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Abstract
This paper proposes a proportional-integral extremum-seeking control technique for a class
of discretetime nonlinear dynamical systems with unknown dynamics. The technique is a
generalization of existing time-varying extremumseeking control techniques that provides fast
transient performance of the closed-loop system to the optimum equilibrium of a measured
objective function. The main contribution of the proposed technique is the addition of a
proportional action that can be used to minimize the impact of a time-scale separation on the
transient performance of the extremum-seeking control system. The integral action fulfills the
role of standard ESC techniques to identify optimal equilibrium conditions. The effectiveness
of the proposed approach is demonstrated using a simulation example.
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A proportional integral extremum-seeking control approach for
discrete-time nonlinear systems

Martin Guay and Daniel J. Burns

Abstract— This paper proposes a proportional-integral
extremum-seeking control technique for a class of discrete-
time nonlinear dynamical systems with unknown dynamics. The
technique is a generalization of existing time-varying extremum-
seeking control techniques that provides fast transient perfor-
mance of the closed-loop system to the optimum equilibrium
of a measured objective function. The main contribution of the
proposed technique is the addition of a proportional action that
can be used to minimize the impact of a time-scale separation
on the transient performance of the extremum-seeking control
system. The integral action fulfills the role of standard ESC
techniques to identify optimal equilibrium conditions. The
effectiveness of the proposed approach is demonstrated using
a simulation example.

I. INTRODUCTION

Extremum-seeking control (ESC) has grown to become the
leading approach to solve real-time optimization problems
[1]. Following the seminal work of Krstic and coworkers ([2],
[3], [4], [5], [6], [7]), this strikingly general and practically
relevant control approach is equipped with an established
and well understood control theoretical framework. The
main drawback of ESC is the lack of transient performance
guarantees. As highlighted in the proof of Krstic and Wang
[2], the stability analysis relies on two components: an
averaging analysis of the persistently perturbed ESC loop
and a time-scale separation of ESC closed-loop dynamics
between the fast transients of the system dynamics and the
slow quasi steady-state extremum-seeking task. While the
averaging analysis highlights the stability properties of ESC
systems, the need for a slower time-scale for the optimization
dynamics invariantly leads to a slow performance of the
closed-loop ESC system. The objective of this study is to
develop an ESC technique that minimizes the impact of time-
scale separation on the transient performance of ESC systems
for a class of discrete-time nonlinear dynamical systems.

The vast majority of existing results on ESC have focussed
on continuous-time systems. Although discrete-time systems
can be treated in an essentially similar fashion, the applica-
tion of gradient descent in a discrete-time setting requires
some care. A discrete-time version of the standard ESC loop
was studied in [4] and [6] where convergence results similar
to continuous time systems are obtained. A similar algorithm
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was also proposed in [8] for the tuning of PID controllers
in unknown dynamical systems using ESC. Discrete-time
ESC subject to stochastic perturbations is studied in [9]. The
use of approximate parameterizations of the unknown cost
function using quadratic functions was recently proposed
in [10]. An alternative ESC-like approach was proposed in
[11]. In this study, a trajectory based approach is used to
analyze the properties of nonlinear optimization algorithms
as dynamical systems. It is shown that properties of the
nonlinear-optimization algorithms are suitable to assess the
convergence of certain classes of ESC applied in a sampled-
data approach. This approach was recently studied in the
context of global sampling methods in [12] where trajectory
based properties of nonlinear optimization methods are used
to establish robust convergence. The main objectives with
the trajectory based techniques is to analyze the properties
of optimization algorithms assuming that they can converge
to the true optimum using only the measurement of the
objective function and possibly the constraints. In the context
of ESC, one must either imply that the nonlinear optimization
techniques do not rely on gradient information or, if they do,
this gradient must be either measured or estimated. Some
techniques such as [13] and [14] make use of sporadic
gradient measurements in extremum seeking control. Other
techniques [15] go as far as requiring the existence of
multiple (nearly) identical systems to enable the estimation
of gradient information.

