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Abstract
We consider the class of planning and sequential decision making problems where the state
space has continuous components, but the available actions come from a discrete set, and
argue that a suitable approach for solving them could involve an appropriate quantization
scheme for the continuous state variables, followed by approximate dynamic programming.
We propose one such scheme based on barycentric approximations that effectively converts
the continuous dynamics into a Markov decision process, and demonstrate that it can be
viewed both as an approximation to the continuous dynamics, as well as a value function
approximator over the continuous domain. We describe the application of this method to
several hard industrial problems, and point out additional candidate problems that could be
amenable to it.
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Abstract. We consider the class of planning and sequential decision making problems where the state space has continuous
components, but the available actions come from a discrete set, and argue that a suitable approach for solving them could involve
an appropriate quantization scheme for the continuous state variables, followed by approximate dynamic programming. We
propose one such scheme based on barycentric approximations that effectively converts the continuous dynamics into a Markov
decision process, and demonstrate that it can be viewed both as an approximation to the continuous dynamics, as well as a
value function approximator over the continuous domain. We describe the application of this method to several hard industrial
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1. Introduction

The problem of optimal sequential decision making
arises in many practical systems, and a number of dis-
tinct scientific disciplines such as AI planning, con-
trol systems engineering, operations research and de-
cision science are concerned with computationally ef-
ficient methods for its solution. The commonality and
connections between these disciplines have been rec-
ognized, and many useful correspondences between
concepts from these fields have been drawn [3,4,12].
Although each of these fields has generated highly
original theories and computational methods that ad-
dress one aspect of optimal sequential decision mak-
ing or another, a clearly dominant set of computa-
tional methods has neither emerged yet, nor is likely
to emerge in the near future. Rather, the characteristics
of a particular problem often suggest the most appro-
priate set of tools and methods that can be deployed
to successfully solve it. For example, control systems
engineering has developed reliable methods for build-
ing robust controllers for regulating linear time invari-
ant dynamical systems with continuous variables (in-
puts, outputs and states). In contrast, AI planning al-
gorithms have excelled at solving sequential decision
making problems in domains with discrete variables,
whose dynamics are described in situation calculus by
logical sentences [31]. Other formalisms, often used
in operations research and decision science, include

Markov decision processes, influence diagrams, and
dynamic Bayesian networks, which effectively repre-
sent the uncertainty in the problem domain and can
be solved by means of dynamic programming, can be
very effective for large stochastic domains. These tools
and approaches are not mutually exclusive; on the con-
trary, many intelligent systems would naturally employ
two or more methods, properly organized into a deci-
sion architecture. For example, a robot could use an AI
planner to decide an overall plan of action in terms of
high-level actions and goals described in the form of
logical statements, and then execute the plan by regu-
lating its actuators by means of low-level controllers.
Similarly, a queuing Markov model of a transportation
system can be used to decide where to dispatch ve-
hicles in order to satisfy demand driven by stochastic
processes, and then regulating controllers can be em-
ployed to ensure that the vehicles are following the de-
sired trajectories to their destinations.

A more interesting, and far more difficult choice
of tools and methods appears when a target problem
domain does not clearly favor one of these solution
methodologies. One arguably large and important class
of sequential decision making problems is concerned
with optimizing decisions where the decision variables
(actions, control inputs) are discrete, but at least some
of the state variables are continuous. Some examples
of such decision problems are described in Section 2,
along with a discussion of why they are hard to solve.
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Section 3 argues that a suitable solution approach for
this class of problems might be to quantize the continu-
ous state variables into a discrete-valued state descrip-
tor, and proposes one such quantization scheme based
on barycentric coordinates. This scheme effectively
turns the problem into a large factored Markov deci-
sion problem (MDP) that can be solved by means of
approximate dynamic programming. We demonstrate
that the application of dynamic programming on the
resulting discrete MDP can be viewed both as an ap-
proximation to the original continuous dynamics of the
continuous domain, as well as a form of value function
approximation over that continuous domain. Section 4
discussed the application of the method to the prob-
lems previously introduced in Section 2, and discusses
remaining issues that are needed to be resolved in or-
der for this approach to scale to even larger problems.
Finally, Section 5 concludes and discusses the general
applicability of the method to problems in this class.

2. Sequential decision problems with discrete
actions and continuous states

2.1. Problem definition and possible solution methods

We are considering the class of sequential decision
problems where the objective is to optimize a perfor-
mance measure over multiple discrete time periods by
selecting appropriate inputs a from a finite discrete
set A, usually of low cardinality, in order to steer a
dynamical system with given dynamics, and at least
some components of the state space of that system are
continuous, that is, they can be represented by a real-
valued vector x(c) ∈ Rd . Other components x(b) of
this system can have Boolean or integer variables, turn-
ing it into a hybrid dynamical system. The dynam-
ics of the controlled system are described by the gen-
eral form xk+1 = f (xk, ak), where xk = [x(c)

k , x
(b)
k ]

is the entire state of the system at time tk , ak is the
control applied at time tk , f is an arbitrary non-linear,
possibly stochastic, and possibly discontinuous func-
tion, and the system evolves in discrete time such that
tk = k�t for a suitably chosen constant interval �t .
The goal of the sequential decision maker is to find the
optimal sequence of actions a0, a1, a2, . . . that min-
imizes a suitable performance measure defined over
the states traversed by the system and the actions ap-
plied to it. One possible performance measure is the
cumulative cost over a finite horizon of K steps J =∑K−1

k=0 g(xk, ak)+h(xK), where g(xk, ak) is a suitably

chosen running cost, and h(xK) is a terminal cost as-
sociated with the final state xK . Another possible per-
formance measure is the discounted cumulative cost
over an infinite horizon J = ∑∞

k=0 γ kg(xk, ak), where
0 < γ < 1 is a discounting factor.

