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Abstract
When building a state-of-the-art speech recognition system, a
major challenge is the laborious effort required by human ex-
perts in tuning numerous parameters. The goal of this paper
is to automate the process. We propose to use covariance ma-
trix adaptation evolution strategy (CMA-ES), a meta-heuristic
method known to work well on various blackbox optimiza-
tion problems. Further, we extend CMA-ES to perform multi-
objective optimization, giving a high-accuracy speech recog-
nition system with reasonable model size. We apply the pro-
posed automation method to building GMM and DNN HMM-
based systems with the Corpus of Spontaneous Japanese (CSJ),
a widely used large-scale Japanese speech corpus. Experi-
ments are performed using the TSUBAME 2.5 supercomputer,
demonstrating the evolution of a large vocabulary speech recog-
nition system. The optimized training code will be released in
the Kaldi speech recognition toolkit as the first publicly avail-
able recipe for Japanese large vocabulary speech recognition.
Index Terms: speech recognition, evolution strategy, Japanese
spontaneous speech, Kaldi toolkit

1. Introduction
Automatic speech recognition (ASR) systems consist of sev-
eral statistical models that efficiently represent acoustic and
linguistic patterns in speech [1]. Parameters of these mod-
els, such as the connection weights of a deep neural network
(DNN) [2], transition probabilities of a hidden Markov model
(HMM) [3], and arc weights of an weighted finite state trans-
ducer (WFST) [4], are estimated from large amounts of train-
ing data. Additionally, there are various meta-parameters such
as model structure (e.g., number of context-dependent HMM
states [5], topology of deep networks), training configuration
(e.g., learning rate, maximum number of iterations), and system
organization (e.g., the choice of sub-systems). Meta-parameter
tuning is essential for building state-of-the-art systems, but as a
consequence of the increased complexity of recent ASR tech-
niques, this process is becoming increasingly more difficult and
time-consuming even for human experts. There is thus a strong
demand to automate the tuning process by computers.

If we consider system performance as a function of meta-
parameters, then tuning can be formalized as an optimization
problem. This function is very complex; analytic solution is
infeasible. Further, evaluating the value of the function for
an input requires a lot of computation since it involves model
training and system evaluation using training and development
sets. An approach to this type of problem is to use evolution-
ary algorithms such as genetic algorithm (GA) [6] and evolution
strategy (ES) [7]. The evolutionary algorithm is a fairly broad

concept, but the basic idea is to represent possible solutions as
genes and search the optimal solution by iteratively evaluating
and sampling generations of genes.

Several researchers have applied GA to HMM acoustic
modeling with promising results [8, 9, 10]. Previously, we have
used covariance matrix adaptation evolution strategy (CMA-
ES) [7, 11, 12, 13], a type of ES that represent gene distribution
using a multivariate Gaussian, to optimize the meta-parameters
of a medium vocabulary size DNN ASR system [14]. We have
also applied CMA-ES and GA to optimize DNNs used as fea-
ture extractors for a keyword spotting system [15]. The DNN
had an extended structure represented by a directed acyclic
graph, which were subject for optimization. We found that
CMA-ES and GA gave similar final performance given suffi-
cient generations, but CMA-ES was superior when the number
of generations is small. We also found that while CMA-ES is
successful in optimizing single objectives such as word accu-
racy or mean average precision [16], there were cases where the
model size was extremely large, which is not practical in terms
of the memory efficiency and decoding speed.

In this paper, our contributions are:

1. an extension of CMA-ES to multi-objective optimization
of both word accuracy and model size,

2. a proof-of-concept demonstration of automation of sys-
tem building for complex large vocabulary DNN HMM,
with state-of-the-art results in Japanese spontaneous
speech.

