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Abstract
This paper proposes a method for numerically decomposing symmetric linear systems. We
define system symmetries as transformations of the inputs, outputs, and states that do not
change the system behavior. We show that symmetric systems can be decomposed into
decoupled subsystems. We provide an algorithm for performing this decomposition that uses
the input-output symmetries and minimal realizations to calculate the decomposition.
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Numerical Decomposition of Symmetric Linear Systems

Claus Danielson and Stefan Bauer

Abstract— This paper proposes a method for numerically decom-
posing symmetric linear systems. We define system symmetries as
transformations of the inputs, outputs, and states that do not change the
system behavior. We show that symmetric systems can be decomposed
into decoupled subsystems. We provide an algorithm for performing
this decomposition that uses the input-output symmetries and minimal
realizations to calculate the decomposition.

I. INTRODUCTION

Symmetries are transformations of a system’s inputs, outputs,
and states for which the system is invariant. Symmetry can be used
to decompose a system into decoupled subsystems. This property
has been exploited in several applications. In [1] it was shown that
controllability and stability in large scale systems can be determined
by checking the smaller decoupled subsystems. In [2] the authors
used this decomposition to simplify the design of H2 and H∞
controllers by designing the controllers for each of the decoupled
subsystems separately. In [3] symmetry was used to eliminate
symmetrically redundant portions of the controller. In general, once
the system has been decoupled, any of the control method presented
in [4] can be applied. While many papers have focused on the
benefits of exploiting symmetry, none have addressed the issue of
numerically computing the symmetric decomposition. This is the
issue addressed in this paper.

In recent years the semi-definite programming community has
addressed the closely related problem of decomposing matrix ∗-
algebras [5], [6], [7]. The set of all square matrices with a particular
symmetry group forms a matrix ∗-algebra. The proposed algorithms
for decomposing matrix ∗-algebras work by computing the spectral
decomposition of a properly chosen element of the matrix ∗-algebra.
The decomposition of this single matrix can be used to construct
the decomposition of every matrix in the set. Although the theory
behind these algorithms is complex, the algorithms are simple and
can be implemented using existing matrix decomposition tools.
In this paper we show how to apply these algorithms for the
decomposition of symmetric linear systems. Further information
about the use of symmetry in optimization can be found in [8], [9],
[10].

One limitation of the decomposition algorithms found in the
literature, is that they require a basis for the matrix ∗-algebra.
In general computing the basis of the matrix ∗-algebra from
the symmetry group can be difficult. One exception is when the
elements of the symmetry group are permutation matrices. In many
interesting applications, the input-output symmetries are indeed
permutations. For instance battery networks [11], HVAC [12],
paper-manufacturing [13], multi-agent systems [14], and distributed
control [15]. However the nature of the state-space symmetries
depends on the realization of the system. In this paper we study the
relationship between input-output and state-space symmetries. We
provide a method for computing the state-space symmetries from
the input-output symmetries and provide a condition for when the
state-space symmetries are permutation matrices. The main result
of this paper is that we can decompose a linear system without the
state-space symmetries by decomposing its transfer function and
computing a minimal realization.

II. THE STRUCTURAL THEOREM

In this section we introduce the notation and mathematical
concepts used in this paper. In particular we state the Structural
Theorem [16] on which this paper is based.

The set of finite-dimensional, causal, rational transfer functions
will be denoted by R.

For a matrix G ∈ Cn×n the subspace V ⊆ Cn is called invariant
if GV ⊆ V. For a set of matrices G ⊆ Cn×n the subspace V ⊆ Cn
is invariant if V is invariant GV ⊆ V for every matrix G ∈ G in
the set G. For any matrix G ∈ Cn×n the zero-space O = Span(0)
and the full-space Cn are called the trivially invariant subspaces. An
invariant subspace V ⊆ Cn is called irreducible if its only invariant
subspaces are trivial. For a set of matrices G ⊆ Cn×n an invariant
subspace V ⊆ Cn is irreducible if its only invariant subspaces are
trivial.

The direct-sum G1 ⊕ G2 of matrices G1 ∈ Cn1×m1 and G2 ∈
Cn2×m2 is the matrix G1⊕G2 =

[
G1 0
0 G2

]
∈ C(n1+n2)×(m1+m2).

For matrix sets G1 ⊆ Cn1×m1 and G2 ⊆ Cn2×m2 their direct-
sum G1 ⊕ G2 =⊆ C(n1+n2)×(m1+m2) is the set G1 ⊕ G2 ={[

G1 0
0 G2

]
: G1 ∈ G1 and G2 ∈ G2

}
.

The Kronecker product of matrices G ∈ Cn×m and H ∈ Cp×q
is the matrix

G⊗H =

[
g11H ... g1nH

...
. . .

...
g1mH ... gnmH

]
∈ Cnp×mq.

If I ∈ Cr×r is the identity matrix then the Kronecker product
Ir ⊗G =

⊕r
i=1G ∈ Crn×rm is the the direct-sum of the matrix

G ∈ Cn×m with itself r times.

A. The Structural Theorem

A group (H, ◦) is a setH along with a binary operator ◦ such that
the operator is associative, the set H is closed under the operation
◦, contains an identity element and the inverse of each element. A
representation Θ : H → Cn×n is a set of matrices Θ(g) index by
g ∈ H that obey the group multiplication law Θ(g)Θ(h) = Θ(g◦h)
for all g, h ∈ H. For notational simplicity we will drop the ◦ and
write gh for g ◦ h.