The disciplines of control systems engineering, AI
planning and operations research have developed very
effective methods for special cases of this or related
problems, but direct applicability of these methods to
the general problem described above is not straight-
forward. For example, in control engineering, the sub-
field of optimal control solves this problem for systems
whose state spaces and control inputs are continuous.
When the systems dynamics function f is linear, and
the functions g and h are quadratic in the state x and
control a, the problem is known as the linear quadratic
(LQ) problem, and an analytical solution known as the
linear quadratic regulator (LQR) is available [35]. It
can also be extended to the case when the function f is
not deterministic, but stochastic, and the system state
is not directly observable: when system dynamics are
disturbed by additive white Gaussian noise, the solu-
tion of the resulting linear quadratic Gaussian (LQG)
problem can be reduced to a combination of a linear
quadratic estimator (LQE) in the form of a Kalman fil-
ter, and an LQR on the estimated state.

Although important and useful for many applica-
tions, the LQR and LQG methods are clearly not appli-
cable to the class of problems defined above. When the
function f is not linear, and/or the cost functions g and
h are not quadratic in the state and control, numerical
methods must be tried instead. The method of model
predictive control (MPC) can solve such decision prob-
lems by continuously optimizing the performance cri-
terion over a truncated future window, in a rolling hori-
zon fashion, using the system dynamics function to
predict the change in state variables as a consequence
of changes in the input control variables, and the re-
sulting effect on the performance criterion. This ap-
proach effectively reduces the decision problem into
a constrained non-linear optimization problem, where
system dynamics define a major part of the constraints,
and its success depends critically on how well and how
fast this problem can be solved. Beyond the case when
the control actions are continuous, dynamics are linear,
and costs are quadratic, the resulting non-linear opti-
mization problem can be non-convex, but still various
Newton-type optimization methods, for example the
primal-dual interior point method, can find solutions
very effectively, provided that certain conditions of dif-
ferentiability are satisfied. This is the approach taken
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by direct optimal control methods, some of which have
been implemented in modeling and optimization envi-
ronments [1]. However, when some of the state vari-
ables are discrete, and the corresponding parts of the
system dynamics are described by discontinuous func-
tions, for example propositional logic statements, these
differentiability conditions are clearly violated, and for
such problems the MPC and direct optimal control ap-
proaches quickly become inapplicable or very subopti-
mal.

The sub-field of mixed integer programming in op-
erations research has devised techniques for dealing
with domains where at least some of the decision and
state variables are discrete, resulting in hybrid dis-
crete/continuous dynamics. For ordinal integer vari-
ables, various kinds of relaxation techniques to con-
tinuous approximations can be attempted, and some of
them, such as the cutting plane method, can be very
effective, when the objective function of the optimiza-
tion problem is linear. However, when it is non-linear,
and the domain has two-valued Boolean variables that
represent logical components of the system state, such
techniques cannot be expected to perform very well.
Exact solutions, such as the branch-and-bound algo-
rithm and its variant, the branch-and-cut algorithm, can
also be very effective, especially when combined with
suitable branching heuristics, but the fact still remains
that mixed-integer programming (MIP) is an NP-hard
problem, and insisting on optimality might be infea-
sible and impractical. Various heuristic methods have
been applied as well, such as hill climbing, simulated
annealing, ant colony optimization, etc., but handling
hybrid discrete/continuous domains could be difficult
for them, in general.

In its turn, the field of AI planning has devised al-
gorithms that can deal very effectively with Boolean
and other discrete variables, especially when the ob-
jective is to reach a final goal (system state), regard-
less of the trajectory followed. Non-linearity and dis-
continuity are natural aspects of such domains, and
rarely present problems. Very large state spaces can
be explored by casting the planning problem as that
of non-exhaustive search, aided by various heuristics.
System dynamics involving many variables can be rep-
resented conveniently by specialized languages such
as STRIPS and PDDL. Extensions to these languages
such as PDDL+ [17] can also represent continuous and
hybrid discrete/continuous dynamics, and importantly,
also handle continuous time by considering actions of
varying length, instead of immediately discretizing it
at a constant time step, as is customary in control engi-

neering. As a result, PDDL+ permits actions to start at
their most appropriate time, as opposed to the closest
multiple of a sampling time step. However, the prob-
lems of plan validation and plan optimization are solv-
able only for some subsets of the domains that can be
described by means of these languages, that is, there
is a mismatch between the class of problems that can
be represented by means of PDDL+, and the classes
of problems that can be effectively solved by various
planners.

Multiple approaches to solving hybrid planning
problems encoded in PDDL+ have been explored by a
significant number of planners. One approach is to re-
duce the program to a propositional satisfiability prob-
lem augmented with linear constraints arising from
continuous state or decision variables, and solve it by
means of mature and powerful satisfiability solvers
[34]. However, the ability to handle arbitrary continu-
ous dynamics has been reported to result in slow com-
putational speed; for cases when the continuous dy-
namics are linear (i.e., all numeric-valued fluents vary
at a constant rate with time), the method proposed
in the planner COLIN can find solutions much more
quickly by formulating a set of linear constraints aris-
ing from continuous dynamics, and applying linear
programming solvers [11]. Another planner that can
solve hybrid planing problems with linear continuous
dynamics after suitable discretization of the continuous
state space is described in [24].

A possible method for planning with arbitrary non-
linear continuous dynamics is discretization of the con-
tinuous variables followed by heuristic search in the
discretized domain, as implemented in the planner UP-
Murphy [13,14]. However, the resulting approximation
error can be very large, if discretization is coarse, or
the computational time can be prohibitively high, if
discretization is at a finer scale. One particular unfa-
vorable effect is the compounding of errors in dynam-
ics across multiple sequential steps, such that the pre-
dicted final state resulting from a long sequence of ac-
tions calculated by means of the discretized model can
be very different from that computed by means of the
original continuous dynamics. Another disadvantage
of this approach is that by relying on heuristic search,
some relatively good solutions might be found, but the
truly optimal solution would typically not be reached.
Yet another approach to solve problems with hybrid
dynamics is to translate the domain description to a set
of hybrid automata, and perform model checking on
the translated representation [5].

