikumar Ramalingam

Abstract— Conventional SLAM systems with an RGB-D sen-
sor use depth measurements only in a limited depth range due
to hardware limitation and noise of the sensor, ignoring regions
that are too far or too close from the sensor. Such systems intro-
duce registration errors especially in scenes with large depth
variations. In this paper, we present a novel RGB-D SLAM
system that makes use of both 2D and 3D measurements. Our
system first extracts keypoints from RGB images and generates
2D and 3D point features from the keypoints with invalid and
valid depth values, respectively. It then establishes 3D-to-3D,
2D-to-3D, and 2D-to-2D point correspondences among frames.
For the 2D-to-3D point correspondences, we use the rays defined
by the 2D point features to “pinpoint” the corresponding
3D point features, generating longer-range constraints than
using only 3D-to-3D correspondences. For the 2D-to-2D point
correspondences, we triangulate the rays to generate 3D points
that are used as 3D point features in the subsequent process.
We use the hybrid correspondences in both online SLAM
and offline postprocessing: the online SLAM focuses more on
the speed by computing correspondences among consecutive
frames for real-time operations, while the offline postprocessing
generates more correspondences among all the frames for
higher accuracy. The results on RGB-D SLAM benchmarks
show that the online SLAM provides higher accuracy than
conventional SLAM systems, while the postprocessing further
improves the accuracy.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is an
important and well-studied problem with many applications
in computer vision, robotics, and augmented reality. SLAM
using monocular cameras has long been a focus of research.
Recently, with the rise of low-cost 3D sensors, many SLAM
systems make use of both color and depth data using RGB-
D sensors such as Kinect. Although RGB-D sensors provide
increased registration accuracy and robustness, they typically
provide depth measurements only in a limited depth range
(e.g., 0.5 m to 4 m for Kinect) due to the hardware limitations
and the noise. Most RGB-D SLAM systems use only the
pixels that have valid depth measurements, ignoring the
pixels that are too close or too far from the sensor. This
yields ineffective use of information provided by sensors and
might introduce registration inaccuracy especially for scenes
with large depth variations.

In this paper, we introduce pinpoint SLAM, a hybrid of
2D and 3D SLAM systems. Figure 1 illustrates the key
idea proposed in this paper. Conventional RGB-D SLAM
systems use only 3D-to-3D correspondences between 3D
measurements extracted from frames, which generate only
short-range constraints between the frames due to the limited

Mitsubishi Electric Research Labs (MERL), Cambridge, MA 02139, USA
{cansizoglu,taguchi,ramalingam}@merl.com

Fig. 1. Illustration of the key “pinpoint” idea proposed in this paper. Dashed
lines represent 2D measurements, while circles and solid lines represent
3D measurements. Triangulated 3D points are shown with diamonds.
Conventional SLAM systems (left) use only 3D-to-3D correspondences,
resulting in short-range constraints between frames due to the limited depth
measurement range. Our system (right) additionally uses 2D-to-3D and 2D-
to-2D point correspondences to generate long-range constraints. The rays
defined by 2D points (keypoints with invalid depth values) “pinpoint” the
3D points (keypoints with valid depth values, or 3D points triangulated by
intersecting the rays).

depth measurement range. On the other hand, our system
extracts both 2D and 3D measurements from frames, where
keypoints with valid depth values become 3D measurements
and keypoints without valid depth values are treated as
2D measurements. Then it establishes 3D-to-3D, 2D-to-
3D, and 2D-to-2D point correspondences. The additional
correspondences including 2D measurements provide long-
range constraints between the frames: we “pinpoint” 3D
points with rays defined by 2D points.

We use the hybrid correspondences in both online SLAM
and offline postprocessing. For online SLAM, we limit the
correspondence search among neighboring frames for real-
time processing. This approach still generates longer-range
constraints than conventional approaches using only 3D-to-
3D correspondences, but does not exploit correspondences
that might exist between distant frames. Our postprocessing
establishes such correspondences by iteratively finding the
hybrid correspondences between each frame and the rest of
the frames. In each iteration, the correspondences are first
updated based on the current poses of the frames, which
are then used to update the poses in a bundle adjustment
procedure.