Although typical multi-objective optimization can be often
performed by using the weighted combination of individual ob-
jective functions, our goal is to automate the building process
without tuning, and introducing additional weight parameter
must be avoided. Instead, this paper uses the Pareto optimality
[17, 18], which can reasonably rank multi-objective scores in an
automatic way. The systems are built using a massively parallel
computing platform TSUBAME 2.5 supercomputer1 developed
at Tokyo Institute of Technology, which ranked 6th place in the
Green 500 supercomputer ranking. The process is highly auto-
mated based on the multi-objective CMA-ES and implemented
based on the Kaldi toolkit [19]. The optimized training code
will be released in the Kaldi toolkit as the first publicly avail-
able recipe for Japanese large vocabulary speech recognition.

2. Formulation
This section first describes a single-objective optimization prob-
lem, then extends it to a multi-objective one. Let us represent
an evaluation function y = f(x) as the accuracy (or some

1http://www.gsic.titech.ac.jp/en



other correctness measure) of an ASR system built from meta-
parameters x. The process of finding the optimal tuning param-
eter x∗, which maximizes the ASR accuracy, can be formulated
as the following optimization problem:

x∗ = argmax
x

f(x). (1)

As ASR systems are extremely complex, there is no analytical
form for the solution. It is difficult to include specific knowl-
edge on f in the optimization, so such situations are best han-
dled by considering f as a black box. Moreover, evaluating
the function value f(x) is very costly, because training a large
vocabulary model and computing its development set accuracy
can take considerable time. The key point here is thus for the
black box optimization to generate appropriate hypotheses x̂ to
find the best x∗ in as few ASR training and evaluation steps
(f(x)) as possible.

2.1. CMA Evolution Strategy

CMA-ES iteratively estimates the parameters of a sample dis-
tribution for x such that the distribution is concentrated in a
region with high values of f(x). Hypotheses are sampled from
a multivariate Gaussian distribution:

x̂ ∼ N (x|θ̂) s.t. θ̂ = argmax
θ

∫
f(x)N (x|θ)dx︸ ︷︷ ︸

,E[f(x)|θ]

.
(2)

CMA-ES iteratively re-estimates the mean vector and covari-
ance matrix (θ) so as to optimize the expected value of f(x)
under the distribution. Since the concrete functional form of f
is unknown, it is difficult to deal with Eq. (2) analytically. To
solve this problem, we use a natural gradient method [20] by
taking a gradient of E[f(x)|θ] with respect to θ. The expec-
tation in the natural gradient can be approximately computed
by using Monte Carlo sampling with the function evaluation
yk = f(xk):

∇θE[f(x)|θ] ≈
1

K

K∑
k=1

yk∇θ logN (xk|θ), (3)

where xk is sampled from the previously estimated distribution
N (x|θ̂n−1). Since CMA-ES uses a multivariate Gaussian dis-
tributionN (x|θ) with mean vectorµ and covariance matrix Σ,
we can obtain the analytical forms of µ̂n and Σ̂n by substitut-
ing the concrete Gaussian form into Eq. (3), leading to:{
µ̂n−1 + εµ

∑K
k=1 w(yk)(xk − µ̂n−1)

Σ̂n−1 + εΣ
∑K

k=1 w(yk)
(
(xk − µ̂n−1)(xk − µ̂n−1)

ᵀ − Σ̂n−1

)
(4)

where ᵀ is the matrix transpose. Note that, as in [7], yk in Eq. (3)
is approximated in Eq. (4) as a weight function w(yk), defined
as:

w(yk) =
max{0, log(K/2 + 1)− log(R(yk))}∑K

k′=1 max{0, log(K/2 + 1)− log(R(yk′))}
− 1

K
,

(5)
where R(yk) is a ranking function that returns the descending
order of yk among y1:K (i.e., R(yk) = 1 for the highest yk,
R(yk) = K for the smallest yk, etc.). This equation only con-
siders the order of y, which makes the updates less sensitive
to evaluation measurements (e.g., to prevent from the differ-
ent results using word accuracies and the negative sign of error
counts).