There have also been effective methods for combin-
ing the computational power of MIP solvers with the
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representational power of planning problem descrip-
tion languages. Li and Williams [23] proposed a hybrid
systems planner that combines a planning graph simi-
lar to the one used by GraphPlan for representing the
effect of discrete actions with a compact representation
for an infinite set of trajectories involving continuous
states and actions called Flow Tubes. The resulting hy-
brid plan representation called Hybrid Flow Graph can
then be solved by a general-purpose MIP solver.

Finally, a modeling formalism shared between the
fields of AI planning, operations research, and decision
science, and widely employed in sequential decision
making, especially under uncertainty, is the framework
of Markov decision processes (MDP) [30]. An MDP is
defined by a finite set of states, a finite set of actions, a
transition probability function that specified the proba-
bility of ending up in a particular state if the system has
been in another given state, and an action is applied,
and an immediate reward (or cost) function that speci-
fies the expected reward obtained during a transition in
some units. The objective is to find a policy that maps
states to actions, such that some cumulative measure
of the reward is optimized. In its basic form, MDPs
are not very suitable for representing planning prob-
lems, but when the state of the system can be factored
over multiple discrete variables, various graphical rep-
resentations such as dynamic Bayesian networks can
be used to represent planning problems under uncer-
tainty in a natural manner. Although MDPs of rela-
tively small size (up to several million states) can be
solved exactly by means of algorithms such as value
iteration and policy iteration, most practical planning
problems have state spaces with far larger sizes, and
in such cases approximate solution methods are nec-
essary, such as stochastic dynamic programming [6].
When continuous variables exist in the problem do-
main, they can be discretized, but discretization on a
fine uniform grid is again likely to lead to a corre-
sponding drastic increase in the size of the state space,
and might lead to loss of optimality or completely in-
tractability. This is even more valid when the state is
not directly observable, but has to be inferred from ob-
servations; although it is well understood how to model
such domains by means of partially-observable MDPs
(POMDPs), the resulting state spaces are huge, and by
necessity continuous, because they are defined in terms
of beliefs over the set of underlying MDP states. One
approach to handling the large state space of planning
problems expressed as MDPs and POMDPs is to com-
bine their expressive power with the efficient mecha-
nisms for heuristic search available in classical plan-

ners, as proposed in languages such as RDDL [32]. The
FF-Replan and FF-Hindsight planners also apply clas-
sical planning techniques such as heuristic search and
action selection to problems expressed as MDPs, and
the POND-Hindsight planner extends this approach to
POMDP planning problems, too [28].

Next, we discuss two examples of hard industrial
problems that belong to this class of sequential deci-
sion problems, and describe concretely why they are
difficult to solve by means of the solution methods
mentioned above.

2.2. Contingent unit commitment of thermal
generators

Unit commitment is a classical sequential decision
problem of high economic importance. Its objective is
to find the optimal schedule for the operation of multi-
ple electric power generators that have operating con-
straints spanning multiple time steps, given an estimate
of the demand for electrical power that will be placed
on the whole group of generators. Typical examples
of such generators are fossil-burned thermal genera-
tors that often need time to warm up, before they can
produce their maximum amount of power, and once
they have warmed up, it is highly desirable to keep
them operating over several hours, in order to avoid
structural damage due to frequent thermal expansion
and contraction. For the same reason, when they have
been turned off, it is desirable to keep them off for
several hours before switching them on again. If the
decision step is one hour, as typical, these constraints
would span multiple time steps. This makes the prob-
lem sequential, and typical solution horizons are one
day (T = 24 time steps) or one week (T = 168 time
steps).

If there are N thermal generators, the number of
possible schedules is 2N ·T ; clearly, for most practical
instances of the problem, where power utility compa-
nies can have tens of units, and require solutions over
a day or a week, exhaustive enumeration of all possi-
ble schedules is not possible. Moreover, the operating
states ui,t of each generator i (on/off) at time step t are
only part of the operating schedule – the other part is
the actual amounts oi,t that each generator should pro-
duce at any given moment in time.

To complicate the decision problem even further,
the rapidly increasing adoption of renewable power
sources has increased significantly the uncertainty in
the net demand to the thermal generators, and that un-
certainty must be taken into consideration, if the util-
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ity is to achieve power supply reliability as mandated
by government regulators. To begin with, even without
renewable power sources, the total demand Dt to the
utility at time period t is a random variable, typically
estimated by means of time series forecasting meth-
ods. These methods usually produce estimates not only
of the expected demand, but also of its variance. Cur-
rently, mean average percentage errors (MAPE) in esti-
mating power demand over short horizons, such as one
day, are around 2%. In its turn, supply reliability is of-
ten defined in terms of loss of load probability (LOLP),
that is, the probability that a loss of load (failure to
match demand with the available capacity of genera-
tors that are on) would occur for a particular combi-
nation of demand and generator configuration. Typical
schedules target reliability levels such that loss of load
duration should not exceed one day in ten years, ap-
proximately equal to LOLP of 3 × 10−4. In the past,
reliability has been ensured by adding a safety margin
to the expected demand; a typical number is 3% of to-
tal demand, implying that for the usual levels of vari-
ability in demand (2%), this kind of margin would be
sufficient.

However, this approach only works if variability in
demand is constant and known. Arguably, with the in-
creased adoption of renewable power sources, such as
wind turbines and solar panels, neither condition is true
anymore. The output of a wind turbine can drop sud-
denly, if the wind dies down; similarly, the output of
a solar panel can be reduced significantly, if the sun
hides behind a cloud. However, this can happen only
if the day was windy or sunny, respectively; if there
was no output from these power sources, variability in
the output might be a lot lower. Planning for the high-
est possible variability might not be a good idea: if
safety margins increase to 10%–20% of expected de-
mand, the planner would be committing generators to
run idly, just for the possibility of countering a sudden
drop in renewable generator output. Because such idly
running generators do consume fuel and do produce
greenhouse gases, just like an idly running car would,
this would defeat one of the main purposes of intro-
ducing renewable power sources, that of prevention of
greenhouse emissions and global warming.