The experiments are carried out on indoor sequences
and two RGB-D benchmark datasets: TUM [1] and ICL-
NUIM [2] benchmarks. We compare the performance of
SLAM systems using only 3D-to-3D correspondences and
using the hybrid correspondences. In addition, we apply
the postprocessing to the output of the pinpoint SLAM.
The results show that the pinpoint SLAM provides better
performance than conventional SLAM systems, and the
postprocessing improves the accuracy even more.



A. Contributions

The contributions of this paper are summarized as follows.
• We present a method for hybrid use of 2D and 3D

measurements to register multiple RGB-D frames.
• We apply our method to both online SLAM and offline

postprocessing.
• We show that our system provides higher accuracy

than conventional RGB-D SLAM systems that use only
3D-to-3D correspondences by using standard RGB-D
SLAM benchmarks.

B. Related Work

Typical SLAM systems use a single primitive (e.g.,
2D points, 3D points) as the measurements. For example,
feature-based monocular SLAM systems [3], [4] extract
2D point features, use 2D-to-2D point correspondences to
initialize 3D point landmarks by triangulation, and then use
2D-to-3D correspondences between the 2D point measure-
ments and the 3D point landmarks to estimate the camera
pose in consecutive frames. This is also a common pipeline
for structure from motion systems [5]. On the other hand,
feature-based RGB-D SLAM systems [6], [7] extract 3D
point features and estimate the camera pose using 3D-to-
3D point correspondences. Plane features are also used as
measurements in some SLAM systems [8], [9]. Recent dense
SLAM systems, both monocular [10], [11] and 3D/RGB-
D [12], [13], [14], [15], [16], do not rely on feature extraction
but rather exploit all the 2D or 3D points in frames and
minimize photometric errors or iterative closest point (ICP)
costs for direct registration. Those systems still use a single
primitive, either 2D points or 3D points.

Some SLAM systems use a hybrid of 3D measurements.
Trevor et al. [17] used both plane-to-plane and line-to-plane
correspondences. Taguchi et al. [18] used both point-to-
point and plane-to-plane correspondences. However, all the
measurements used in their systems are 3D primitives.

Our system is most closely related to [19], [20], which ad-
dressed the same problem of the lack of depth measurements
in some regions of RGB-D images and used both 2D and 3D
measurements. Hu et al. [19] heuristically switched between
2D-to-2D and 3D-to-3D correspondences according to the
available depth measurements, and thus they did not use both
correspondences together. In contrast, our system uses both
correspondences in a single registration framework. Zhang et
al. [20] used both 2D and 3D measurements to register two
frames for visual odometry, but the 3D measurements were
assumed only in one of the two frames and thus 2D-to-3D
correspondences were used. On the other hand, our system
exploits 3D measurements as well as 2D measurements in
all the frames. We also propose a postprocessing system for
finding long-range constraints between all the frames and
generating globally consistent 3D models.

II. PINPOINT SLAM AND POSTPROCESSING

This section describes our registration method that makes
use of both 2D and 3D measurements. Our method can
be incorporated into any point-feature-based RGB-D SLAM

systems, but in this paper, we build our system on the point-
plane SLAM system [18]. The system uses both 3D points
and 3D planes as primitives and is a keyframe-based SLAM
system, which stores representative frames in a map.

An overview of our method can be seen in Figure 2.
We use the method for both online SLAM and offline
postprocessing. In the online SLAM, we process each input
frame once and register it to the map consisting of previous
keyframes. On the other hand, in the offline postprocessing,
we process each keyframe in the map to re-register it with
the rest of keyframes and iterate the process as long as
the poses of the keyframes are updated. In both cases, the
method consists mainly of five steps: (i) feature extraction,
(ii) correspondence search, (iii) RANSAC registration, (iv)
map update, and (v) bundle adjustment. In the following
subsections, we first describe our notations and then detail
each of the above steps.

A. Notations

We use the standard terminology of measurements and
landmarks: the system extracts measurements from each
RGB-D frame and generates landmarks in a global map.