Let Θ1(g) ∈ Cn1×n1 and Θ2(g) ∈ Cn2×n2 be two representa-
tions of a group H. We define the commutator-space H(Θ1,Θ2)
as the set of all matrices G ∈ Cn1×n2 that commute with Θ1(g)
and Θ2(g)

H(Θ1,Θ2) =
{
G ∈ Cn1×n2 : Θ1(g)G = GΘ2(g), ∀g ∈ H

}
.

This matrix set H(Θ1,Θ2) is a vector-subspace of the matrix space
Cn1×n2 i.e. for every G1, G2 ∈ H(Θ1,Θ2) and α1, α2 ∈ C we
have α1G1 + α2G2 ∈ H(Θ1,Θ2). Since H(Θ1,Θ2) is a vector-
space we can find a set of basis-matrices G1, . . . , Gm that span
this space H(Θ1,Θ2) = Span({G1, . . . , Gm}). This fact alone
has many applications. However the commutator-space H(Θ1,Θ2)
has remarkable structural properties summarized by the following
Theorem.

Theorem 1 (Structural): Let H be a finite group. The
commutator-space H(Θ1,Θ2) ⊆ Cn1×n2 is the direct sum



of vector-spaces Cn
i
1×n

i
2

H(Θ1,Θ2) =
⊕p

i=1
Iri ⊗ Cn

i
1×n

i
2 (1)

where n1 =
∑p
i=1 rin

i
1 and n2 =

∑p
i=1 rin

i
2

Proof: See [16]
This theorem says that every matrix G ∈ Cn1×n2 in the com-

mutator H(Θ1,Θ2) ⊆ Cn1×n2 can be decomposed into p smaller
matrices G1 ∈ Cn

1
1×n

1
2 , . . . , Gp ∈ Cn

p
1×n

p
2 each with repetition

ri. Furthermore any matrix G ∈ Cn1×n2 with the decomposition
(1) is an element of the commutator H(Θ1,Θ2) ⊆ Cn1×n2 .

According to the Structural Theorem 1, there exists a basis of
Cn1 and Cn2 , called the symmetry adapted basis, such that every
element of the commutator H(Θ1,Θ2) is block-diagonal. This
decomposition is analogous to the singular value decomposition
of a single matrix, but for the set H(Θ1,Θ2) of matrices. There
exists orthogonal transformation matrices

Φ1 =
[
Φ11

1 , . . . ,Φ
1r1
1 | . . . |Φp1

1 , . . . ,Φ
prp
1

]
∈ Cn1×n1

Φ2 =
[
Φ11

2 , . . . ,Φ
1r1
2 | . . . |Φp1

2 , . . . ,Φ
prp
2

]
∈ Cn2×n2

that block-diagonalize every element G ∈ H(Θ1,Θ2) of the
commutator H(Θ1,Θ2) ⊆ Cn1×n2

Φ−1
1 GΦ2 =

 Ir1⊗G11

. . .
Irp⊗Gpp


where ⊗ is the Kronecker product. The submatrices Φi1 =[
Φi11 , . . . ,Φ

iri
1

]
∈ Cn1×rini1 and Φi2 =

[
Φi12 , . . . ,Φ

iri
2

]
∈

Cn2×rini2 decompose the matrix G ∈ H(Θ1,Θ2) into blocks
(Φi1)∗G(Φj2) = Iri ⊗ Gii ∈ Crin

i
1×rin

i
2 . The submatrices Φij1 ∈

Cn1×ni1 and Φij2 ∈ Cn2×ni2 produce the ri copies of the block
Gii = (Φij1 )∗G(Φij2 ) ∈ Cn

i
1×n

i
2 . For any j, k = 1, . . . , ri the

blocks (Φij1 )∗GΦij2 and (Φik1 )∗GΦik2 are identical (Φij1 )∗G(Φij2 ) =
(Φik1 )∗G(Φik2 ).

The columns of Φij1 and Φij2 span the irreducible invariant
subspaces Vij1 = Span(Φij1 ) and Vij2 = Span(Φij1 ) of every matrix
G ∈ H(Θ1,Θ2). These invariant subspaces Vij1 and Vij2 are unique.
However the choice of basis vectors Φij1 and Φij2 for these invariant
subspaces Vij1 and Vij2 are not unique. Thus the symmetry adapted
basis are not unique. We can produce another set of symmetry
adapted basis using “local” similarity transformations T i1 ∈ Cn

i
1×n

i
1

and T i2 ∈ Cn
i
2×n

i
2 for i = 1, . . . , p

Φ1 =
[
T 1

1 Φ11
1 , . . . , T 1

1 Φ
1r1
1 | . . . |Tp1 Φp1

1 , . . . , Tp1 Φ
prp
1

]
Φ2 =

[
T 1

2 Φ11
2 , . . . , T 1

2 Φ
1r1
2 | . . . |Tp2 Φp1

2 , . . . , Tp2 Φ
prp
2

]
.

An alternative version of the Structural Theorem 1 for decomposing
real-valued commutator-spaces H(Θ1,Θ2) ⊆ Rn1×n2 over the
real numbers R can be found in [7]. In this case the matrix set
H(Θ1,Θ2) does not necessarily decompose into arbitrary real-value
matrices Rn

i
1×n

i
2 . Instead the matrix set H(Θ1,Θ2) ⊆ Rn1×n2

can decompose into real represents of complex or quaternion
matrices. In this paper we will primarily consider the simpler case
of decomposing complex matrices into complex matrices.