There might be a better way to handle the increased
uncertainty in demand to thermal generators resulting
from the impact of renewable power sources, if the
problem is formulated as a contingent planning prob-
lem. Most scheduling algorithms for unit commitment
are not contingent: given a sequence of expected de-
mands {Dt }, t ∈ [1, . . . , T ], they will produce a single

sequence of generator configurations {ui,t } and their
expected outputs {oi,t }, t ∈ [1, . . . , T ], i ∈ [1, . . . , N ]
over the entire planning horizon. This sequence will
then be executed in an open loop, regardless of what
happens while it is being executed. However, as time
advances, the expected demands can be revised, and it
might become clear that overall demand might be sub-
stantially lower or higher than originally expected. It
would be beneficial to have instead a contingent plan
that can monitor the demand, and tailor the operating
plan accordingly.

Moreover, if the power utility owns some of the re-
newable power generators in its distribution network
(the other possibility is that they are distributed gener-
ators installed by customers at their own locations), the
utility can model explicitly the power output of these
generators, with much higher accuracy. In that case,
the operating plan can be contingent not only on the
current demand, but also on the current output of these
generators.

Due to the high economic significance of this prob-
lem, a very large number of methods for its solution
have been proposed. Within the taxonomy of optimiza-
tion problems, unit commitment can be recognized as
a mixed-integer non-linear program (MINLP), and if
the operating cost of a generator is a quadratic function
of the power it outputs, it is a mixed-integer quadratic
program (MIQP). Due to the size of the problem, ex-
haustive enumeration of all schedules is typically not
possible. Some successful solution methods that have
been attempted include Lagrangian relaxation [9,36],
heuristic search [22] and dynamic programming [37].

However, these solution methods are applicable
mainly to the basic scheduling problem, where a sched-
ule is computed for the entire duration of the planning
period, and executed in open loop. For a contingent
scheduler, there is at least one more component of the
domain dynamics – the evolution of the total demand
for electricity. In addition, there might be other com-
ponents, such as the evolution of the output of renew-
able power sources. It has been demonstrated that these
components are largely predictable, and there is active
ongoing research on predicting the demand for electri-
cal power [2] and the output of photovoltaic panels and
wind turbines [15]. When such predictive models are
included in the dynamics of the domain used for unit
commitment, hybrid dynamics emerge, while the ac-
tions available at teach time steps are discrete (which
generators to turn on/off). Thus, the problem is of the
type described in Section 2.1.

Solving the contingent unit commitment problem
as a classical optimal control problem does not ap-
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pear to be feasible, due to the discrete actions and dis-
crete components of the state space (generator status).
A mixed-integer solution approach, although appeal-
ing due to its possible eventual true optimality, would
have an enormous combinatorial complexity. Classi-
cal AI planning algorithms are similarly difficult to ap-
ply, because of the continuous components of the state
space. In Section 4.1, we will describe a method for
solving the problem by reducing it to a discrete-state
MDP that can be solved by means of dynamic pro-
gramming. Other recent work on addressing this prob-
lem by means of AI planning methods has focused on
applying existing planners for hybrid domains, such as
the UPMurphy planner described above [7,8].

2.3. Run-curve optimization

Many transportation problems, such as the energy
efficient operation of electrical trains, guided transport
systems at airports, or hybrid cars can be reduced to op-
timizing the velocity profile of a moving vehicle along
a one-dimensional path. This velocity profile is called
run curve, and if the distance along the path is denoted
by z, then the desired velocity v(z) at position z de-
scribes the run curve. The run curve must obey the le-
gal and mechanical constraints of the route (e.g. speed
limits, safety margins), and must be physically real-
izable by the motors and mechanisms of the vehicle.
A good run curve would result in short running times
between an origin and destination points, located at
z = 0 and z = Z, respectively, and would also need as
little energy as possible to execute. Usually, these two
requirements are contradictory: the shorter the running
time, the more energy is needed, and vice versa. The
problem of computing good run curves thus reduces to
optimizing these two criteria (time and energy) simul-
taneously.

The dynamics of the vehicle can typically be repre-
sented by a simplified set of ordinary differential equa-
tions concerning the relative position z(t) of the vehi-
cle along the path at time t , and its velocity v(t):

v̇ = Fa(z, v, a),

ż = v,

where the function Fa(z, v, a) describes what acceler-
ation would be experienced by the vehicle if action a is
applied to it at position z while moving at speed v. This
function incorporates the inertia of the vehicle, as rep-
resented by its mass and velocity, the slope (gradient)

of the path at location z, as well as the air resistance
at velocity v. If we represent the state of the vehicle as
the vector x = [z, v]T , then we can represent the dy-
namics by the vector-valued equation ẋ = F(x, a). We
also assume that the dynamic function F incorporates
all existing constraints; for example, if the speed limit
is reached, velocity will not exceed it, but remain equal
to it.

The instantaneous power consumed by the vehicle
is represented by the function p(z, v, a), which we as-
sume depends on position, velocity, and applied con-
trol, but is otherwise time independent. When regener-
ative brakes are used, the function p(z, v, a) can also
be negative, representing energy that is generated by
the vehicle and returned to the energy source, when
it decelerates. (For example, for the case of electri-
cal trains, the source is the catenary system above the
tracks.) A given control trajectory a(t), 0 � t � T

would then result in total energy expenditure of

E(T ) =
∫ T

0
p
[
z(t), v(t), a(t)

]
dt,

where the terminal (end) time T is usually fixed. The
goal is to find a function a(t), 0 � t � T , that
minimizes the cost functional J [a(t)], subject to the
dynamics of the vehicle ẋ = F(x, a), and the con-
straints/conditions z(0) = 0, z(T ) = Z, v(0) =
v(T ) = 0 and 0 � v(t) < vmax(t), where Z is the
distance between the origin and destination points, and
vmax(t) is the speed limit for location z(t).