A 3D point measurement is represented by (pm,Dm),
where pm ∈ R3 denotes its 3D position and Dm denotes
its descriptor. A 2D point measurement is denoted by
(qm,νm,Dm), where qm = (qx,qy) ∈ R2 is the pixel coor-
dinate, Dm is its descriptor, and νm = (cm,um) represents
the ray passing through the camera center and the 2D
point measurement such that {x|x = cm + tum, t ∈ R}, cm =
[0,0,0]T and um = [(qx− cx)/ fx,(qy− cy)/ fy,1]T based on
the camera intrinsic parameters: the focal lengths ( fx, fy)
and the principal point (cx,cy). A 3D plane measurement
is represented by (πm, Im), denoting plane parameters and
the set of 3D inlier points associated to the plane.

A landmark is a collection of measurements. A 3D point
landmark is represented by (pl ,Dl), where pl ∈ R3 denotes
its 3D position and Dl denotes the set of descriptors asso-
ciated to this landmark. A 2D point landmark is (ql ,vl ,Dl),
where ql ∈ R2 is the pixel coordinate, Dl is its descriptor,
and vl is the line passing through the camera center and
the associated 2D point measurement in the map coordinate
system. Note that a 2D point landmark is associated to only
a single 2D point measurement; as soon as it matches with
another 2D/3D point measurement, it is converted to a 3D
point landmark. A 3D plane landmark is denoted by (πl , Il)
with plane parameters πl and the set of 3D inlier points from
all the associated frames Il .

B. Feature Extraction

Our system extracts 2D keypoints from each RGB image
using SURF features [21]. If the corresponding depth value
is within a predefined range, then it is considered valid.
The keypoints with valid depth values are back-projected
and used as 3D point measurements. Keypoints with invalid
depth values are considered 2D point measurements and
represented as the rays passing through the camera center
and the 2D keypoints. 3D plane measurements are extracted
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Fig. 2. Overview of our method. For each RGB-D frame, we first extract keypoints and planes. The keypoints with and without valid depth measurements
generate 3D and 2D point measurements, respectively. We then perform keypoint matching between the frame and the map to obtain point correspondences,
and consider all possible plane correspondences between the frame and the map. Next, we perform RANSAC registration using all correspondences: 3D-to-
3D point, 2D-to-3D point, 2D-to-2D point, and 3D-to-3D plane correspondences. If it succeeds, the map is updated with the features and correspondences
found in the frame. We run bundle adjustment and loop closing asynchronously to optimize 3D point landmarks, 3D plane landmarks, and keyframe poses.

using [22]. Note that this step is omitted in the postprocess-
ing, since it is applied to an existing map where the features
are already extracted.

C. Correspondence Search

After feature extraction, we look for the correspondences
between the keypoints extracted from the current frame and
the keypoints in the map. Plane correspondences are not
searched since the number of planes is fairly small compared
to the number of points; instead our RANSAC registration
considers all possible plane correspondences.

Online SLAM: We perform all-to-all descriptor matching
between the keypoints of the current frame and the keypoints
of the last k keyframes of the map. Considering k keyframes
instead of all keypoints of the map helps us to improve speed
and to narrow down our search since the last keyframes more
likely observe the same region as the current frame assuming
a continuous camera motion. The matching returns three
types of point correspondences, 3D-to-3D, 3D-to-2D, and
2D-to-2D point correspondences, each of which are specially
considered in the RANSAC registration phase. 3D-to-2D
correspondences exhibit two cases: from 3D landmark to 2D
measurement or from 2D landmark to 3D measurement.

Offline Postprocessing: Instead of using the all-to-all
descriptor matches, we restrict the candidate matches by
using the current pose of the keyframe as a predicted pose.
We project all 3D point landmarks of the map to the frame
based on the predicted pose. A point measurement in the
frame is considered a candidate match with a 3D point
landmark, if its projected point falls within a neighborhood of
r pixels. This will generate either 3D-to-3D correspondences
or correspondences from 3D landmark to 2D measurement.
For 3D-to-2D correspondences from 2D landmark to 3D
measurement, the search is done in a similar way with
a change in the direction of the projection (i.e., the 3D
point measurement of the frame is projected to the keyframe
that initiates the 2D point landmark). In terms of 2D-to-
2D correspondences, we test the distance to the epipolar
line to be less than r pixels in order to match a 2D point
measurement with a 2D point landmark.

