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Abstract

We develop a method for learning positive functions by optimizing over SoSK, a reproducing
kernel Hilbert space subject to a Sum-of-Squares (SoS) constraint. This constraint ensures
that only nonnegative functions are learned. We establish a new representer theorem that
demonstrates that the regularized convex loss minimization subject to the SoS constraint
has a unique solution and moreover, its solution lies on a finite dimensional subspace of an
RKHS that is defined by data. Furthermore, we show how this optimization problem can
be formulated as a semidefinite program. We conclude with an example of learning such
functions.
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Abstract

We develop a method for learning positive functions by optimizing over SoSg, a
reproducing kernel Hilbert space subject to a Sum-of-Squares (SoS) constraint.
This constraint ensures that only nonnegative functions are learned. We estab-
lish a new representer theorem that demonstrates that the regularized convex loss
minimization subject to the SoS constraint has a unique solution and moreover,
its solution lies on a finite dimensional subspace of an RKHS that is defined by
data. Furthermore, we show how this optimization problem can be formulated as
a semidefinite program. We conclude with an example of learning such functions.

1 Introduction

The goal of this paper is to introduce a new framework for learning functions that fits data by min-
imizing a convex loss while guaranteeing that the estimated function is positive (or nonnegative, to
be more precise). Even though there are many methods for learning a function under a convex loss
criteria in the machine learning and statistics literature, they do not guarantee the positiveness of the
estimate as a built-in feature of the method. Of course one can always truncated the estimator’s out-
put to make it nonnegative, but one may argue that this is not an elegant approach: the positiveness
condition is not an intrinsic part of the method.

To design an estimator that guarantees the positivity of its output, we bring together two different
family of concepts and tools. The first one is the concept of Sum of Squares (SoS) and positive poly-
nomials, cf. Nesterov [7], Parrilo [8], Lasserre [5], Parrilo [9], Ghasemi [3]. SoS has already several
applications, e.g., in control theory [8], but as far as we know it has rarely used for machine learning
problems (one exception is by Magnani et al. [6], who use SoS polynomials to fit a convex poly-
nomial to a set of data points). The second one is the concept of reproducing kernel Hilbert spaces
(RKHS), which is quite familiar to a machine learning audience, e.g., Aronszajn [1], Scholkopf and
Smola [10], Steinwart and Christmann [11].

2 Learning Positive Functions in an RKHS

We are given a dataset D,, = {(X;,Y;)}7, with (X;,Y;) ~ p. Denote the pointwise loss function
byl: XxYxR — [0,00). We consider convex losses. Given this pointwise loss [, for a function f :
X — R, we can define the expected loss L(f) = E, [[(X,Y, f(X))] = fXxy Wz, y, f(z)) du(z,y)

and the empirical loss L, (f) = 2 Y  1(X;,Y;, f(X;)). Refer to Chapter 2 of Steinwart and

Christmann [11] for more details. "

We consider a bounded measurable kernel K : X x X — R and its corresponding RKHS 7. This
RKHS has an associated feature map ¢ : X — H, defined as ¢(x) = (¢i(x)),o7 With ¢; : X = R
with 7 being an index set, e.g., Z = {1,2,3,...}. We set d = |Z| with the understanding that the
index set might be countably infinite, in which case we set d = oco.



The space of Sum of Squares (SoS) w.r.t. ¢ is defined as
S2{r ¢ (2)Q¢(x) : Q= 0}.

Here ) > 0 means that the matrix () is positive semidefinite (PSD). Evidently, any function f € S'is
nonnegative. We may use Sy or Sk to make the connection to the feature map or the kernel explicit.

For further development, we would like to have the RKHS machinery at our disposal. But notice
that S is not a subspace of . We may, however, define another RKHS in which S is a subspace.
We start by defining a new feature map ¢ : X — H, as

Y(z) = (9i(2) - ¢;(2)); jer -
Given this feature map, we define a kernel K’ : X x X — R as usual:

K'(2,9) 2 (0(@), () )y = D 0i(2)8;(z) $i(y)d;(y) =

i,jET
= " 6i(@)di(y) Y bi()0;(y) = (6(2), (y))* = K(z,y).
ieT jET
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Therefore there exists a unique RKHS 7’ for which K’ is a reproducing kernel. In tensor notation,

H =HH.

Let I(i, j) be the mapping from Z x T to the corresponding index of 1, that is, 17(; ;) = ¢i¢;. We
then have

S={z—¢"()Q¢(x) : Q=0} = Z Qijdi(z)¢;(x) : @ =0

i,J€L

=4 T Z QijYrig(x) : Q=0

i,J€L

CcCl x— Z Qij1/11(i7j)(:17) 1 Q€e RIxd L — 3.
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The function space S is the space of SoS functions defined using the feature map ¢ corresponding
to the RKHS K, and is a subset of H'. We call it a Kernel SoS space.

