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Abstract
We propose a target detection and clutter removal technique for through the wall radar
imaging that captures the extended reflections of targets behind the wall and determines
target consistency using total variation denoising. Our approach is based on the multipath
elimination by sparse inversion (MESI) algorithm which models the clutter removal problem
as a structured blind deconvolution problem with sparsity constraints on the scene and the
multipath reflections. In this work, we extend the MESI algorithm by incorporating the
spatial correlation of extended target reflections into the target detection stage. This in
turn improves the clutter mitigation performance by ensuring that a separate convolution
kernel is computed for each detected target to match the corresponding multipath reflections.
When MIMO measurements are available, we apply total variation denoising on the clutter-
suppressed SIMO images followed by incoherent summation to generate a single noise free
target image. We present numerical experiments that demonstrate the improved performance
of our approach compared to standard MESI and MIMO imaging.
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Abstract—We propose a target detection and clutter removal
technique for through the wall radar imaging that captures the
extended reflections of targets behind the wall and determines
target consistency using total variation denoising. Our approach
is based on the multipath elimination by sparse inversion (MESI)
algorithm which models the clutter removal problem as a struc-
tured blind deconvolution problem with sparsity constraints on
the scene and the multipath reflections. In this work, we extend
the MESI algorithm by incorporating the spatial correlation of
extended target reflections into the target detection stage. This
in turn improves the clutter mitigation performance by ensuring
that a separate convolution kernel is computed for each detected
target to match the corresponding multipath reflections. When
MIMO measurements are available, we apply total variation
denoising on the clutter-suppressed SIMO images followed by
incoherent summation to generate a single noise free target
image. We present numerical experiments that demonstrate the
improved performance of our approach compared to standard
MESI and MIMO imaging.
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I. INTRODUCTION

Through-the-wall-imaging (TWI) has been developed for
localizing and detecting objects inside enclosed structures with
applications in surveillance for urban environments and rescue
missions for natural disasters [1]. The technology relies on
transmitting an electromagnetic radar pulse which propagates
through the outside wall of the structure, reflects off the
internal targets then propagates back to a receiver antenna array
[2]. However, the received signal is often corrupted by indirect
secondary reflections from the internal walls which result in
ghost artifacts in the reconstructed image.

Several works in the literature have addressed the ghost
artifacts arising from multipath reflections. In [3]–[6], the
scene geometry is assumed to be known and the multipath
model is incorporated into the image reconstruction algo-
rithms, thereby improving the imaging performance by re-
ducing false positives. The current trend in literature is to
make no assumptions about the underlying scene geometry.
Clutter removal in TWI is then formulated as a blind sparse-
deconvolution problem. In this context, Mansour and Liu [7]
proposed a multipath-elimination by sparse inversion (MESI)
algorithm that removes the clutter by iteratively recovering the
primary impulse responses of targets followed by estimation of
corresponding convolution operators that result in multi-path
reflections in the received data. More recently, Leigsnering
et al. [8] combined target sparsity with multi-path modeling

to achieve further improvements in the quality of TWI with
uncertainties in wall-parameters that are solved via alternating
optimization.

The above works assume a sparse model for the scene
where the desired reflections are induced by individual point
targets. However, in practical scenes, targets produce an ex-
tended radar reflection which is not fully captured by the sparse
representations. In [9]–[11], synchronized multiple antenna
arrays are combined to capture the extended reflections of
targets. In this paper, we propose a modification of the MESI
algorithm that allows us to capture the extended reflections
of targets behind the wall and suppress clutter using a single
antenna array. We start by defining the image reconstruction
task in Section II as a sparse blind deconvolution problem
and give an overview of the MESI framework of [7]. We then
proceed to describe our extended target detection technique in
Section III which improves the ability of MESI to compute
the clutter generating convolution operator. We also employ
total variation denoising applied to multiple clutter-suppressed
SIMO images to enhance the target image compared to
MIMO imaging. Finally, we demonstrate the performance of
our proposed technique in Section IV in localizing extended
target reflections in a finite-difference time-domain (FDTD)
simulated TWI scene with multiple targets.

II. BACKGROUND

A. Signal model

Consider a monostatic physical aperture radar with a one
dimensional array of antennas having a single transmitting
source and nr receivers. Let s be the time-domain waveform
of the pulse that is transmitted by the source.