D. RANSAC Registration

As in [18], our RANSAC registration procedure tries
different types of hypotheses in the order of (i) three planes,
(ii) two planes + one 3D point, (iii) one plane + two 3D

points, and (iv) three 3D points. Since we also use 2D point
measurements, we add a last hypothesis to this list, which
considers three 2D-to-3D correspondences. We apply the P3P
algorithm [23] to find the registration parameters for this
case. Note that in addition to the 2D-to-3D correspondences,
we can treat a 3D-to-3D correspondence as a 2D-to-3D
correspondence by ignoring the depth of one of the 3D
points.

RANSAC inlier check is carried out based on the type
of the correspondence. A 3D-to-3D correspondence is con-
sidered an inlier if the distance between the two 3D points
is below a threshold. For a 2D-to-3D correspondence, we
consider the distance between the 3D point and the line
corresponding to the 2D point. The distance between a
3D point landmark pl and a 2D point measurement qm is
computed as d(pl ,qm)

t∗ =
< um,T−1(pl)− cm >

< um,um >
(1)

d(pl ,qm) = ||pl−T(cm + t∗um)|| (2)

where T is the pose of the keyframe that contains the 2D
point measurement, T(·) denotes application of transforma-
tion T to the point, and < ·, · > denotes the dot product. If
the distance is below a threshold, then the correspondence
is counted as an inlier. For a 2D-to-2D correspondence, we
check the distance of the pixel to the corresponding epipolar
line of the other point to be less then a threshold.

E. Map Update

If the RANSAC registration succeeds, the registration
result is used to update the map.

Online SLAM: A frame is added to the map as a keyframe
if its pose is different from the poses of already existing
keyframes in the map. If a 2D point measurement is matched
with a 3D point landmark, then the set of descriptors of the
landmark is enlarged by adding the descriptor of the 2D point
measurement. For the case of a 2D-to-2D match, we perform
triangulation by finding the middle of the closest points on
the two lines, and add it to the map as a 3D point landmark by
collecting the descriptors of the 2D measurements. We ignore
triangulation for 2D-to-2D matches with a small camera
baseline as it introduces noise. If a 3D point measurement is
matched with a 2D point landmark, the landmark is updated
as a 3D point landmark via the 3D coordinates of the



Fig. 3. 3D reconstruction results and camera trajectories for the lounge (left) and lunch room (right) sequences.

3D point measurement transformed to the map coordinate
system. All the unmatched 2D/3D point measurements are
added to the map as 2D/3D point landmarks.

Offline Postprocessing: Since the postprocessing is ap-
plied to an existing map, all measurements are already
associated to the landmarks. Hence, this stage only updates
the correspondences between the keyframe and the map.
RANSAC inliers are used to refine the correspondences of
the keyframe. If a measurement is matched with a different
landmark than what it is currently associated to, then it is
split from the current landmark and associated to the new
inlier landmark. Similarly, if a measurement is not matched
with its current landmark, then it is split from that landmark,
creating a new landmark on its own.

F. Bundle Adjustment

Let the triplet (k, l,m) denote an association such that a
3D point landmark pl(l = 1, . . . ,L) is associated to a 3D
point measurement pk

m or a 2D point measurement qk
m in

the keyframe k with the pose Tk(k = 1, . . . ,K). Similarly,
let the triplet (k, l′,m′) denote an association such that a
3D plane landmark πl′(l′ = 1, . . . ,L′) is associated to a 3D
plane measurement πk

m′ in the keyframe k. Let A1, A2,
and A3 contain all the triplets representing the 3D-to-3D
point associations, 2D-to-3D point associations, and 3D-to-
3D plane associations in the map, respectively. Then the
bundle adjustment aims to minimize the following error
function with respect to 3D point landmark coordinates, 3D
plane landmark parameters, and keyframe poses:

E(p1, . . . ,pL;π1, . . . ,πL′ ;T1, . . . ,TK) =

∑
(k,l,m)∈A1

∥∥∥pl−Tk(pk
m)
∥∥∥+ ∑

(k,l,m)∈A2

d(pl ,qk
m)+

∑
(k,l′,m′)∈A3

∑
a

d(πl′ ,Tk(pk
m′,a)). (3)

Here d(πl′ ,Tkpk
m′,a) is the distance between the plane land-

mark πl′ and a 3D point pk
m′,a, which is sampled from the

set of inlier points of the plane measurement (πm′ , Im′) in the
keyframe k.