This paper proposes the design of a fast ESC for discrete-
time systems. The approach is based on a proportional-
integral ESC (PIESC) design technique initially proposed
in [16]. The approach extends the time-varying discrete-
time ESC technique proposed in [17]. The PIESC technique
proposed here is a combination of an integral action which
corresponds to the standard ESC control task used to identify
the steady-state optimum and a proportional control action
designed to ensure that the measured cost function can be
optimized instantaneously. Under suitable assumption on the
dynamics of the system and the cost function, this action
can be shown to minimize the cost over short times while
reaching the optimum steady-state conditions.

The paper is organized as follows. A problem description
of the ESC problem along with the key assumptions is
given in Section II. The proposed proportional-integral ESC
controller is described in Section III. Simulation examples
are presented in Section IV followed by brief conclusions
and proposed future work in Section V.



II. PROBLEM DESCRIPTION

We consider a class of nonlinear systems of the form:

xk+1 = xk + f(xk) + g(xk)uk (1)
yk = h(xk) (2)

where xk ∈ Rn is the vector of state variables at time k, uk
is the input variable at time k taking values in U ⊂ R and
yk ∈ R is the objective function at step k, to be minimized.
It is assumed that f(xk) and g(xk) are smooth vector valued
functions and that h(xk) is a smooth function.

The objective is to steer the system to the equilibrium x∗

and u∗ that achieves the minimum value of y(= h(x∗)). The
equilibrium (or steady-state) map is the n dimensional vector
x = π(u) that solves the following equation:

f(π(u)) + g(π(u))u = 0.

The corresponding equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)

At equilibrium, the problem is reduced to finding the min-
imizer u∗ of y = `(u∗). In the following, we let D(u)
represent a neighbourhood of the equilibrium x = π(u).

The following additional assumption concerning the
steady-state cost function `(u) is required.

Assumption 1: The nonlinear system is such that

∇xh(π(u))g(π(u))(u− u∗) ≥ αu‖u− u∗‖2

for some positive constant αu ∀u ∈ U .
Some additional assumptions are required concerning the

cost function h(x).
Assumption 2: The cost h(x) is such that

1) ∂h(x∗)
∂x = 0

2) ∂2h(x)
∂x∂xT

> βI, ∀x ∈ Rn

where β is a strictly positive constant.
It is assumed that the cost function dynamics has a relative
degree of one. The cost function dynamics are expressed as
follows. We let α(xk) = xk + f(xk) + g(xk)ûk. The rate of
change of the cost function yk = h(xk+1) is given by:

h(xk+1)− h(xk) = h(xk + f(xk) + g(xk)uk)

− h(α(xk)) + h(α(xk))− h(xk).

The first two terms can be rewritten using the second order
Taylor formula as:

h(xk+f(xk) + g(xk)uk)− h(α(xk)) =

∇h(α(xk))g(xk)(uk − ûk) (4)

+
1

2
(uk − ûk)>g(xk)>∇2h(ỹk)g(xk)(uk − ûk)

where yk = α(xk) + θg(xk)(uk − ûk) for θ ∈ (0, 1). We
rewrite (4) as follows:

h(xk + f(xk) + g(xk)uk)− h(α(xk)) = (5)
Ψ1,k(xk, uk, ûk)(uk − ûk) (6)

where

Ψ1,k(xk, uk, ûk) = (∇h(α(xk))g(xk)

+
1

2
(uk − ûk)>g(xk)>∇2h(ỹk)g(xk).

We also define the following

Ψ0,k(xk, ûk) = h(α(xk, ûk))− h(xk).

and write the cost dynamics as:

yk+1 − yk = Ψ0,k(xk, ûk) + Ψ1,k(xk, uk, ûk)(uk − ûk).

By the relative order one assumption on h(x), the system’s
dynamics can be decomposed and written as:

ξk+1 = ξk + ψ(ξk, yk) (7)
yk+1 = yk + Ψ0,k(xk, ûk) + Ψ1,k(xk, uk, ûk)(uk − ûk)

(8)

where ξk ∈ Rn−1 and ψ(ξk, yk) is a smooth vector valued
function.