Without loss of generality, suppose that there are K targets
in the scene. The time domain primary impulse response of a
target indexed by k ∈ {1 . . .K} at receiver n ∈ {1 . . . nr} is
denoted by gk(n). This results in a clutter free received signal
r(n) = s ∗ gk(n), where r(n) ∈ Rnt is the nt dimensional
time-domain measurement, and ∗ is the convolution operator.
Moreover, suppose that the scene is divided into an Nx ×Ny
spatial grid and let xk ∈ CNxNy be the target response in
the image domain, such that, xk is zero everywhere except on
the support of the target position. For a point target, we can
express the impulse response

gk(n) =

∫
ω∈R

eiωte−iωτk(n)xkdω, (1)

where τk(n) is the roundtrip time from the source to the



target k and back to receiver n. Suppose that we discretize the
frequency bandwidth into nf bins, and let Wn ∈ Cnf×NxNy

be the delay and sum operator of receiver n, such that
Wn(ω, j) = e−iωτj(n)/c, where τj(n) is the roundtrip time
from the source to a grid point j ∈ Nx ×Ny and back to the
receiver n.

We assume in this work that for every target k, all receivers
view a multipath / clutter response mk(n) as the convolution
of the corresponding primary response gk(n) with the same
clutter inducing delay kernel dk, i.e. mk(n) = gk(n) ∗ dk.
Consequently, the received signal at receiver n is modeled as

r(n) = s ∗
K∑
k=1

(gk(n) +mk(n))

= s ∗
K∑
k=1

(gk(n) + dk ∗ gk(n)),

(2)

where dk is independent of the receiver location n.

In this context, our goal is to estimate the delay kernels dk
and the target responses xk for all targets in the scene given
only the received signals r(n) for all n ∈ {1, . . . nr}. We build
our solution as an enhancement to the MESI [7] framework
reviewed below.

B. Multipath Elimination by Sparse Inversion (MESI)

The MESI algorithm identifies the primary targets and
removes wall clutter by alternating between two steps: (1)
estimation of a sparse target response; (2) estimation of a
delay convolution operator that matches the primary response
to possible clutter in the received signals. In what follows,
we denote by the superscripted v̂ the frequency response of a
vector v.

Given a set of measurements, let the vector r ∈ Rntnr

be composed by stacking the received signals r(n) for all
receivers n ∈ {1, . . . nr}, and let W be the SIMO imaging
matrix composed by stacking the delay-and-sum operations
Wn. Define the forward model f as follows

f(gk, dk, s) := s ∗ (gk + dk ∗ gk) , (3)

and let rx = r−
k−1∑
j=1

f(gj , dj , s) be the residual measurement

at iteration k, where the gj is computed from xj using (1).

Then MESI algorithm proceeds by alternating between
the following two minimization stages. In the first stage, an
estimate of the target response x̃k is computed by solving

x̃k = arg min
x

‖r̂x − ŝ� (Wx)‖2 subject to ‖x‖1 ≤ σx, (4)

where � is an element-wise Hadamard product, and σx is an
appropriate sparsity bound. In the second stage, the residual
measurements are updated to rd = rx − s ∗ gk, and the
corresponding delay convolution operator is given by

d̃k = arg min
d
‖rd − s ∗ (d ∗ gk)‖2 subject to ‖d‖1 ≤ σd, (5)

where again σd is an appropriate sparsity bound on d. Above
two steps are repeated until a preset maximum iteration number
is reached or a data mismatch is reached. The target image x̃
is finally computed by summing the x̃k over all iterations k.

III. PROPOSED APPROACH

In this section, we report two extensions to MESI that
significantly improve its performance.

A. Extended target detection

One limitation of the traditional MESI approach is that
at a given iteration k it may fail to capture the entire target
response xk. Consequently, the delay convolution operator
computed at that iteration does not necessarily correspond to
the actual target, which typically leads to a degradation in
performance. Accordingly, the performance of imaging can be
significantly improved by recognizing and extracting all the
pixels corresponding to the same target. This can be practically
achieved by replacing (4) with a detector for the strongest
reflector as follows

x̄k = arg min
x

‖r̂x − ŝ� (Wx)‖2 subject to ‖x‖0 = 1. (6)

The extended target reflection x̃k is then computed by scanning
the spatial neighborhood around x̄k and assigning all the
connected pixels to the same target k. Our implementation thus
compares the relative energy difference between the strongest
reflector and a pixel in the neighborhood as illustrated in Fig. 1.
If the relative energy is higher than a given threshold relative
to the peak, we accept that pixel as a part of the extended
target, otherwise we discard it as the background.
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Fig. 1: Illustration of the extended target detection procedure.

B. Noise mitigation with total variation

Consider a MIMO setup as in Fig. 2 where the position of
the transmitter is continuously changed to obtain several views
of the region of interest. Specifically, we perform ns distinct
measurements each corresponding to a particular transmitter
location.