Online SLAM: The bundle adjustment is performed asyn-
chronously in a separate thread. Our system also performs
loop closing in another thread. It first checks the appearance

similarity of all pairs of keyframes in the map using the
VLAD descriptors [24] computed based on the keypoints.
It also checks the pose similarity between the pairs of
keyframes (we do not try to close the loop if the current poses
of the keyframes are too different). For the pairs of keyframes
that pass the similarity tests, our system then performs the
RANSAC registration using the hybrid correspondences, and
if the RANSAC succeeds, the inlier correspondences are used
to update the associations in the map.

Offline Postprocessing: The postprocessing is performed
iteratively to update the associations and refine the land-
mark parameters and keyframe poses. In an iteration of the
postprocessing, every keyframe is re-registered with the map
including the rest of the keyframes, and its correspondences
are updated (i.e., splits and merges of the landmarks are
done if necessary). After all correspondences are updated,
we run bundle adjustment to refine the landmark parameters
and keyframe poses. We repeat the iteration if the average
change in the keyframe poses is above a threshold.

III. EXPERIMENTS AND RESULTS

We implemented our system using C++ and built our
platform on a Surface Pro 2 tablet with an Asus Xtion sensor.
We used the Ceres Solver [25] for the bundle adjustment. The
online SLAM system runs about 2 frames per second on the
tablet.

We show two sets of experiments where we compare three
outputs: (i) SLAM without the use of 2D point measurements
which we call 3D SLAM [18], (ii) pinpoint SLAM, and
(iii) postprocessing on the pinpoint SLAM result. First, we
show qualitative results on two indoor sequences having large
depth variations, which were captured with our platform.
Second, we report quantitative results on the improved regis-
tration accuracy on TUM [1] and ICL-NUIM [2] benchmark
datasets.

A. Qualitative Results

We captured two indoor sequences from scenes with large
depth variation. 3D reconstruction results along with the
camera trajectories after postprocessing are displayed in
Figure 3. Both sequences include several regions captured at
different distances. Figures 4 and 5 show visual comparisons,
where the keyframes are overlayed on the reconstructed
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Fig. 4. Visual results on three example keyframes of the lounge sequence. Frames are overlayed on 3D reconstruction results with some transparency
for better visualization. Rows show original image, 3D SLAM, pinpoint SLAM and postprocessing results from top to bottom. 3D SLAM registers the
nearby regions well, but has trouble matching further points (notice the area around the frame on the wall). Pinpoint SLAM and postprocessing improve
the results, producing almost perfect alignment.

3D models rendered using the estimated camera poses. 3D
SLAM registers nearby regions well, but it cannot match far
away points since it does not use any 2D point measure-
ments. Pinpoint SLAM improves the registration accuracy,
while postprocessing produces almost perfect alignment at
both nearby and distant regions. Please also refer to the
supplementary video for better visualization.

Figure 6 shows color map representations of the number of
correspondences between keyframe pairs for 3D SLAM, pin-
point SLAM and postprocessing results. 3D SLAM mainly
produces large numbers around the diagonal for consecutive
frames as well as some off-diagonal entries due to loop
closing. As can be seen the number of nonzero entries
increases with pinpoint SLAM while postprocessing further
improves the interaction between distant keyframes. Table I
also verifies this fact, reporting the total number of nonzero
entries in the matrices.

B. Quantitative Results Using Benchmark Datasets

We ran 3D SLAM [18] (i.e., without the use of 2D point
measurements) and pinpoint SLAM on benchmark datasets.
We then applied postprocessing to the output of the online

TABLE I
NUMBER OF NONZERO ENTRIES IN THE MATRICES SHOWN IN FIGURE 6.