This formulation represents an optimal control prob-
lem, and it is well known that the optimal function
a(t) can be found by solving Eq. (1), known as the
Hamilton–Jacobi–Bellman (HJB) equation. If we de-
fine the instantaneous cost incurred if control a is ap-
plied at state x as C(x, a), and the optimal cumulative
cost-to-go until the end destination as V (x, t), the HJB
equation allows us to relate the time derivative of V to
the instantaneous cost C and the gradient of V in state
space [35,38]:

∂V (x, t)

∂t
+ min

u

{
C(x, a) + ∇V (x, t) · F(x, a)

}
= 0. (1)

Here the gradient ∇V (x, t) is the vector of all spa-
tial derivatives of V (x, t) with respect to the state vari-
ables, in this case z and v. The instantaneous cost is
equal to the consumed power, C(x, a)

.= p(x, a).
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The HJB equation is a partial differential equation
(PDE) that is seldom possible to solve analytically.
Specifically for run-curve optimization, analytical so-
lutions do not appear to be available, and numeri-
cal methods must be applied instead. The traditional
method of solving PDEs is to perform numerical dis-
cretization by employing either finite differences or fi-
nite elements, followed by solution procedures such as
Galerkin, Rayleigh–Ritz or collocation [19]. In gen-
eral, implementing and verifying direct solutions to the
HJB equation is quite difficult, and results in slow com-
putation.

One practical simplification then is to limit the set
of available actions to only three or four, such as ac-
celerating (a1), decelerating (a2), running at a constant
speed (a3), and coasting (moving due to the vehicle’s
own momentum, a4). Furthermore, dynamics can be
converted to discrete time by the usual transformation

xk+1 = f (xk, ak) =
∫ tk+�t

tk

F (x, ak) dt,

g(xk, ak) =
∫ tk+�t

tk

C(x, ak) dt

which results in dynamics of the type described in Sec-
tion 2. In discrete time and with discrete actions, the
HJB equation (1) reduces to the much simpler Bellman
equation:

V (x, t) = min
u

{
g(x, a) + V

[
f (x, a), t + �t

]}
.

(2)

Unfortunately, this equation cannot be solved eas-
ily when the state variable x is continuous, because
the value function V (x, t) would have to be computed
for an infinite number of states. The following sec-
tion describes how this problem can be addressed by a
discrete-state approximation of the dynamics and value
function.

3. Barycentric value function approximation

We have been experimenting with a method for solv-
ing sequential decision making problems with discrete
actions and mixed discrete/continuous states that re-
duces the problem’s dynamics to a Markov decision
process. It is based on similarities in the mathematical
properties of probability functions and convex combi-

nations. A probability mass function specifies the prob-
ability that a random variable is equal to some speci-
fied value. For the case of MDPs, the transition func-
tion is such a (conditional) probability mass function,
conditioned on the starting state sk and the applied con-
trol ak . The random variable for which the probability
function is specified is the successor state sk+1. If the
size of the state set S is N , let s(1), s(2), . . . , s(N) be an
enumeration of all states. The elements of the transi-
tion function can then be defined as pijl

.= Pr(sk+1 =
s(j)|sk = s(i), ak = a(l)) = p(s(j)|sk, ak). From
the axiomatic properties of probability mass functions,
then, it is always true that

∑N
j=1 pj = 1, and pj � 0,

j ∈ [1, . . . , N ].
On the other hand, a convex combination of N vec-

tors yj , j ∈ [1, . . . , N ] is defined as
∑N

j=1 cj yj , such

that
∑N

j=1 cj = 1, and cj � 0, j ∈ [1, . . . , N ]. By
comparing the two definitions, it can be observed that
probability mass functions and the set of coefficients
defining a convex combination obey exactly the same
mathematical constraints, and a valid probability func-
tion can be used as coefficients of a valid convex com-
bination, and vice versa. We use this fact to construct
all transition functions of the MDP as sets of coeffi-
cients for suitably defined convex combinations, using
the procedure described in Algorithm 1.

The algorithm starts with selecting N states s(1),

s(2), . . . , s(N) such that each corresponds to a state
x ∈ Rd (lines 1–5). We denote the continuous state
that corresponds to MDP state s(i) by x(i). Every
x(i) is a point (vector) in d-dimensional Euclidean
space (Fig. 1). Call the indexed set of points X =
{x(1), x(2), . . . , x(N)}, where the set {1, 2, . . . , N} in-
dexes X. Any selection method is acceptable, for ex-
ample sampling the continuous state space uniformly,
or imposing a kind of a grid and using its vertices
as x(i). The extreme points of the continuous domain
must also be included in the set X.

The next step is to find the Delaunay triangulation
of the set of points X (line 6). The Delaunay triangula-
tion [29] consists of simplices, each of which has d +1
vertices, such that each of these vertices is a member
of X. In two-dimensional space (d = 2, the plane),
the simplices are triangles; in three-dimensional space
(d = 3), the simplices are tetrahedra, etc. Let there be
M such simplices. Store the Delaunay triangulation in
a suitable data structure, for example a (d + 1)-by-P
matrix D, where each column corresponds to a sim-
plex, and the d+1 entries in the column contain indices
to the states in the indexed set X.
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Algorithm 1. Convert dynamical system to MDP. Al-
gorithm for converting a continuous dynamical system
to an MDP with a specified number of discrete states

1: X ← ∅
2: for i = 1 to N do
3: x(i) ← Sample()
4: X ← X ∪ x(i)

5: end for
6: [D,M] ← DelauneyTriangulation(X)

7: for i = 1 to N do
8: for l = 1 to L do
9: y ← f (x(i), a(l))

10: m ← 0
11: repeat
12: m ← m + 1
13: q ← x(Dd+1,m)

14: for j = 1 to d do
15: v ← x(Dj,m)

16: for k = 1 to d do
17: Ekj ← vk − qk

18: end for
19: end for
20: c1:d ← SolveLinear[Ec = (y − q)]
21: cd+1 ← 1 − ∑d

j=1 cj

22: until ∀j cj � 0, j = 1 to d + 1
23: for j = 1 to N do
24: pi,j,l ← 0
25: end for
26: for j = 1 to d + 1 do
27: pi,Dj,m,l ← cj

28: end for
29: end for
30: end for

Then, for every starting state s(i) (line 7) and each
control a(l) (line 8), the algorithm retrieves the point
x(i) that corresponds to state s(i), and uses the sys-
tem function f of the continuous dynamical system to
find the successor point y of x(i) under control a(l):
y = f (x(i), a(l)) (line 9). In general, the successor
point y does not coincide with any of the pre-selected
points x(i), i ∈ [1, . . . , N ]. It is assumed that the suc-
cessor point is within the limited domain bounded by
the points in X; if necessary, the dynamics should be
restricted to keep y within bounds.