III. SYMMETRIC LINEAR SYSTEMS

In this section we define input-output and state-space symmetries,
and show that they are equivalent.

An input-output symmetry is a transformation of the inputs Θu

and outputs Θy that does not change the input-output behavior of
the system G(s).

Definition 1: A (spatial) symmetry of the transfer function ma-
trix G(s) ∈ Rny×nu is a pair of invertible matrices Θy ∈ Cny×ny

and Θu ∈ Cnu×nu such that

ΘyG(s) = G(s)Θu (2)

for all s ∈ C.
This definition says that the systems G(s) and Θ−1

y G(s)Θu have
identical input-output behavior. Equivalently this definition says that
the response y(t) of the systems G(s) to the input u(t) is related
to the response Θyy(t) of the system to the input Θuu(t).

The set of all symmetries Θy and Θu of the transfer function
matrix G(s) form an infinite group denoted by Aut(G).

Proposition 1: The set Aut(G) of all symmetries Θy ∈ Cny×ny
and Θu ∈ Cnu×nu of the transfer function matrix G(s) ∈ Rny×nu
is an infinite group.

Proof: See [17].
The input Θu and output Θy transformations are representations

of the abstract group H = Aut(G). Thus we will index the pairs
Θu(g) and Θy(g) for g ∈ H = Aut(G).

A state-space symmetry is a transformation of the input-space
Θu, output-space Θy , and state-space Θx that preserve the state-
space matrices [A B

C D ].
Definition 2: A symmetry of the state-space [A B

C D ] is a triple
of invertible matrices Θy ∈ Cny×ny , Θu ∈ Cnu×nu , and Θx ∈
Cnx×nx such that[

Θx 0
0 Θy

] [
A B
C D

]
=

[
A B
C D

] [
Θx 0
0 Θu

]
. (3)

This definition says that the state-spaces matrices A, B, C, and
D that describe the system are unchanged by the transformations
Θx,u,y . This definition makes a statement about the system data A,
B, C, and D rather than the system behavior.

The set of all symmetries Θy , Θu, and Θx of the state-space
[A B
C D ] form an group denoted by Aut([A B

C D ]). We will index the
state Θx(g), input Θu(g), and output Θy(g) transformations by
g ∈ Aut([A B

C D ]).
Proposition 2: The set Aut([A B

C D ]) of all symmetries Θy ∈
Cny×ny , Θu ∈ Cnu×nu , and Θx ∈ Cnx×nx of the state-space
[A B
C D ] is an infinite group.

Proof: See [17].
Obviously the transfer function matrix G(s) = C(sI−A)−1B+

D is symmetric (2) with respect to the symmetries Θy,Θu ∈
Aut([A B

C D ]) of the state-space [A B
C D ] since

ΘyG(s) = ΘyC(sI −A)−1B + ΘyD

= C(sI −A)−1BΘu +DΘu = G(s)Θu

Thus Aut([A B
C D ]) ⊆ Aut(G). The following theorem shows that

the converse also holds.
Theorem 2: Let [A B

C D ] be a minimal realization of the stable
transfer function matrix G(s). Then the state-space [A B

C D ] is
symmetric with respect to the group Aut(G).

Proof: We need to show that for each g ∈ Aut(G) there
exists a representation Θx(g) ∈ Cnx×nx that satisfies (3). Define

Θx(g) = W
−1
o

∫ ∞
0

e
Aᵀτ

C
ᵀ
Θy(g)Ce

Aτ
dτ (4)

where the observability Grammian Wo =
∫∞
0
eA

ᵀτCᵀCeAτdτ is
invertible since [A B

C D ] is a minimal realization of G(s).
Since G(s) = Θy(g)G(s)Θu(g)−1 is symmetric (2), its impulse

response is also symmetric

Θy(g)D = DΘu(g)

Θy(g)Ce
At
B = Ce

At
BΘu(g)



for all t ∈ R+ and g ∈ Aut(G). Therefore (4) is equivalent to

Θx(g) = W
−1
o

∫ ∞
0

e
Aᵀτ

C
ᵀ

Θy(g)Ce
Aτ
dτWcW

−1
c

= W
−1
o

∫ ∞
0

∫ ∞
0

e
Aᵀτ

C
ᵀ

Θy(g)Ce
A(τ+σ)

BB
ᵀ
e
Aᵀσ

dτdσW
−1
c

=

∫ ∞
0

e
Aσ
BΘu(g)B

ᵀ
e
Aᵀσ

dσW
−1
c (5)

where the controllability Grammian Wc =
∫∞
0
eAτBBᵀeA

ᵀτdτ is
invertible since [A B

C D ] is a minimal realization.
From (4) we have ΘxB = BΘu since

Θx(g)B = W
−1
o

∫ ∞
0

e
Aᵀτ

C
ᵀ

Θy(g)Ce
Aτ
Bdτ

= W
−1
o

∫ ∞
0

e
Aᵀτ

C
ᵀ
Ce

Aτ
dτBΘu(g) = BΘu(g)