Assumption 3: There exists a positive definite function
W (ξ) that satisfies the following inequalities:

β1‖xk − π(û)‖2 ≤W (ξ) + h(x) ≤ β2‖xk − π(û)‖2

with positive constants β1 and β2, and:

W (ξk+1) + h(α(xk))−W (ξk)− h(xk)

≤ −αe‖xk − π(û)‖2

with positive constant αe, ∀xk ∈ D(û) and ∀û ∈ U .
Assumption 3 states that W + h is non-increasing along the
vector field f(x) + g(x)u over some neighbourhood of the
steady-state manifold x = π(u) at a fixed value of the input
û.

III. PROPORTIONAL-INTEGRAL PERTURBATION
DISCRETE-TIME ESC

In this section, we present the proposed ESC controller.
Recall that the cost function dynamics can be parameter-

ized as follows:

yk+1 = yk + θ0,k + θ1,k(uk − ûk)

where the time-varying parameters θ0,k and θ1,k are identi-
fied with θ0,k = Ψ0,k and θ1,k = Ψ1,k.

Since the parameters θ0,k and θ1,k are unknown, they
must be estimated. Let θ̂0,k and θ̂1,k denote the estimates
of θ0,k and θ1,k, respectively. The proposed proportional-
integral extremum-seeking controller is given by:

uk = −kg θ̂1,k + ûk (9)

ûk+1 = ûk −
1

τI
θ̂1,k.

where kg and τI are positive constants to be assigned.



A. Time-varying parameter estimation approach

This section describes a scheme that allows the accurate
estimation of the parameters θ0,k and θ1,k. Note that the
estimation θ0,k is necessary to ensure that the estimates of
θ1,k are not biased.e

Consider the following state predictor

ŷk+1 = ŷk + θ̂0,k + θ̂1,k(uk − ûk)

+ Kkek − ωk+1(θ̂k − θ̂k+1) (10)

where θ̂k = [θ̂0,k, θ̂
T
1,k]T is the vector of parameter estimates

at time step k given by any update law, Kk is a correction
factor at time step k, ek = xk − x̂k is the state estimation
error at time step k. We φk = [1, (uk− ûk)T ]T . The variable
ωk is the following output filter at time step k

ωk+1 = ωk + φk −Kkωk, ω0 = 0 (11)

Using the state predictor defined in (10) and the output filter
defined in (11), the prediction error ek = xk − x̂k is given
by

ek+1 = ek +G(xk, uk)θ̃k+1 −Kkek

+ ωk+1(θ̂k − θ̂k+1) + ωk+1(θk+1 − θk)

e0 = x0 − x̂0. (12)

An auxiliary variable ηk is introduced which is defined as
ηk = ek − ωTk θ̃k. Its dynamics are described as follows

ηk+1 = ek+1 − ωk+1θ̃k+1

η0 = e0. (13)

Since ϑk is unknown, it is necessary to use an estimate,
η̂, of η . The estimate is generated by the recursion:

η̂k+1 = η̂k −Kkη̂k (14)

The resulting dynamics of the η estimation error are:

η̃k+1 = η̃k −Kkη̃k + ωTk+1(θk+1 − θk) (15)

Let the identifier matrix Σk be defined as

Σk+1 = αΣk + ωTk ωk, Σ0 = αI � 0 (16)

with an inverse generated by the recursion

Σ−1
k+1 =Σ−1

k +

(
1

α
− 1

)
Σ−1
k

− 1

α2
Σ−1
k ωk(1 +

1

α
ωTk Σ−1

k ωk)−1ωTk Σ−1
k (17)

Using equations (10), (11), and (14), the parameter update
law is

θ̂k+1 = θ̂k + Σ−1
k ωTk

(
I + wkΣ−1

k wTk
)−1

(ek − η̂k) (18)

To ensure that the parameter estimates remain within the
constraint set Θk, we propose to use a projection operator
of the form:

¯̂
θk+1 = Proj{θ̂k+Σ−1

k ωTk
(
I + wkΣ−1

k wTk
)−1

(ek−η̂k),Θk}
(19)

The operator Proj represents an orthogonal projection onto
the surface of the uncertainty set applied to the parameter

estimate.The parameter uncertainty set is defined by the ball
function B(θ̂c, zθ̂c), where θ̂c and zθ̂c are the parameter
estimate and set radius found at the latest set update.