After that, the algorithm finds the simplex in the De-
launay triangulation that contains the point y (lines 11–
22). To this end, it traverses all M simplices in the De-
launay triangulation and repeats the following steps for
every simplex m, m ∈ [1, . . . ,M]. First, it retrieves
the last, (d + 1)-st vertex of simplex m, and stores it

Fig. 1. Representation of continuous dynamics over a tessellation of
the continuous state space obtained by means of Delaunay triangula-
tion. The barycentric coordinates of the successor state with respect
to the vertices of the enclosing simplices are used as the transition
probabilities of the approximating MDP.

in vector q (line 13). Then, it creates a d-by-d matrix
E, whose column j contains the difference vm,j − q

between the j th vertex of simplex m (denoted here by
vm,j ) and the vector q, for j ∈ [1, . . . , d] (lines 14–
19). Then, it finds the d-dimensional vector c such that
Ec = (y − q) by solving the set of d simultaneous
linear equations (line 20). The last, (d + 1)-st element
of the vector c is computed as cd+1 = 1 − ∑d

j=1 cj

(line 21). For every element cj , j ∈ [1, . . . , d + 1], if
cj < 0, then simplex m does not contain point y; in
that case, increase m by one and test the next simplex.
If all cj � 0, j ∈ [1, . . . , d + 1], then this simplex
contains point y (line 22).

At this point, the (d + 1)-dimensional vector c con-
tains coefficients that define a valid convex combina-
tion such that y = ∑d+1

j=1 cj vm,j . Moreover, it defines
a valid probability transition function, since all of its
entries are positive and sum up to unity. In order to
construct a complete transition probability distribution
over all possible N successor states, we perform the
following step for each state s(j), j ∈ [1, . . . , N ]. If
s(j) corresponds to one of the vertices of the simplex
m, that is, x(j) = vm,r for some r ∈ [1, . . . , d+1], then
the corresponding transition probability of the MDP is
pijl = Pr(sk+1 = s(j)|sk = s(i), ak = a(l)) = cr

(lines 26–28); otherwise, pijl
.= 0 by default (lines 23–

25).
Conceptually, we can think of this algorithm as a

way of converting the system dynamics represented by
the function f to an equivalent probabilistic represen-
tation involving only a small set of points s(i) embed-
ded into the original continuous state space of the sys-
tem. If the system starts in one of these few points, the
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successor state y, in general, will not coincide with an-
other one of these points. However, we can identify the
d + 1 points that define a simplex that completely en-
closes the successor state y, and can think that the sys-
tem has transitioned not to point y itself, but to the ver-
tices of this simplex with various probabilities, instead.
The probabilities are equal to the convex decomposi-
tion of point y with respect to the vertices of the sim-
plex, also known as the barycentric coordinates of that
point within the simplex. The similarities between con-
vex combinations (barycentric coordinates) and prob-
ability mass functions required by the MDP formalism
make this conversion possible.

Once the continuous domain dynamics have been
converted to a discrete MDP, we can find a suitable
policy for the MDP by a number of different meth-
ods, depending on the size of the state space and the
structure of the transition function of the MDP. When
the number of states is sufficiently small (e.g., several
million), an optimal policy a = π∗(s) for that MDP
can be found by means of policy iteration or value it-
eration [30]. For example, for the discounted case, we
can evaluate the value function V (s(i)) of the MDP by
means of repeated applications of Bellman backups of
the form

V
(
s(i)

) = min
l

{
g
(
s(i), a(l)

)

+ γ

N∑
j=1

Pr
(
s(j)

∣∣s(i), a(l)
)
V

(
s(j)

)}

= min
l

{
g
(
s(i), a(l)

) + γ

N∑
j=1

pijlV
(
s(j)

)}

for each state s(i), i ∈ [1, . . . , N ], until convergence
of the value function V (s(i)). The optimal policy for
the MDP is then π∗(s(i)) = arg mina Q(s(i), a), where
we make use of the auxiliary function Q(s(i), a)

.=
g(s(i), a) + γ

∑N
j=1 pjV (s(j)). The computational

complexity of this solution is only O(Nd), because in
each iteration of the value iteration algorithm, a Bell-
man backup is performed for each of the N anchor
states, and although the sum is over all N successor
states s(j), there are non-zero transition probabilities to
only d+1 of them. These non-zero values can either be
stored explicitly during conversion, or the entire tran-
sition probabilities can be placed in sparse matrices.

It is, however, often the case that the continuous dy-
namics are only one part of the whole dynamics of a

domain; there can easily be one or more discrete com-
ponents, plus other continuous sub-systems, too. For
such cases, a suitable formalism is a factored MDP
(fMDP), where the system state is factored over mul-
tiple variables, and dynamics consist of relatively in-
dependent parts that interact weakly or not at all. In
many cases, the coupling can be only through the cost
structure of the fMDP. When such structure is avail-
able, it can be leveraged computationally by decision-
theoretic planning methods to find optimal policies for
fMDPs whose total state space size would otherwise
make policy and value iteration intractable [6].