for all g ∈ Aut(G). Likewise from (5) we have

CΘx(g) =

∫ ∞
0

Ce
Aτ
BΘu(g)B

ᵀ
e
Aᵀτ

dτW
−1
c

= Θy(g)C

∫ ∞
0

e
Aτ
BB

ᵀ
e
Aᵀτ

dτW
−1
c = Θy(g)C

for all g ∈ Aut(G).
Since the controllability grammian Wc is the unique positive

definition solution to the Lyapunov equation AWc + WcA
ᵀ =

−BBᵀ we have

AΘx(g)Wc −Θx(g)AWc

=

∫ ∞
0

Ae
Aτ
BΘuB

ᵀ
e
Aᵀτ

dτ −
∫ ∞

0

e
Aτ
BΘuB

ᵀ
e
Aᵀτ

W
−1
c AWcdτ

=

∫ ∞
0

d

dτ

(
e
Aτ
BΘuB

ᵀ
e
Aᵀτ

)
dτ +

∫ ∞
0

e
Aτ
BΘuB

ᵀ
e
Aᵀτ

W
−1
c BB

ᵀ
dτ

= −BΘuB
ᵀ

+ ΘxBB
ᵀ

= 0

where we have already shown Θx(g)B = BΘu(g). Thus we have
(AΘx(g) − Θx(g)A)Wc = 0 which implies AΘx(g) = Θx(g)A
since Wc � 0.

Finally we show Θx is a representation of Aut(G). Note that
for all g, h ∈ Aut(G) we have

Θx(g)Θx(h)

= W
−1
o

∫ ∞
0

e
Aᵀτ

C
ᵀ
Θy(g)Ce

Aτ
dτ

∫ ∞
0

e
Aσ
BΘu(h)B

ᵀ
e
Aᵀσ

dσW
−1
c

= W
−1
o

∫ ∞
0

e
Aᵀτ

C
ᵀ
Θy(g)Θy(h)Ce

Aτ
dτ

∫ ∞
0

e
Aσ
BB

ᵀ
e
Aᵀσ

dσW
−1
c

= W
−1
o

∫ ∞
0

e
Aᵀτ

C
ᵀ
Θy(g)Θy(h)Ce

Aτ
dτ = Θx(gh).

This theorem establishes an equivalence between input-output
and state-space symmetries Aut(G) = Aut([A B

C D ]). Thus with-
out ambiguity we can refer to the symmetry group Aut(G) =
Aut([A B

C D ]) of a linear system.
The following corollary of Theorem 2 allows us to compute the

state-space symmetry Θx(g) for g ∈ Aut(G) of a realization [A B
C D ]

from the input-output symmetries Θy(g) and Θu(g).
Corollary 1: Let [A B

C D ] be a minimal realization of the stable
transfer function matrix G(s). Let Θy(g) and Θu(g) for g ∈
Aut(G) be input-output symmetries of the system. Then the state-
space symmetry Θx(g) is given by

Θx(g) = W−1
o Ŵo(g) = Ŵc(g)W−1

c (6)

where Wo and Wc are the observability and controllability Gram-
mians and Ŵo(g) and Ŵc(g) are the solutions to the Lyapunov
equations

AᵀŴo(g) + Ŵo(g)A+ CᵀΘy(g)C = 0 (7a)

AŴc(g) + Ŵc(g)Aᵀ +BΘu(g)Bᵀ = 0. (7b)

Proof: The solution Ŵo(g) of the Lyapunov equations (7a) is
the integral Ŵo(g) =

∫∞
o
eA

ᵀτCᵀΘy(g)CeAτdτ . Thus the state-
space symmetry Θx(g) = W−1

o Ŵo(g) is an alternative expression
for (4). Likewise Θx(g) = Ŵc(g)W−1

c is an alternative expression
for (5).

This result is important since often the input-output symmetries
Θy(g) and Θu(g) will have an intuitive physical interpretation but
the state symmetries Θx(g) will not. For instance if the system
model G(s) = [A B

C D ] was experimentally identified, then inputs
and outputs will have a physical meaning but the states will not.
Therefore the state-space symmetries Θx(g) cannot be intuitively
identified. Using Corollary 1 we can calculate the state-space
symmetries for any realization of the system from the intuitive
input-output symmetries.

A subgroup of symmetries H ⊂ Aut(G) is called a permutation
group if its representations Θx, Θu, and Θy are permutation
matrices. There are many advantages to working with permutation
matrices including numerical robustness and lower computational
complexity. Additionally many algorithms in computational group
theory are only applicable for permutation groups [18]. In many
applications the input-output symmetries Θy and Θu are permuta-
tion matrices. However the nature of the state-space symmetries (6)
depends on the realization [A B

C D ] of the transfer function. Applying
a similarity transformation T ∈ Rnx×nx to the system

[A B
C D ] ∼

[
TAT−1 TB
CT−1 D

]
creates a new representation TΘx(g)T−1 of the symmetry group
Aut(G). The following proposition shows that the controller canon-
ical and observer canonical forms have state-space symmetries Θx

that are permutation matices.
Proposition 3: Let [A B

C D ] be the controller canonical or observer
canonical realization of the stable system G(s). Let H ⊂ Aut(G)
be a subgroup of Aut(G) such that Θu(g) and Θy(g) are permuta-
tion matrices for all g ∈ H. Then the state-space symmetry Θx(g)
is a permutation matrix for all g ∈ H.