Following [18], the projection operator is designed such
that
• θ̂k+1 ∈ Θ0

•
¯̃
θTk+1Σk+1

¯̃
θk+1 ≤ θ̃Tk+1Σk+1θ̃k+1

One possible algorithm for the projection algorithm is as
follows. Define the upper bound for ‖θ‖ (= L1). Let
R =Chol(Σk+1) denote the Cholesky factor of Σk+1. Then
we perform the following:

Algorithm 1: If ‖θ̂k+1‖ ≥ L1 then

• Let δ = L1θ̂k+1

‖θ̂k+1‖
,

• Let zρ =
√
δTΣk+1δ,

• With ρ = Rθ̂k+1 define ρ̄ =
ρzρ
‖ρ‖ ,

• Let ¯̂
θk+1 = R−1ρ̄.

Otherwise,
• Let ¯̂

θk+1 = θ̂k+1.
It is assumed that the trajectories of the system are such that
the following condition is met.

Assumption 4: [18] There exists constants βT > 0 and
T > 0 such that

1

T

k+T−1∑
i=k

ωiω
T
i > βT I, ∀k > T. (20)

This requirement is a standard persistency of excitation
condition that can be found in most references on adaptive
control and adaptive estimation. The reader is referred to [18]
for more details.

B. Main result

In this section, we present the main result of this study.
Theorem 1: Consider the nonlinear discrete-time system

(1) with cost function (2), the extremum seeking controller
(9) and parameter estimation scheme (10), (11), (14), (16)
and (19). Let Assumptions 1-4 be fulfilled. Then there exists
positive constants α, K, kg and τI such that for every τI ≥
τ∗I , the states xk and input uk of the closed-loop system
enter a neighbourhood of the unknown optimum (x∗, u∗).
Proof: Let ũk = uk−u∗ and consider the Lyapunov function:

Wk = θ̃Tk Σkθ̃k.

Consider the following:

Wk+1 −Wk =
¯̃
θTk+1Σk+1

¯̃
θk+1 − θ̃Tk Σkθ̃k

≤ θ̃Tk+1Σk+1θ̃k+1 − θ̃Tk Σkθ̃k. (21)

where the final inequality arises as a result of the properties
of the projection algorithm.

Let Qk =
(
1 + 1

αω
T
k Σ−1

k ωk
)−1

. The parameter estimation
error dynamics is given by:

θ̃k+1 = θ̃k + (θk+1 − θk)− 1

α
Σ−1
k ωkQk(ek − η̂k).

= θ̃k + (θk+1 − θk)− 1

α
Σ−1
k ωkQkω

T
k θ̃k

− 1

α
Σ−1
k ωkQkη̃k



Note that by construction one can write the parameter
estimation error dynamics as follows:

θ̃k+1 = (θk+1 − θk) + αΣ−1
k+1Σkθ̃k −

1

α
Σ−1
k ωkQkη̃k (22)

Upon successive substitution of θ̃k, one obtains the following
by induction:

θ̃k+1 =Σ−1
k+1α

k+1Σ0θ̃0 + Σ−1
k+1

k∑
i=1

αk−i+1Σi(θi+1 − θi)

− (1−K)Σ−1
k+1

k∑
i=1

αk−i−1Σi+1Σ−1
i ωiQiη̃i−1

The matrix Σk+1 can be bounded as follows. The recursion
for Σk can be rewritten as:

Σk+1 = αk+1Σ0 +

k∑
i=0

αk−iωiω
T
i .