Furthermore, the ultimate goal when solving se-
quential decision problems with continuous compo-
nents of state space is to find a control law a = μ∗(x)

that is a mapping from the continuous (or hybrid) state
x, as opposed to the discrete state of the MDP s.
By recognizing that our method introduces uncertainty
about the state the system is in, we can use several
control strategies from the field of partially observable
Markov decision processes (POMDP) [10]:

Nearest anchor point: find the closest anchor point
x(i) to x in the embedding continuous space in terms
of Euclidean distance, and use the optimal action for
the corresponding MDP state s(i): a = π∗(s(i)).

Largest vote: find the simplex m that contains x, and
compute the barycentric coordinates c of x with re-
spect to the d + 1 vertices vm,j , j ∈ [1, . . . , d + 1]
of that simplex, identically to the procedure described
in lines 10–22 in Algorithm 1. Then, if aj = π∗(s(j)),
where s(j) is the state corresponding to vertex vm,j , we
can use cj as an individual vote for action aj , and ex-
ecute the action that has the highest cumulative vote
over all d + 1 vertices.

Highest expected merit: use the barycentric co-
ordinates to estimate the merit Q̂(x, a) of the in-
dividual action a taken in state x as Q̂(x, a) =∑d+1

j=1 cjQ(s(j), a), and use the control law μ∗(x) =
arg mina Q̂(x, a). Given that the barycentric coordi-
nates c can be interpreted as individual probabilities
that the MDP is in one of its discrete states, the func-
tion Q̂(x, a) is indeed the exact expected merit of tak-
ing action a in the continuous state x.

4. Application of barycentric quantization to
problems

4.1. Contingent unit commitment

The proposed method for barycentric quantization
of a continuous state space problem that results in a
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discrete MDP has been applied to several practical
problems. In [27] and [39], we describe the applica-
tion of the proposed method to contingent unit com-
mitment, and two possible methods for solving the re-
sulting large factored Markov decision process.

In this domain, the application of the quantization
method results in a factored Markov decision process
models represented in the form of dynamic Bayesian
networks (DBN). This representation is relatively com-
pact and also easy to specify, maintain, and extend with
new power sources. This approach is similar to that
taken in the planning language RDDL, which also uses
DBNs augmented with influence diagrams to represent
the planning problem [32].

We have also proposed one concrete algorithm
for finding such conditional operational schedules for
power generation that depend on a single random
variable – the net demand that aggregates in itself
all sources of randomness. The algorithm focuses on
small subsets of all possible configurations of genera-
tors in order to compute the schedule efficiently. Ex-
perimental results suggest that the resulting conditional
plans are close to the truly optimal ones, and provide
a much better trade-off between generation cost and
risk of failure to meet demand than two known non-
stochastic unit commitment algorithms that compute
fixed schedules.

In the proposed solution algorithm, we use AND/OR
trees to represent, find, and evaluate the optimal condi-
tional plan. However, this algorithm is by no means the
only possible way to solve stochastic generation prob-
lems represented by means of fMDPs and DBNs. We
have also investigated another solution method based
on approximate dynamic programming that could ad-
dress much larger unit commitment problems [39]. The
method works with a reduced state space whose size is
polynomial in the number of generators and the num-
ber of selected target demand levels. We also proposed
a functional metric to measure the similarity of the
states in the reduced space. We employed an approxi-
mate dynamic programming method in which when a
state’s value is not updated, its most similar state can be
found, and its value can be used instead. The proposed
method yields lower costs and lower operational risk
than the deterministic methods, and can solve larger
problems than the previously developed decision space
approximate method that relies on a tree structure and
suffers from an exponential growth problem.

Multiple improvements to both solution algorithms
are possible. The current solution algorithms aggregate
the variability of all stochastic variables into the net de-

mand to the controllable power generators, for the sake
of computational efficiency. This simplifies the plan-
ning problem, because the branching in the AND/OR
tree is based only on that single variable. However,
even higher efficiency might be possible if the condi-
tional schedule is conditioned on the values of each
individual stochastic component. This would signifi-
cantly increase the complexity of the planning process,
and would depend critically on finding more compu-
tationally efficient solution methods for the underlying
fMDP models.

For example, the method proposed in [16] represents
the value function of the dynamic programming prob-
lem over continuous domains by adaptively discretiz-
ing such continuous variables. This approach might
result in more accurate and compact representations
than are possible with our method, where the tessel-
lation of the continuous domains is performed a pri-
ori, before value functions are evaluated. Adaptive dis-
cretization is indeed compatible with our discretization
scheme, too, for example by sub-dividing a simplex
where the value function varies a lot (measured on its
vertices), into multiple smaller simplices. The applica-
tion of symbolic dynamic programming (SDP, [33]) to
the factored MDP-based formulation of the operational
planning problem might be possible, too.

Furthermore, the formulations of the fMDP that we
have used so far assume that all generators will take
on their intended configuration at

i without fail. This al-
lows us to use the decision variables at

i as components
of the state of the system, thus simplifying the planning
process. If the possibility of equipment failure must be
taken into account, the actual configuration At

i of the
generators should be included as a random state vari-
able in the DBN, and its probabilistic dependence on
the intended configuration at

i can be modeled accord-
ing to the failure probabilities of individual generators.
Such an extension is completely compatible with the
proposed modeling formalism of factored Markov de-
cision processes.

4.2. Run-curve optimization

In [25], we discuss the application of the method
to the problem of computing optimal run-curves for
trains, for several instances of the problem. In that do-
main, if time is explicitly represented in the value func-
tion, as in Eq. (2), the number of states of the result-
ing MDP is too large for practical computation. How-
ever, several improvements are possible, resulting in
three different methods for converting train dynamics
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and run-curve optimization problems into MDPs. Of
these, a method that creates MDPs with equal-distance
steps, as opposed to the more customary equal-time
steps, gave the best results in terms of computational
time and accuracy, because such MDPs have no re-
current transitions, and can be solved very quickly by
means of dynamic programming. Experimental results
suggest that discretization steps of 20 m in distance
and 2 km/h in velocity are sufficient for computation
of accurate optimal run curves. Computational times
shorter than 4 s for railroad track segments of length
2 km were achieved, allowing re-computation of opti-
mal run curves to happen at each train station, while
the train stops there and takes on new passengers [21].