Observation of a scene under different arrangement of
transmitter and receiver pairs can allow us to mitigate the
clutter due to multi-path and reduce the amount of noise in
the reconstructed image. The underlying assumption is that
by changing the positions of the transmitter and receiver
iteratively, the profile of target reflections will have a consistent
response, whereas the reflections from indirect path will have
a random noise-like behavior. Accordingly, we propose to use
total variation (TV) denoising [12] in order to separate pixels
corresponding to actual targets from those corresponding to
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Fig. 2: MIMO antenna setup and profile of pixel amplitudes
at a specific image location for multiple SIMO images.

various types of noise. Given a stack of noisy images x̃, we
formulate denoising as following optimization problem

x̂ = arg min
x

{
1

2
‖x− x̃‖22 + λTV(x)

}
, (7)

where λ > 0 is the regularization parameter that controls the
amount of denoising to apply. TV is a popular method in
image processing for estimating signals that have piecewise-
smooth profiles, which suits our objective of determining the
profiles of targets. Our implementation is based on fast iterative
shrinkage/thresholding algorithm (FISTA) [13] that acts on a
stack of images, where each image corresponds to a particular
transmitter location. We observed that the combination of
extended target detection with TV denoising yields excellent
results as corroborated by our numerical experiments.

IV. NUMERICAL EXPERIMENTS

To examine the performance of our algorithm, we consider
7 metal cylinders situated in a rectangular shaped room of size
2.6m wide and 1.2m long, with top schematic view shown in
Fig. 3a. The four-side wall is composed of two layers, with
thickness 3cm and 1.2cm, and relative permittivity εr = 10 and
εr = 5 for the outer layer and the inner layer respectively. A
21-element sensor array (nr=21) is placed 1.2m far to the left
of the room, with the inter-element spacing 3cm corresponding
to the half wavelength of pulse central frequency. The elements
of the array are line sources/receivers with the electric fields
vertically polarized parallel to the cylinder axes. We use a
2D finite-difference time-domain (FDTD) simulator to transmit
a derivative Gaussian pulse and record radar echoes by all
elements. Imaging process is then implemented on the received
radar echoes. When we perform imaging using the conven-
tional delay-and-sum method for a SIMO scenario where the
center (11th) element acts as the transmitter, we observe ghost
images of the cylinders due to multi-path propagation within
the wall as shown in Fig. 3b. Using the MESI algorithm of [7]
succeeds in significantly reducing the clutter, however, some
multipath reflections remain visible in the reconstructed image
as can be seen in Fig. 4a. On the other hand, Fig. 4b shows that
the MESI algorithm with extended target detection successfully
finds the primary reflection and completely eliminates the
corresponding multi-path reflections.
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Fig. 3: (a) Schematic of the simulation layout where the color
bar indicates the relative permittivity. (b) Imaging results in
dB of the simulated scene using standard delay and sum
backprojection.
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Fig. 4: Imaging results using (a) sparse MESI of [7], and (b)
enhanced MESI with extended target detection.

To improve the imaging result, we consider a MIMO
acquisition scenario where the 21 receiving antennas also act
as ns = 21 transmitting antennas. We compare the recovery
performance using MESI with extended target detection and
incoherently summing of ns SIMO images after TV denoising
in Fig. 5. Examining the ns SIMO images, we observe that the
pixels of extended targets exhibit continuous strong intensities
across the ns images, while the pixels of clutter exhibit
some extent discontinuity. With the aforementioned TV-based
denoising process, we can improve the imaging result by
eliminating potential clutter pixels while keeping only target
pixels. The results show that incoherently summing the ns
images with clutter pixels removed achieves a sharper target
image compared to the other schemes.

Next we tested the imaging performance from noisy mea-
surements obtained by adding Gaussian random noise to the
measurements to achieve a signal to noise ratio (SNR) of 10dB.
We compare the recovery performance of our scheme with
TV denoising to enhancend MESI without TV denoising. The
results are presented in Fig. 6. It can be seen that reconstruction
with TV denoising is better capable at removing the noise from
the image as highlighted by the circled regions in Fig. 6b.
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Fig. 5: Imaging results using (a) sparse MESI of [7] with MIMO imaging operator, and (b–d) enhanced MESI using extended
target detection with (b) MIMO imaging operator, (c) SIMO imaging operator with incoherent addition, and (d) SIMO imaging
and TV regularization with incoherent addition.
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Fig. 6: Imaging results from noisy measurements at 10dB SNR
using (a) enhanced MESI with incoherent SIMO imaging, and
(b) enhanced MESI with incoherent SIMO imaging and TV
denoising.

V. CONCLUSION

In conclusion, we presented a method that enhances the
performance of the MESI algorithm of [7] by detecting ex-
tended object reflections instead of non-structured sparse scene
reflectors. Our method also limits the estimation of a delay
convolution kernel to each potential target thereby improving
the clutter removal performance. We demonstrated through
numerical simulations the improved behavior for both SIMO
and MIMO measurements. When MIMO measurements are
available, we also proposed a robust imaging scheme that
first computes a set of SIMO images using our extended
target MESI approach followed by total variation denoising
and incoherent summation of the denoised SIMO images. Our
simulations demonstrated that the proposed scheme results in
a better image quality compared to imaging with a MIMO
imaging operator.
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