Then one can write:

Σk+1 ≤ αk+1Σ0 +

k∑
i=0

αk−i
T∑
j=1

ωi+jω
T
i+j

≤ αk+1Σ0 +

k∑
i=0

αk−iTβI ≤ αk+1Σ0 +
1− αk+1

1− α
TβI

Similarly, one can provide a lower bound for Σk+1. Consider
the quantity:

TΣk+1 = Tαk+1Σ0 + T

k∑
i=0

αk−iωiω
T
i

Using a simple rearrangement of the summation term one
obtains:

TΣk+1 ≥ Tαk+1Σ0 +

k∑
i=T

αk−iωiω
T
i +

k−1∑
i=T−1

αk−iωiω
T
i +

. . .+

k−T∑
i=0

αk−iωiω
T
i

which leads to

TΣk+1 ≥ Tαk+1Σ0 +

k−T∑
i=0

αk−i
T−1∑
j=0

α−jωi+jω
T
i+j

or,

TΣk+1 ≥ Tαk+1Σ0 +

k−T∑
i=0

αk−i
T−1∑
j=0

ωi+jω
T
i+j .

Invoking assumption 4 and rearranging, we can finally write:

TΣk+1 ≥ Tαk+1Σ0 +
αT

1− α
TβT I ≥

αT

1− α
TβT I.

Assuming that Σ0 = α0I , one gets the following bounds:

αT

1− α
βT I ≤ Σk+1 ≤ α0I +

1

1− α
TβI. (23)

or,
1− α
α0 + Tβ

≤ Σ−1
k+1 ≤

1− α
βTαT

I. (24)

By the dynamics of η̃k, it is easy to show that:

η̃k+1 =

k∑
1

(1−K)k−i+1η̃0 +

k∑
i=1

(1−K)k−iωTi+1(θi+1 − θi)

As a result, one obtains the upper bound:

‖η̃k+1‖ ≤
k∑
i=1

(1−K)k−i+1‖η̃0‖

+

k∑
i=1

(1−K)k−i
√
β‖(θi+1 − θi)‖

The parameter estimation error ‖θ̃k+1‖ is such that:

‖θ̃k+1‖ ≤
1− α
βTαT

αk+1α0‖θ̃0‖

+
1− α
βTαT

(
k∑
i=1

αk−i+1α0‖(θi+1 − θi)‖

+

k∑
i=1

αk−i+1 1

1− α
Tβ‖(θi+1 − θi)‖

)

+

(
1− α
βTαT

)2
(

k∑
i=1

αk−i+1(1−K)k−iα0β‖(θi+1 − θi)‖

+

k∑
i=1

αk−i+1(1−K)k−i
1

1− α
Tβ2‖(θi+1 − θi)‖

)

+

(
1− α
βTαT

)2
(

k∑
i=1

αk−i+1(1−K)k−i+1α0‖η̃0‖

+

k∑
i=1

αk−i+1(1−K)k−i+1 1

1− α
Tβ‖η̃0‖

)
.

By smoothness of Ψ0,k and Ψ1,k, it follows that, ∀xk ∈ D(u)
and ∀u ∈ U , the inequality:

‖θi+1 − θi‖ ≤ ‖Ψ0,i+1 −Ψ0,i‖+ ‖Ψ1,i+1 −Ψ1,i‖

can be written as:

‖θi+1 − θi‖ ≤ LΨ1‖xk+1 − xk‖+ LΨ2‖ûk+1 − ûk‖
+ LΨ3‖(uk+1 − ûk+1)− (uk − ûk)‖

where LΨi , i = 1, 2, 3, are Lipschitz constants. Upon sub-
stitution of the process dynamics and the extremum seeking
controller, we obtain:

‖θi+1 − θi‖ ≤ LΨ1
‖f(xk) + g(xk)(−kg θ̂1,k + ûk + dk)‖

+
LΨ2

τI
‖θ̂1,k‖+ kgLΨ3

‖θ̂k+1 − θ̂k‖

This last inequality reduces to:

‖θi+1 − θi‖ ≤ LΨ1LF ‖xk − π(ûk)‖
+ kgLΨ1LG‖xk − π(ûk)‖‖θ̂1,k‖
+ LΨ1LG‖xk − π(ûk)‖‖dk‖+ kgLΨ1‖g(π(ûk))‖‖θ̂1,k‖

+ LΨ1‖g(π(ûk))‖‖dk‖+
LΨ2

τI
‖θ̂1,k‖+ kgLΨ3

‖θ̂k+1 − θ̂k‖



where LF and LG are Lipschitz constants for the vector
fields f(xk) and g(xk). Finally, we obtain inequality:

‖θi+1 − θi‖ ≤ (LΨ1LF + kgLΨ1LG +DLΨ1LG)‖xk − ûk‖

+ kgLΨ1GL1 +DLΨ1G+
L1LΨ2

τI
+ 2kgLΨ3L1

which we write as:

‖θi+1 − θi‖ ≤ b1(kg, D)‖xk − π(ûk)‖+ b0(kg,
1

τI
, D).