Algorithm 1 Multi-objective CMA-ES

1: Initialization of µ̂0 and Σ̂0

2: for n = 1 to N do
3: for k = 1 to K do
4: Sample xk fromN (x|µ̂n−1, Σ̂n−1)

5: Evaluate F (xk) , [f1(xk), f2(xk), . . . , fJ(xk)]
6: end for
7: Rank {F (xk)}Kk=1 according to the Pareto optimality
8: Update µ̂n and Σ̂n

9: end for
10: return subset of solutions {x, F (x)} that lie on the Pareto

front (rank 1) of all stored N ×K samples

2.2. Multi-objective Optimization

Besides high accuracy, objectives such as small model size
and fast run-time are also important in practice. Without loss
of generalization, assume that we wish to maximize J objec-
tives F (x) , [f1(x), f2(x), . . . , fJ(x)] with respect to x
jointly. Since objectives may conflict, we adopt a notion of op-
timality known as Pareto Optimality [21]: First, if fj(xk) ≥
fj(xk′) ∀ j = 1, .., J and fj(xk) > fj(xk′) for at least
one objective j, then we say that xk dominates xk′ and write
F (xk) . F (xk′). Given a set of candidate solutions, xk is
pareto-optimal iff there does not exist another xk′ such that
F (xk) . F (xk′).

Pareto-optimality formalizes the intuition that a solution is
good if no other solution outperforms (dominates) it in all ob-
jectives. Given a set of candidates, there are generally multiple
Pareto-optimal solutions; this is known as the Pareto frontier.
Note that an alternative approach is to combine multiple objec-
tives into a single objective via weighted linear combination:∑

j βjfj(x), where
∑

j βj = 1 and βj > 0. The advantage
of the Pareto definition is that weights βj need not be specified
and is more general, i.e. the optimal solution obtained by any
setting of βj is guaranteed to be included in the Pareto frontier.

CMA-ES can be extended to optimize multiple objectives
by modifying the rank function R(yk) used in Eq. (5). Given
a set of solutions {xk}, we first assign rank = 1 to those on
Pareto frontier. Then we exclude these rank 1 solutions and
compute the Pareto frontier again on the remaining solutions,
assigning them rank 2. This is iterated until no {xk} remain,
and in the end we obtain a ranking of all solutions according to
multiple objectives. The rest of CMA-ES remains unchanged;
by this modification future generations are drawn to optimize
not a single, but multiple objectives. With some book-keeping,
this ranking can be computed efficiently in O(J ·K2) [17].

In our experiments, we jointly optimize for high accuracy
and small model size. To prevent unreasonably low accuracy
solutions (that might have good model size) to appear on the
Pareto frontier, we need an additional heuristic. Solutions with
accuracy below a manually-set threshold are penalized to not
appear as rank 1.

Algorithm 1 summarizes the CMA-ES optimization proce-
dure with the Pareto optimality, which is used to rank the multi
objectives F (xk). The obtained rank is used to update the mean
vector and covariance matrix of the CMA-ES. The CMA-ES
gradually samples neighboring tuning parameters from the ini-
tial values, and finally provide a subset of solutions {x, F (x)}
that lie on the Pareto front (rank 1) of all stored N × K sam-
ples. Note that, as CMA-ES is a gradient method, initial values
need to be set. As CMA-ES assumes a multivariate Gaussian



Table 1: Meta-parameters subject for optimization.
Name Initial value Description Conversion from gene value x
feat type MFCC MFCC, FBANK, or PLP (applied for GMM and DNN) mod (bceil(abs(x) ∗ 3)c, 3)
splice 5 segment length for DNN ceil(10x)
nn depth 6 number of hidden layers ceil(10x)
hid dim 2048 units per layer ceil(10x)
param stddev first 0.1 init parameters in 1st RBM 10x

param stddev 0.1 init parameters in other RBMs 10x

rbm lrate 0.4 RBM learning rate 10x

rbm lrate low 0.01 lower RBM learning rate 10x

rbm l2penalty 0.0002 RBM Lasso regularization 10x

learn rate 0.008 learning rate for fine tuning 10x

momentum 0.00001 momentum for fine tuning 10x

for x, it is originally suitable for tuning parameters that take
continuous values, and needs some extra discretization for dis-
crete value optimization. Finally, the evaluation of F (xk) can
be performed independently for each k and can thus be easily
parallelized. The number of samples K is automatically deter-
mined from the number of dimensions of x [7], or we can set it
manually by considering computer resources.