Unfortunately it is well known that the controller and ob-
server canonical forms are numerically ill-conditioned for high-
order systems [19]. It is unclear whether their exists a similarity
transformation T that produces both permutation symmetries Θx(g)
and numerical well-conditioned realizations.

The following example demonstrates the concept of symmetry in
linear systems.

Example 1: Consider the two-mass system shown in Figure 1.
This system can be modeled by the transfer function matrix

[
Y1(s)
Y2(s)

]
=

[
ms2 + 2bs+ 2k bs+ k

bs+ k ms2 + 2bs+ 2k

]
(ms2 + 3bs+ 3k)(ms2 + bs+ k)︸ ︷︷ ︸

G(s)

[
U1(s)
U2(s)

]
(8)

where U1(s) and U2(s) are the Laplace transform of the forces
u1(t) and u2(t) on the two blocks, and Y1(s) and Y2(s) are the
Laplace transform of the positions y1(t) and y2(t) of the blocks.

The symmetry group Aut(G) of the transfer function matrix
G(s) is the set of all matrices Θu ∈ C2×2 and Θy ∈ C2×2 of
the form Θu = Θy =

[
α β
β α

]
where α, β ∈ C and α2 − β2 6= 0.

In particular for α1 = 1 and β1 = 0, and α2 = 0 and β2 = 1 we
obtain a permutation subgroup

H =
{

[ 1 0
0 1 ]︸︷︷︸
g1

, [ 0 1
1 0 ]︸︷︷︸
g1

}
⊂ Aut(G) (9)

where [ 0 1
1 0 ]

2
= [ 1 0

0 1 ]. The symmetry Θy(g1) = Θu(g1) = [ 1 0
0 1 ] is

the identity element. This symmetry is called trivial since it says
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Fig. 1. Two-mass system. The control inputs u1 and u2 are the forces
applied to the blocks and the outputs y1 and y2 are the positions of the
blocks.

G(s) = G(s). The reflective symmetry Θy(g2) = Θu(g2) = [ 0 1
1 0 ]

says that G11(s) = G22(s) and G12(s) = G21(s). Thus if we
switch inputs u1(t) and u2(t), and switch outputs y1(t) and y2(t)
the system input-output behavior does not change.

The two-mass system in Figure 1 can also be modeled using the
state-space equations ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =

 0 1 0 0

− 2k
m − 2b

m
k
m

b
m

0 0 0 1
k
m

b
m − 2k

m − 2b
m


︸ ︷︷ ︸

A

 x1(t)

x2(t)

x3(t)

x4(t)

+

 0 0
1
m 0

0 0

0
1
m


︸ ︷︷ ︸

B

[
u1(t)

u2(t)

]
(10a)

[
y1(t)

y2(t)

]
=
[

1 0 0 0
0 0 1 0

]︸ ︷︷ ︸
C

 x1(t)

x2(t)

x3(t)

x4(t)

 (10b)

where x1(t) = y1(t) and x3(t) = y2(t) are the positions of the
blocks, and x2(t) = ẏ1(t) and x4(t) = ẏ2(t) are their velocities.

According to Theorem 2 every symmetry g ∈ Aut(G) of the
transfer function matrix G(s) corresponds to a symmetry Θx(g)
of the state-space [A B

C D ]. Note that (10) is in controller canonical
form. By Proposition 3 the state-space symmetry Θx(g) should be
a permutation matrix whenever Θu(g) and Θy(g) are permutation
matrices. For the input-output symmetry Θy(g2) and Θu(g2) for
g2 ∈ H ⊂ Aut(G) given by the permutation matrix Θu(g2) =
Θy(g2) = [ 0 1

1 0 ] we obtain the following state-space symmetry

Θx(g2) = W
−1
o Ŵo(g) = Ŵc(g)W

−1
c =

[ 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
.

This symmetry permutes the positions and velocities of blocks 1
and 2. One can readily check that Θx satisfies the definition of
state-space symmetry (3).

The state-space symmetry Θx depends on the realization [A B
C D ]

of the transfer function matrix (8). Consider the balanced realization
of the transfer function matrix (8) ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =

[−0.3 1.3 0 0
−1.3 −0.6 0 0

0 0 −0.7 2.1
0 0 −2.1 −2.3

] x1(t)

x2(t)

x3(t)

x4(t)

+

[−0.4 −0.4
−0.4 −0.4

0.3 −0.3
0.3 −0.3

] [
u1(t)

u2(t)

]
[
y1(t)

y2(t)

]
=
[
−0.4 0.4 0.3 −0.3
−0.4 0.4 −0.3 0.3

] x1(t)

x2(t)

x3(t)

x4(t)


where m = 1, b = 1, and k = 2. Under this realization, the
state-space symmetry Θx is not a permutation matrix

Θx(g2) = W
−1
o Ŵo(g) = Ŵc(g)W

−1
c =

[
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]
.

Again one can readily check that Θx(g2) satisfies (3). �

IV. NUMERICAL DECOMPOSITION OF LINEAR SYSTEMS

In this section we show that symmetric linear systems can be
decomposed into decoupled subsystems. We provide an algorithm
for performing this decomposition.

A. Structure of Linear Systems

In this section we analyze the structural properties of symmetric
linear systems. A similar analysis can be found in [2].