3D SLAM Pinpoint Postprocessing
lounge 2581 2865 6846
lunch room 11644 17884 27087

pinpoint SLAM in order to evaluate the improvement. Note
that our system does not add all the frames to the map.
Hence the evaluation measures are only computed for the
keyframes that are added to the map. Also, for some of the
sequences our system lost the track and could not relocalize
back. Therefore, we report the longest sequence that we were
able to process on those datasets. The results are reported
using two evaluation measures: root mean square (RMS)
of absolute trajectory error (ATE) and RMS of relative
positioning error (RPE).

TUM benchmark contains sequences of various scenes.
We applied our method on some selected sequences with
small and large depth variations. The results are displayed
in Table II. The last five rows of the table list the sequences
with large depth variations. Pinpoint SLAM performs similar
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Fig. 5. Visual results on three example keyframes of the lunch room sequence. Frames are overlayed on 3D reconstruction with some transparency
for better visualization. Rows show original image, 3D SLAM, pinpoint SLAM and postprocessing results from top to bottom. 3D SLAM registers the
nearby regions well, but has trouble matching further points. Pinpoint SLAM and postprocessing improve the results, producing almost perfect alignment.

or better in all sequences than 3D SLAM, while postpro-
cessing improves the accuracy in all of them. Moreover, the
improvement of our method is larger for the sequences with
large depth variations. The last column of the table reports
the best performance achieved in the literature. Although
our results are reported on the longest sequence that can be
processed by online pinpoint SLAM, the results show that
the performance of the proposed method is either comparable
or better than the state-of-the-art SLAM methods. Figure 7
shows the output trajectories and errors per position for
some example sequences. As can be seen, 3D SLAM might
have large drifts since it does not use 2D measurements.
On the other hand, pinpoint SLAM has smaller drifts and
postprocessing refines the trajectory even more. Note also
that the improvement is less visible on fr2/desk sequence
which does not have large depth variations.

ICL-NUIM datasets are generated from relatively smaller
regions with small depth variations. Pinpoint SLAM and
postprocessing improve the accuracy on these sequences as
well, but the difference is less visible compared to the large
depth variation sequences of the TUM benchmark. We also
report the best results achieved on these sequences at the last
column of the table as RMS of ATE.

IV. CONCLUSION AND DISCUSSION

We presented a novel SLAM system with the “pinpoint”
approach for effectively using all data obtained with an RGB-
D sensor. Our system is a hybrid of 2D and 3D SLAM. The
2D measurements are represented as rays passing through the
camera center and the 2D points. Corresponding 3D points
are pinned to these rays, generating improved interaction
between frames. Two matching 2D measurements are tri-
angulated and added to the map. The better correspondences
between frames yield improvement in the registration accu-
racy. Furthermore, we use the same approach for an offline
postprocessing procedure that allows even more refinement
of the results. The results on publicly available RGB-D
benchmarks show that, for scenes with large depth variations,
pinpoint SLAM and postprocessing provide higher accuracy
than a conventional 3D SLAM system.

Acknowledgements: We thank Jay Thornton and Chen
Feng for their helpful comments and feedback.
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TABLE II
QUANTITATIVE EVALUATION RESULTS FOR SOME SEQUENCES OF TUM BENCHMARK [1] REPORTED IN ROOT MEAN SQUARE (RMS) OF ABSOLUTE

TRAJECTORY ERROR (ATE) AND RMS OF RELATIVE POSITIONING ERROR (RPE). SEQUENCES WITH LARGE DEPTH VARIATIONS ARE SHOWN WITH A

† ON THE NAME. P SLAM STANDS FOR PINPOINT SLAM. RESULT WITH A ∗ SIGN IS MEDIAN OF ATE, WHILE THE REST IS RMSE OF ATE.