3. Experimental setup
Experiments were performed using the Kaldi speech recogni-
tion toolkit with speech data from CSJ [22]. We ran two sep-
arate experiments with different amounts of training sets: the
first set is 240 hours of academic presentations, and the second
set is a 100-hour subset. A common development set consisting
of 10 academic presentations was used for performance com-
putation in CMA-ES. The official evaluation set defined in CSJ,
which had 10 academic presentations amounting to 110 minutes
total, is used as the evaluation set.

Acoustic models were trained by first making a GMM-
HMM by maximum likelihood estimation, and then building
a DNN-HMM by pre-training and fine-tuning using alignments
generated by the GMM-HMM. For the performance evaluation
of the system, the DNN-HMM was used as the final model.
Language model was a 3-gram model trained on CSJ with
the academic and other types of presentations. Speech recog-
nition was performed using the openfst WFST decoder [23].
These model trainings and system evaluations were performed
by borrowing a Kaldi recipe that was originally designed for the
Switchboard corpus (i.e. egs/swbd/s5b).

In the evolution experiments, feature types, DNN struc-
tures, and learning parameters were optimized. These meta-
parameters were implemented as configuration variables for
training scripts. Table 1 lists these variables. We spec-
ify three base feature types (feat type) for GMM-HMM and
DNN-HMM models: mel-frequency cepstrum coefficients
(MFCC) [24], perceptual linear prediction (PLP) [25], and fil-
ter bank (FBANK). The GMM-HMMs were trained with the
specified features and their delta and delta-delta, and the DNN-
HMMs were trained with the features expanded to # splice pre
and post context frames. Other settings were the same as those
used in the Kaldi recipe. Since CMA-ES uses genes represented
as real-valued vectors, some variables need a mapping of a real
scalar value to a required type such as integers. The last column
in the table shows the mappings.

The system training and evaluation were performed using
the TSUBAME 2.5 supercomputer. Population sizes for CMA-
ES were 20 for the 100 hour training set and 44 for the 240
hour training set. Same numbers of NVIDIA K20X GPGPUs

Table 2: Word error rate and DNN size of base systems.

Training data Dev set Eval set DNN size
(M byte)

MFCC 100h 14.4 13.1 161.8
PLP 100h 14.5 13.1 163.2
FBANK 100h 15.1 13.8 163.9
MFCC 240h 13.5 12.5 161.8
PLP 240h 13.6 12.5 163.2
FBANK 240h 14.1 13.0 163.9

Figure 1: Word accuracy of development set and DNN size when
100 hour training data was used.

(20 and 44, one per gene) were used in parallel through the
message passing interface (MPI). For the MFCC based baseline
system using the 240 hour training data, it took 12 hours for the
RBM pretraining and 70 hours for the fine tuning. The mini-
mum accuracy thresholds for multi-objective optimization were
set to include top 1/2 and 1/3 populations at each generation
respectively for the trainings using the 100 and 240-hour data
sets.

4. Results
Table 2 shows word error rates and DNN sizes of systems with
the default configuration using the 100 and 240 hour training
sets with one of the three types of features. Among the features,
MFCC was the default in the Switchboard recipe, and it gave
the lowest word error rates for the development set for both of
the training sets. The corresponding word error rates for the
evaluation set were 13.1% and 12.5% for the 100 and 240 hour
training sets, respectively.