According to the definition (3) of state-space symmetry, the state-
space matrix [A B

C D ] lies in the commutator-space

H
([

Θx 0
0 Θy

]
,
[

Θx 0
0 Θu

])
=
{
M :

[
Θx 0
0 Θy

]
M = M

[
Θx 0
0 Θu

]
, ∀g ∈ H

}
(11)

where Θx,y,u = Θx,y,u(g), M ∈ C(nx+ny)×(nx+nu), and H ⊂
Aut(G) is a finite-subgroup of Aut(G). According to the Structural
Theorem 1 there exists orthogonal transformations

Φx =
[
Φ11
x , . . . ,Φ

1r1
x | . . . |Φp1

x , . . . ,Φ
prp
x

]
∈ Cnx×nx (12a)

Φu =
[
Φ11
u , . . . ,Φ

1r1
u | . . . |Φp1

u , . . . ,Φ
prp
u

]
∈ Cnu×nu (12b)

Φy =
[
Φ11
y , . . . ,Φ

1r1
y | . . . |Φp1

y , . . . ,Φ
prp
y

]
∈ Cny×ny (12c)

that block-diagonalize the state-space[
Φx 0
0 Φy

]∗ [
A B
C D

] [
Φx 0
0 Φu

]
(13)

=



Ir1
⊗A11

. . .
Irp⊗App

Ir1
⊗B11

. . .
Irp⊗Bpp

Ir1⊗C11

. . .
Irp⊗Cpp

Ir1⊗D11

. . .
Irp⊗Dpp


where Iri ⊗Aii =

⊕ri
j=1Aii and

Aii = (Φ
ij
x )
∗
A(Φ

ij
x ) ∈ Rn

i
x×n

i
x (14a)

Bii = (Φ
ij
x )
∗
B(Φ

ij
u ) ∈ Rn

i
x×n

i
u (14b)

Cii = (Φ
ij
y )
∗
C(Φ

ij
x ) ∈ Rn

i
y×n

i
x (14c)

Dii = (Φ
ij
y )
∗
D(Φ

ij
u ) ∈ Rn

i
y×n

i
u (14d)

for i = 1, . . . , p and j = 1, . . . , ri. For short-hand we will write
(13) as[

Φx 0

0 Φy

]∗ [
A B

C D

] [
Φx 0

0 Φu

]
=

p⊕
i=1

Iri ⊗
[
Aii Bii
Cii Dii

]
.

The transformations Φx, Φy , and Φu are partitioned as shown in
equation (12). The submatrices

Φ
i
x = [Φ

i1
x , . . . ,Φ

iri
x ] ∈ Crin

i
x×rin

i
x

Φ
i
u = [Φ

i1
u , . . . ,Φ

iri
u ] ∈ Crin

i
u×rin

i
u

Φ
i
y = [Φ

i1
y , . . . ,Φ

iri
y ] ∈ Crin

i
y×rin

i
y

of Φx, Φu, and Φy respectively, partition the state-space into ri

repetitions of the block
[
Aii Bii
Cii Dii

]
[
Φix 0

0 Φiy

]∗ [
A B

C D

] [
Φix 0

0 Φiu

]
= Iri ⊗

[
Aii Bii
Cii Dii

]
.

The submatrices Φijx , Φiju , and Φijy for j = 1, . . . , ri produce
the ri copies of the blocks

[
Aii Bii
Cii Dii

]
. These blocks

[
Aii Bii
Cii Dii

]
are

identical[
Φ
ij
x 0

0 Φ
ij
y

]∗ [
A B
C D

] [
Φ
ij
x 0

0 Φ
ij
u

]
=

[
Φikx 0

0 Φiky

]∗ [
A B
C D

] [
Φikx 0

0 Φiku

]

for all j, k = 1, . . . , ri. The ri repetitions of the identical blocks[
Aii Bii
Cii Dii

]
reflects the intuition that symmetric systems have pat-

terns that repeat.
The block-diagonalization [A B

C D ] =
⊕p

i=1 Iri ⊗
[
Aii Bii
Cii Dii

]
pro-

duces a corresponding block-diagonalization of the transfer function
matrix G(s) ∈ Rny×nu

Φ∗yG(s)Φu = Φ∗yC(sI −A)BΦu + Φ∗yDΦu

=
⊕p

i=1

⊕ri
j=1Gii(s) =

⊕p
i=1Iri ⊗Gii(s)

where Gii(s) = Cii(sI −Aii)−1Bii +Dii is the transfer function
matrix of the subsystem

[
Aii Bii
Cii Dii

]
. In Section IV-B we will use

this fact to block-diagonalize (13) the state-space [A B
C D ] without

explicitly computing the state-space transformation Φx ∈ Cnx×nx .



B. Decomposition using Minimal Realizations

There are several algorithms in the literature for computing the
symmetry adapted basis Φx, Φy , and Φu [5], [6], [7]. However
these algorithms are only applicable to permutation groups. In
many applications the input and output symmetries Θu(g) and
Θy(g) are permutation matrices. However, for numerically well-
conditioned realizations, the state-space symmetries Θx(g) may
not be permutation matrices. Thus it may not be possible to use
these algorithms to compute Φx. In this section we show how to
implicitly compute the state-space transformation Φx ∈ Cnx×nx
using minimal realizations of the transfer function matrix.