Future work will focus on methods for further
speeding up the computation of the optimal policy, and
representing the control law compactly. Intuitively, the
state space contains many states that the train simply
cannot be in – either cannot get to them at that time,
or if it is there, cannot get to the destination station on
time. It might be possible to prune these states out of
the state space of the MDP, speeding up computation
considerably.

4.3. Scheduling of air conditioners

In [26], we describe one more application domain
where this method can be applied: optimal scheduling
of heating, ventilation, and air conditioning (HVAC)
equipment. The domain of interest, building thermal
dynamics, can be described sufficiently accurately by
a low-order thermal circuit model [20]. The proposed
method converts the continuous-state building dynam-
ics into a discrete Markov decision problem. In that
case, finding the optimal control policy for the con-
verted MDP representation is computationally very ef-
ficient, and reduces to backward dynamic program-
ming. This procedure is linear in the number of states
of the MDP, and the overall computational time can be
varied according to needs and the available computa-
tional resources by means of adjusting the number of
states. The favorable computational complexity of the
algorithm can be employed in a receding horizon con-
troller for continuous re-optimization of the set-points
of HVAC systems.

In a set of experiments with a single zone in cool-
ing mode, the MDP-based scheduler significantly out-
performed traditional scheduling strategies sometimes
saving air conditioning costs in excess of 50%. Further
research will extend this method to multi-zone build-
ings, and will address the influence of model inaccu-

racy and uncertainty in input data (outdoor tempera-
ture, etc.). Another possibility for improvement of the
method is to also include humidity both in the building
thermal model and the definition of the comfort zone
for building occupants.

5. Conclusion

We have addressed the problem of solving sequen-
tial decision making in domains with discrete actions
where at least some components are continuous, and
have argued that a viable and generally applicable solu-
tion method for such problems can involve barycentric
quantization of the continuous components of the state
space into a discrete MDP, followed by exact MDP
solution methods such as value and policy iteration,
or approximate dynamic programming. Arguably, the
method itself can be viewed as an approximate dy-
namic programming method over continuous domains.

Many numerical methods for solving optimal con-
trol problems have been proposed in the control sys-
tems, operations research, and reinforcement learn-
ing communities. The specific instance of the problem
that we have considered here, namely continuous state
space and discrete time and actions, is a special case
of the more general optimal control problem, where
all variables (state, actions and time) are continuous.
As such, it can be solved by means of general opti-
mal control methods, including both indirect and direct
methods. In indirect methods, the problem is formu-
lated as a two-point boundary-value problem, and its
solutions are the desired control and state trajectories.
A disadvantage of such indirect methods is that solv-
ing boundary-value problems numerically can be very
difficult, error prone and computationally demanding.
In direct methods, the state and control trajectories are
approximated by means of appropriate parametric ap-
proximators, and the corresponding parameters are es-
timated by means of general-purpose nonlinear opti-
mization methods. An example is the direct collocation
method, currently implemented in powerful modeling
and optimization tools and languages such as JModel-
ica/Optimica [1]. Although such methods can be very
fast and effective, the direct result of their computa-
tion is not a control law, but an optimal state and con-
trol trajectory, whereas the method proposed in this
paper computes an entire control law over the entire
state space. Furthermore, the MDP constructed by the
proposed algorithm can be extended to handle uncer-
tainty in system dynamics by modifying its transition
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probabilities, whereas direct optimal control methods
would have to solve a stochastic optimal control prob-
lem, which is much harder to solve than the determin-
istic case.

The reinforcement learning and operations research
communities have also proposed multiple algorithms
for solving sequential optimal decision and control
problems, commonly incorporating the MDP frame-
work. One of the dominant ideas has been to use
universal value function approximators, such as feed-
forward neural networks, radial-basis functions, k-
nearest neighbor, etc., to represent the value function
of a sequential decision problem over the entire state
space of the problem, and then minimize the residual
in the Bellman equation at select points, fitting the pa-
rameters of the function approximators in the process.
To a certain degree, the method proposed in this paper
is based on the same idea for using a universal func-
tion approximator to represent the value function, in
this case piecewise linear approximation over a collec-
tion of simplices. However, two important differences
exist. First, the proposed method approximates the dy-
namical system by an MDP, and then calculates the
value function of the MDP exactly, as opposed to ap-
proximating the value function of the original system
in the process of estimating it. This has important con-
sequences as regards the convergence guarantees of the
method. Since the method constructs a standard MDP,
the convergence of the solution procedure used, such
as value iteration, policy iteration, linear programming,
etc., is guaranteed, and the rates of convergence can be
estimated based on existing research [30]. In contrast,
the convergence of value iteration when used with an
arbitrary universal function approximator is not at all
guaranteed, and research has shown that many popu-
lar function approximator schemes may in fact lead to
divergence [18].

The second difference between the proposed method
and most solution methods from the field of model-free
reinforcement learning such as Q-learning and TD(λ)
is that such methods use the system dynamics only as
a source for sampling system transitions, whereas the
proposed method uses the system dynamics directly
for the exact calculation of the transition probabilities
of the MDP. This has the practical consequence that
once the MDP model is constructed, finding the opti-
mal control law over the entire state space is very fast
(O(Nd)), whereas estimating value functions and op-
timal control policies from sampled system transitions
can be excruciatingly slow.

We have also described several hard industrial prob-
lems that are amenable to the proposed method. In all

cases, superior performance in comparison to domain-
specific solution methods has been demonstrated. Still,
the best performance is achieved when the proposed
method is customized to the respective domain, al-
though this has more to do with the size of the state
space and the nature of the dynamics of the domain,
than with the general applicability of the method. This
gives hope that the method can be applied to even more
decision problems of this class.
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