Sequence # Keyframes RMS of ATE RMS of RPE Best RMS
3D SLAM P SLAM 3D SLAM P SLAM Postprocessed 3D SLAM P SLAM Postprocessed of ATE

fr1/xyz 66 65 16 mm 15 mm 11 mm 24 mm, 1.0◦ 23 mm, 0.9◦ 18 mm, 0.8◦ 9 mm [26]
fr2/xyz 102 103 12 mm 12 mm 12 mm 18 mm, 0.9◦ 19 mm, 0.9◦ 18 mm, 0.9◦ 2 mm [4]
fr1/floor 167 167 61 mm 61 mm 38 mm 136 mm, 3.2◦ 142 mm, 3.3◦ 76 mm, 2.8◦ 29.9 mm [26]
fr2/desk 358 359 61 mm 63 mm 56 mm 110 mm, 2.9◦ 112 mm, 2.9◦ 100 mm, 2.6◦ 17 mm [27]
fr3/structure texture far 108 106 27 mm 26 mm 25 mm 54 mm, 1.5◦ 52 mm, 1.4◦ 48 mm, 1.3◦ 24 mm [28]
fr3/long office household 244 245 29 mm 26 mm 23 mm 62 mm, 1.6◦ 58 mm, 1.6◦ 48 mm, 1.3◦ 7.7 mm [26]
fr2/large no loop† 99 99 165 mm 162 mm 148 mm 261 mm, 3.9◦ 254 mm, 3.7◦ 244 mm, 3.5◦ 187 mm∗ [29]
fr2/large with loop† 146 134 191 mm 118 mm 86 mm 303 mm, 4.6◦ 189 mm, 3.2◦ 155 mm, 2.4◦ -
fr2/pioneer slam† 79 83 30 mm 26 mm 21mm 47 mm, 1.2◦ 41 mm, 1.0◦ 33 mm, 1.0◦ 94 mm [30]
fr2/pioneer slam2† 131 135 148 mm 146 mm 107 mm 268 mm, 4.7◦ 261 mm, 4.1◦ 205 mm, 2.6◦ 306 mm [30]
fr2/pioneer slam3† 218 255 396 mm 132 mm 88 mm 1433 mm, 28.1◦ 356 mm, 8.0◦ 254 mm, 5.7◦ 111 mm [30]

TABLE III
QUANTITATIVE EVALUATION RESULTS FOR SOME SEQUENCES OF ICL-NUIM BENCHMARK [2] REPORTED IN RMS OF ATE AND RMS OF RPE. P

SLAM STANDS FOR PINPOINT SLAM

Sequence # Keyframes RMS of ATE RMS of RPE Best RMS
3D SLAM P SLAM 3D SLAM P SLAM Postprocessed 3D SLAM P SLAM Postprocessed of ATE

office traj 0 116 115 5.1 mm 3.6 mm 3.6 mm 8.0 mm, 0.1◦ 5.8 mm, 0.1◦ 5.5 mm, 0.1◦ 2.9 mm [2]
office traj 1 78 78 1.9 mm 1.9 mm 2.0 mm 4.0 mm, 0.2◦ 3.9 mm, 0.2◦ 3.6 mm, 0.1◦ 38.5 mm [2]
office traj 2 163 163 5.3 mm 6.1 mm 4.6 mm 7.4 mm, 0.1◦ 8.4 mm, 0.1◦ 6.8 mm, 0.1◦ 1.6 mm [2]
office traj 3 146 146 3.4 mm 3.4 mm 2.7 mm 5.2 mm, 0.1◦ 5.1 mm, 0.1◦ 4.0 mm, 0.1◦ 2.1 mm [2]
living room traj 0 72 72 4.1 mm 4.1 mm 2.9 mm 6.7 mm, 0.2◦ 6.7 mm, 0.2◦ 4.8 mm, 0.2◦ 113.8 mm [2]
living room traj1 80 80 19.5 mm 19.3 mm 17.7 mm 47.3 mm, 0.9◦ 46.5 mm, 0.9◦ 39.1 mm, 0.8◦ 2.3 mm [2]
living room traj2 158 159 9.9 mm 8.5 mm 6.9 mm 14.1 mm, 0.3◦ 12.6 mm, 0.3◦ 10.7 mm, 0.2◦ 1.5 mm [2]
living room traj 3 81 83 27.5 mm 16.0 mm 14.7 mm 73.9 mm, 9.6◦ 34.5 mm, 4.2◦ 35.5 mm, 4.5◦ 20.0 mm [2]
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Fig. 6. Color map representations of the number of correspondences
between keyframe pairs for the lounge (top) and lunch room (bottom)
sequences. X and Y axes refer to the indices of keyframes in the sequence
and the color indicates the number of correspondences (each sequence uses
the same color scaling shown on the right).
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