Without loss of generality, we also assume that ‖η̃0‖ = 0.
Then one can write:

‖θ̃k+1‖ ≤
1− α
βT

αk−T+1α0‖θ̃0‖

+ Υ(T, α,K)b1(kg, D)‖xk − π(ûk)‖

+ Υ(T, α,K)b0(kg,
1

τI
, D) = c1 + c2‖xk − π(ûk)‖

where

Υ(T, α,K) =
1− αk+1

βTαT
α0 +

1− αk+1

βTαT (1− α)
Tβ

+
(1− α)(1− αk+1(1−K)k+1)

(1−K)(βTαT )2
α0β

+
1− αk+1(1−K)k+1

(1−K)(βTαT )2
Tβ2.

We thus see that the parameter estimation error will tend to
a neighbourhood of the origin. The size of this neighbour-
hood depends primarily on the constant T associated with
the persistency of excitation condition. Next we pose the
following Lyapunov function candidate: V = W+h+ 1

2 ũ
T ũ.

The recursion of V yields:

Vk+1 − Vk = Wk+1 −Wk + Ψ0,k + Ψ1,k(uk − ûk)

+
1

2
ũTk+1ũk+1 −

1

2
ũ>k ũk.

Substitution of the ESC yields:

Vk+1 − Vk = Wk+1 −Wk + Ψ0,k − kgΨ1,kθ̂1,k + Ψ1,kdk

+
1

2

(
ũk +

1

τI
θ̂1,k

)T (
ũk +

1

τI
θ̂1,k

)
− 1

2
ũ>k ũk.

Replacing θ̂1,k = Ψ1,k − θ̃1,k and using assumptions 1 and
3, one obtains:

Vk+1 − Vk ≤ −αe‖x− π(ûk)‖2 −
(
kg −

1

2τ2
I

)
‖Ψ1,k‖2

+

∣∣∣∣(kg − 1

τ2
I

)∣∣∣∣ ‖Ψ1,k‖‖θ̃1,k‖+ ‖Ψ1,k‖‖dk‖

− αu
τI
‖ũk‖2 +

LH
τI
‖x− π(ûk)‖‖ũk‖+

1

τI
‖ũk‖‖θ̃1,k‖

+
1

2τ2
I

‖θ̃1,k‖2

where LH is the Lipschizt constant associated with

‖Ψ1,k −∇h(ûk)g(π(ûk)‖ ≤ LH‖x− π(ûk)‖.

Substituting for the upper bound of ‖θ̃k‖, rearranging and
letting kg = 1

τ2
I

, one obtains:

Vk+1 − Vk ≤ −
[
‖x− π(ûk)‖ ‖ũk‖ ‖Ψ1,k‖

]
×


αe − c2LH

τI
− c22

τ2
I
−LH2τI

0

−LH2τI
αu
τI

0

0 0
(

1
τ2
I

)
− c2LH

τI
− c22

τ2
I


×

 ‖x− π(ûk)‖
‖ũk‖
‖Ψ1,k‖


+
c1LH
τI
‖x− π(ûk)‖+

c1
τI
‖ũk‖+ (D) ‖Ψ1,k‖+

c21
τ2
I

It is to see that there exists a τ∗I such that ∀τI > τ∗I , with
kg = 1

τ2
I

, the last inequality can be written as:

Vk+1 − Vk ≤− λ1‖x− π(ûk)‖2 − λ1‖ũk‖2

− λ1‖Ψ1,k‖2 +
c1LH
τI
‖x− π(ûk)‖

+
c1
τI
‖ũk‖+D‖Ψ1,k‖+

c21
τ2
I

for a positive constant λ1 > 0 taken as the minimum
eigenvalue of the matrix:

αe − c2LH
τI
− c22

τ2
I
−LH2τI

0

−LH2τI
αu
τI

0

0 0
(

1
τ2
I

)
− c2LH

τI
− c22

τ2
I

 .
By Assumption 3, one can then write the following:

Vk+1 − Vk ≤ −
λ1

β2
(Wk + hk)− λ1‖ũk‖2 − λ1‖Ψ1,k‖2

+
c1LH√
β1τI

Wk +
c1
τI
‖ũk‖+D‖Ψ1,k‖+

c22
τ2
I

≤ −λ2Vk − λ1‖Ψ1,k‖2 + β3

√
Vk +D‖Ψ1,k‖+

c22
τ2
I

where λ2 = min
[
λ1

β2
, λ1

]
and β3 =

max
[
c1LH
τI

1√
β1
,
√

2 c1τI

]
.

Thus we see that the closed-loop signals ‖Ψ1,k‖, ‖ũk‖
and ‖x − π(ûk)‖ of the proposed ESC signals enter a
neighbourhood of the origin whose magnitude depends on
the magnitude of ‖dk‖. This neighbourhood will be of order
O
(
c21
τ2
I

)
and O

(
D
λ1

)
.

As Vk enters a neighbourhood of the origin, it follows
that the closed-loop signals enter a neighbourhood of the
optimum steady-state conditions (x∗, u∗). This completes
the proof.

Remark 1: The proof provides some nominal tuning
guidelines for kg and τI . If one fixes τI , the analysis suggests
to pick kg = 1/τ2

I . However, it is clear that there is much
more freedom to pick kg . To demonstrate, assume that one
can pick τI large enough and a k∗g such that for every



kg < k∗g one obtains:

lim
τI→∞

(Vk+1 − Vk) ≤− λ3‖x− π(ûk)‖ − λ3‖Ψ1,k‖2

+ (k∗gc1 +D)‖Ψ1,k‖

The closed-loop signals will asymptotically enter a neigh-
bourhood of the origin given by:

Ωkg =

{
x ∈ D(û) û ∈ U

∣∣∣∣ ‖Ψ1,k‖ ≤
(k∗gc1 +D)

λ3

}
Thus, one can establish a maximum gain k∗g that retains
closed-loop stability in the absence of integral action.

IV. SIMULATION

In this section, we consider the application of the PI-ESC
approach to the following nonlinear discrete-time system:

xk+1 =0.99xk + (uk − 0.1)(1 +
1

2
sin(xk))

yk =1 + 0.2(xk − 1)2

The optimum occurs at x∗ = 1, u∗ = 0.1069. The PIESC is
used with a gain of kg = 0.75 and integral time constant
τI = 50. The dither signal is dk = 0.05 sin(k). The
estimation gates are set to K = 0.0001, α = 0.01. The
projection algorithm enforces a region where ‖θ̂k‖ ≤ 0.1.
The simulation results are shown in Figure 1. The figure
shows the cost function, yk, the input, uk, and the integration
variable ûk. The PIESC very effectively converges to the
optimum equilibrium conditions. For the sake of comparison,
we also compare the performance of the proposed ESC with
the perturbation based discrete-time ESC algorithm proposed
in [8] given by:

ξk+1 = −h`ξk + yk

ûk+1 = ûk − γα cos(ωk)(y1− (1 + h`)ξk+1)

uk = ûk + α cos(ω(k + 1))

The tuning parameters for the perturbation ESC are h` =
0.2, γ = 5/α, α = 0.1, ω = 2. The corresponding ESC
performance is shown as the dashed line in Figure 1. As
expected, the proposed PIESC provides a faster convergence
to the optimum conditions.

V. CONCLUSION

This paper proposes a proportional-integral extremum-
seeking control technique for a class of discrete-time nonlin-
ear dynamical systems with unknown dynamics. The main
contribution of this technique is the minimization of the
impact of time-scale separation on the transient performance
of the extremum-seeking control system in discrete-time.
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Fig. 1. Performance of the PI-ESC for Example 1 with dk = sin(k). The
upper plot shows the cost function, the middle plot shows the input variable
and the bottom, û, as a function sampling steps k.
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