According to the definition of symmetry (2), for every s ∈ C the
complex matrix G(s) ∈ Cny×nu lies in the commutator-space

H (Θy,Θu) =
{
M ∈ Cny×nu : ΘyM = MΘu, ∀g ∈ H

}
(15)

where Θy,u = Θy,u(g), and H ⊂ Aut(G) is a finite subgroup
of Aut(G). The transfer function commutator H(Θy,Θu) is a
subspace of the state-space commutator (11) in the sense that for
each G ∈ H(Θy,Θu) we have[

0 0
0 G

]
∈ H

([
Θx 0
0 Θy

]
,

[
Θx 0
0 Θu

])
.

Thus the symmetry adapted basis (12) of the state-space commu-
tator (11) also block-diagonalize the transfer function commutator
(15). The set of matrices {G(s) : s ∈ C} decomposes

Φ
∗
yG(s)Φu =


Ir1⊗G11(s)

. . .
Irp⊗Gpp(s)

 =

p⊕
i=1

Iri ⊗Gii(s)

where Gii(s) ∈ Cn
i
y×n

i
u for every s ∈ C. Furthermore the sets of

matrix blocks Gii(s) = (Φijy )∗G(s)(Φiju ) for s ∈ C form transfer
function matrices

Gii(s) =

[
A B(Φiju )

(Φijy )∗C (Φijy )∗D(Φiju )

]
∈ Rn

i
y×n

i
u . (16)

The state-space (16) is potentially a non-minimal realization the
transfer function blocks Gii(s). The following theorem shows that
by realizing the transfer function blocks Gii(s) we recover the
decoupled state-space blocks

[
Aii Bii
Cii Dii

]
.

Theorem 3: Let [A B
C D ] be a minimal realization of the symmetric

system G(s). Let Φy and Φu be the symmetry adapted basis of the
transfer function commutator (15). Then a minimal realization of
transfer function matrix (16) is equivalent to the state-space block[
Aii Bii
Cii Dii

]
.

Proof: All minimal realizations of a system are equivalent.
Therefore it suffices to prove that

[
Aii Bii
Cii Dii

]
is a minimal realization

of (16).
By assumption [A B

C D ] is a minimal realization of G(s). Therefore
(13) is a minimal realization of the system Φ∗yG(s)Φu since Φx ∈
Cnx×nx is a similarity transformation. Thus the realization (13) is
observable and controllable. From the structure of (13), it can be
shown that its controllability Grammian is of the form

Wc =


Ir1⊗W

11
c

. . .
Irp⊗W

pp
c

 .
Since the controllability Grammian Wc is positive definite Wc � 0,
each of the sub-Grammians W ii

c must be positive definite W ii
c � 0.

Thus the state-space block
[
Aii Bii
Cii Dii

]
is controllable. Likewise it

can be shown that
[
Aii Bii
Cii Dii

]
is observable.

Now consider the orthogonal similarity transformation Φx ap-
plied to the transfer function block (16). This yields



A11 B11
Ir1−1 ⊗ A11 0

. . .
.
.
.

Irp ⊗ App 0

C11 0 . . . 0 D11


where we have assumed without loss of generality that i = 1 and
j = 1. Clearly the minimal realization of this system is a subsystem
of
[
A11 B11
C11 D11

]
. Since

[
A11 B11
C11 D11

]
is both controllable and observable

it is a minimal realization of the transfer function block (16).
The following example demonstrates the decomposition of a

linear system.
Example 2: Consider the two-mass system shown in Figure 1. A

subgroup of symmetries for this system is the two-element set (9).
The transfer function commutator H(Θy,Θu) is the set of matrices

H(Θy ,Θu) =
{
G ∈ C2×2 :

[
0 1
1 0

]
G = G

[
0 1
1 0

]}
which contains the transfer function matrix (8). Using the algo-
rithms from [5], [6], [7] we can find the following symmetry
adapted basis Φy = [Φ11

y |Φ21
y ] and Φu = [Φ11

u |Φ21
u ] which block-

diagonalize the commutator H(Θy,Θu)

Φy = Φu = 1√
2

[
1 1
1 −1

]
.

For this example, the decoupled blocks Gii(s) do not repeat r1 =

r2 = 1 and the blocks Gii(s) ∈ Cn
i
y×n

i
u have dimensions n1

y =
n2
y = n1

u = n2
u = 1. The transformed input û1(t) = Φ11

u u(t) =(
u1(t)+u2(t)

)
/
√

2 is the combined force applied to the blocks and
the transformed output ŷ1(t) = Φ11

y y(t) =
(
y1(t) + y2(t)

)
/
√

2 is
the combined position of the blocks. The transformed input û2(t) =
Φ21
u u(t) =

(
u1(t)− u2(t)

)
/
√

2 is differential force applied to the
blocks and the transformed output ŷ2(t) = Φ21

y y(t) =
(
y1(t) −

y2(t)
)
/
√

2 differential position of the blocks.
Applying the symmetry adapted basis Φy and Φu to the transfer

function matrix (8) produces the decoupled transfer function matrix

Φ∗yG(s)Φu =

[
1

ms2+bs+k
0

0 1
ms2+3bs+3k

]
.

The transfer function G11(s) ∈ R1×1 models the combined
dynamics of the blocks and the transfer function G22(s) ∈ R1×1

models the differential dynamics of the blocks.
The symmetry adapted basis reduce the forth-order transfer

function G(s) into two second-order transfer functions G11(s)
and G22(s). The reduction in order of G11(s) = [ 1 1 ]G(s) [ 11 ]
and G22(s) = [ 1 −1 ]G(s)

[
1
−1

]
is due to pole-zero cancellations

which separate the decoupled poles and zeros of the system.
Although the poles and zeros are cancelled, they are not destroyed;
poles and zeros cancelled in G11(s) appear in G22(s) and vice-
versa.