Figure 1 shows a scatter plot of a word accuracy (i.e. 100
minus word error rate) evaluated for the development set and a



Table 3: Details of systems that were selected according to word error rates on development set.
Train item base gen 1 gen 2 gen 3 gen 4
100h WER(Dev) 14.4 14.3 14.1 14.1 14.0

WER(Eval) 13.1 13.2 12.9 13.0 12.9
Feature type MFCC MFCC MFCC MFCC MFCC

# layers 6 8 7 6 6
# units per layer 2048 2203 2124 2622 2198

240h WER(Dev) 13.5 13.2 13.0 13.0

running

WER(Eval) 12.5 12.3 12.1 12.1
Feature type MFCC MFCC MFCC MFCC

# layers 6 7 6 6
# units per layer 2048 1755 1907 2575

Training completion rate - 65.9 59.1 79.5

Figure 2: Word accuracy of development set and DNN size when
240 hour training data was used.

file size of the DNNs. Ideally, we want systems on the lower-
right side of the plot. Baseline is the MFCC based system. The
initial mean vector of the multivariate Gaussian for CMA-ES
was set equal to the baseline settings. Therefore, the genes
of the first generation randomly distributed around the base-
line settings. Accordingly, their word accuracy and DNN file
sizes distributed around the baseline. The Gaussian distribution
was then updated based on the results of the first generation.
The genes of the second generation were sampled from the up-
dated Gaussian. In the scatter plot, it is seen that the distribution
of the second generation shifted toward higher word accuracies
and lower DNN file sizes. After the second generation, the ac-
curacies continued improving, though some larger variance of
DNN sizes was observed.

Similarly, Figure 2 shows a scatter plot of the recognition
systems using the 240 hour training set. Due to the increased
data size and a time constraint, a time limit was introduced for
the training at each generation. If a system did not finish the
training within four days, it was interrupted and the last model
in the iterative back-propagation training at that timing was used
as the final model. In the figure, it is seen that the distributions
shifted toward higher word accuracies and lower DNN file sizes
with each successive generation, as desired.

Table 3 describes the details of the best systems selected
based on word error rates on the development set. When the
100 hour training set was used, the word error rate of the de-
velopment set decreased by 0.4% at the fourth generation from
the baseline with about 7% increase in the DNN model size.
The word error rate reduction for the evaluation set was 0.2%.
When the 240 hour training set was used, the model sizes gen-

erally became smaller than when the 100-hour set was used.
This was mainly due to the introduction of the time limit to the
training process where larger models tend to fail to complete
the training in time. In spite of the constraint, better improve-
ments were obtained than when the 100 hour training set was
used. At the 3rd generation, the word error rate was reduced by
0.5% for the development set and 0.4% for the evaluation set,
which corresponded to the relative word error rate reduction of
3.7% and 3.6%, respectively. The differences were statistically
significant with the MAPSSWE test [26]. Although the size of
the DNN was 45.0% larger than the baseline, if we choose the
one that was smaller than the baseline and had the third small-
est word error rate in the development set, it gave 3.0% relative
word error rate reduction in the evaluation set and 8.3% model
size reduction at the same time. The difference of the word er-
ror rate of the system from the baseline was also statistically
significant.

5. Conclusions
To automate the process of building the state-of-the-art large
vocabulary speech recognition systems, we propose to use co-
variance matrix adaptation evolution strategy (CMA-ES). Fur-
ther, we extend CMA-ES using Pareto rank to perform multi-
objective optimization considering both word accuracy and
model size while minimizing tuning factors required for hu-
man experts. The proposed automation method was applied to
build GMM and DNN HMM-based systems using data from
the Corpus of Spontaneous Japanese (CSJ). Experiments were
performed using TSUBAME 2.5 supercomputer. It has been
demonstrated that distributions of word accuracies move to-
ward better performance generation by generation. So far, four
and three generations have been evaluated for the 100 and 240
hour training sets, respectively. For the 240 hour training set,
3.7% relative word error rate reduction from the baseline was
obtained by a system selected based on the word error rate on
the development set. Future work includes continuing the ex-
periments for more generations, applying the proposed method
for more complex systems, and improving the efficiency of the
evolution strategy.
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