These pole-zero cancellations are automatically calculated when
compute a minimal realization of the transfer functions G11(s) and
G22(s). Realizing the transfer functions G11(s) and G22(s) we
obtain the following decoupled state-space model of the system

d

dt

 x̂1
x̂2
x̂3
x̂4

 =


0 1

− k
m −

b
m

0 1

− 3k
m − 3b

m


 x̂1
x̂2
x̂3
x̂4

+

 0
1
m

0
1
m

[ û1
û2

]
[
ŷ1
ŷ2

]
=

[
1 0

1 0

]  x̂1
x̂2
x̂3
x̂4


where x̂1 = ŷ1 and x̂3 = ŷ2 and x̂2 = dŷ1

dt
and x̂4 = dŷ2

dt
. In

general the states will not have physical meaning when realizing
the transfer function matrices.



Fig. 2. Conceptual block-diagram of a Heating, Ventilation, and Air
Conditioning System. HVAC system includes centralize components which
interact with rooms. Rooms interact with each other.

V. APPLICATION: HVAC

In this section we apply the results of this paper to the control
of heating, ventilation, and air conditioning (HVAC) of buildings.

Building HVAC control systems are used to regulate room
temperature in buildings. Figure 2 shows a conceptual diagram
of an HVAC system. The HVAC system has centralize component
which include compressors, condensers, and ventilation ports. There
are components associated with each room which include electric
heaters, air-conditioner evaporators, and ventilation dampers. The
dynamics of the rooms and centralized components are strongly
coupled.

The dynamics of an N room HVAC system can be modeled by
a transfer function matrix of the form

G(s) =



G00(s) G01(s) G02(s) . . . G0N (s)
G10(s) G11(s) G12(s) . . . G1N (s)
G20(s) G12(s) G22(s) G2N (s)

.

.

.

.

.

.
. . .

.

.

.
GN0(s) G1N (s) . . . . . . GNN (s)


(17)

where G00(s) ∈ Rn
0
y×n

0
u and Gi0 ∈ Rn

i
y×n

0
u model the effects

of the centralized inputs on the centralized outputs and i-th room
outputs respectively, and G0j ∈ Rn

0
y×n

j
u and Gij ∈ Rn

i
y×n

j
u

for j = 1, . . . , N model the effects the j-th room inputs on the
central outputs and i-th room outputs respectively. The transfer
function submatrices Gij(s) ∈ Rn

i
y×n

j
u for i, j = 0, . . . , N are

not necessarily square.
We assume that the rooms have similar dynamics, so that G0i =

G0j , Gi0 = Gj0, Gii = Gjj , and Gij = Gkl for all i 6= j, k 6=
l ∈ {1, . . . , N}. Under this assumption, a symmetry group for this
system is the set of permutation matrices

Θy(g) =

[
In0
y

0

0 Π(g)⊗ Iniy

]
and Θu(g) =

[
In0
u

0

0 Π(g)⊗ Iniu

]

where Π(g) ∈ RN×N is any N × N permutation matrix. This
symmetry group says that since the rooms are similar, we can
permute them without changing the system dynamics. The transfer
function commutator H(Θy,Θu) is the matrix set

H(Θy,Θu) =



E F F ... F
K G H ... H
K H G ... H

...
...

. . .
...

K H ... ... G

 :
E ∈ Cn

0
y×n

0
u , F,K∗ ∈ Cn

0
y×n

i
u ,

G,H ∈ Cn
i
y×n

i
u

 .

Lets consider the case where N = 4. Then a set of symmetry
adapted basis of this commutator-space are

Φy,u =
1

2



I
n0
y,u

0 0 0 0

0 I
niy,u

I
niy,u

I
niy,u

−I
niy,u

0 I
niy,u

I
niy,u

−I
niy,u

I
niy,u

0 I
niy,u

−I
niy,u

I
niy,u

I
niy,u

0 I
niy,u

−I
niy,u

−I
niy,u

−I
niy,u


where Iny ∈ Rny×ny and Inu ∈ Rnu×nu are identity matrices.
The symmetry adapted basis Φy and Φu are similar for arbitrary

N . Applying these symmetry adapted basis to the transfer function
(17) produces the block-diagonal system

Φ
∗
yG(s)Φu =


G00

√
NG0i√

NGi0 Gii(s)+(N−1)Gij
Gii−Gij

. . .
Gii−Gij

 .

Our original (n0
y +Nniy)× (n0

u +Nniu) dimensional systems has
been decomposed into one (n0

y + niy) × (n0
u + niu) dimensional

system and N − 1 systems of dimensions niy × niu. Furthermore
these N − 1 systems Gii(s)−Gij(s) are repeated. Exploiting this
structure, we can design a centralized controller for the subsystem

(Φ
11
y )
∗
G(s)(Φ

11
u ) =

[
G00

√
NG0i√

NGi0 Gii(s)+(N−1)Gij

]
parameterized by the number of rooms N and one controller for
the repeated subsystem

(Φ
2k
y )
∗
G(Φ

2k
u ) = Gii(s)−Gij(s).

This controller can then be used for buildings with different
numbers of rooms N without the need to redesign the controller.
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