When d is moderately small, we can explicitly construct S as it is a subset of d2-dimensional linear
space defined by features ). When d is large, however, we use a representer theorem, to be stated in
the next section, to provide a computationally feasible algorithm.

2.1 Representer Theorem for Kernel SoS

In this section we state a representer theorem for Kernel SoS. Let us first define some function
spaces. For a particular set { X;}?_;, we define S,

S, = {x»—> ZalK’(J:,Xi) caceR” } nsS.
=1

The following result is similar in spirit to Theorem 5.5 (Representer Theorem) of Steinwart and

Christmann [11], but is modified for Kernel SoS. Its proof requires appropriate modifications of

Lemma 5.1, Theorem 5.2, and Theorem 5.5 of Steinwart and Christmann [11]. Due to space limita-
tion, we defer the proof to the longer version of this paper.

Theorem 1 (Representer Theorem). Let L,, be a convex empirical loss function as defined before.
Then for all \ > 0, there exists a unique solution f € S satisfying

~ ~l12
La(F)+A||f], = L La(F) + A1A13,

Moreover, f € Sp.



3 Algorithm

From Theorem 1, we know that the solution can be written as f(z) = Y ;- ; a;K'(X;, z) under the

condition that the function has an SoS representation, that is, f(z) = ¢(z) T Q¢(z) for some Q > 0.
We have

n

Yk (Xi,z) =Y e (X)), U(x)) =Y ar Y ¢i(X1)$;(X) ds(w) ()
=1 =1

=1 ij€eT
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with Q;; = >, au ¢i(X1)$;(X;). We require that @, which is a function of «, to be PSD.

The matrix @ = [Q);; is d x d, so the explicit computation of () might not be feasible. The rank
of @, however, is at most n, the number of data points used in the optimization. We shortly see that
one can enforce the same condition by requiring the positive semi-definiteness of a potentially much
smaller n X n matrix.

Define a d x n matrix ® = [¢(X1) - - - #(X,,)] and an n x n diagonal matrix A = diag(aq, ..., ap).
The matrix (), defined above, can be written as Q = ®A® " . The condition of () being PSD is that
all its eigenvalues should be nonnegative. For a square matrix B, denote eig(B) as the set of its
non-zero eigenvalues. Because eig(BB") = eig(B " B), we have

cig(Q) = cig(PAD ) = eig(®VAVADT) = eig(ﬂ@ VA) = eig(GA).
EXel

Here G = @'® is the Grammian matrix. ~We have ®;; = >, .7 (Xi)ou(X;) =
(p(Xi), ¢(X;) )y = K(Xi, Xj). This means that even if the features are infinite dimensional,
as long as we know their corresponding kernel function K, we can construct G.

Also note that for f = > | oyK/'(X;, x), we have ||in, = a' K'a with Kj; = K'(X;, K;) =
K?(X;, X;) (1). In other words, K’ = G ® G, in which ® indicates entrywise (or Hadamard) matrix
product. Therefore we get that

. 2 .
int L)+ M fll3 = inf Lo (l_Zl K'(Xy, ~>az> +Aa Ko
s.t. G diag(a) = 0

We next show how to formulate this optimization problem as a semidefinite program (SDP) (e.g.,
cf. Vandenberghe and Boyd [12]) when the loss function is the squared loss. If we denote the vector
of target values by Y = [Y7,...,Y,]T, we can write the optimization as

inf (K'a-Y) (K'a-Y)+X'Ka
acR™

s.t. G diag(a) = 0

First note that G diag(«) is not symmetric. To convert this condition to the standard SDP formu-
lation, which requires that the semi-definiteness condition to be imposed on symmetric matrices,
note that eig(GA) = eig(ATG "), and since both A and G are symmetric, it is equal to eig(AG).
Therefore, GA = 0 if and only if GA + AG > 0.

Let us write the objective as o' Ma + 2a' N with M = K'TK’' + AK' and N = —2K'TY (we
ignore the Y TY term, which does not affect the minimizer). Let L be such that LT L = M, e. g., its
Cholesky factorization. Note that min, o' Ma + 2o " N is equivalent to

min ¢
t,a€R™

st.a' Ma+2a'N—¢<0.
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Figure 1: Learning a function that takes both positive and negative values from 50 noisy samples.

Moreover, having t + 20"N —a"Ma > 0, by the Schur complement condition, is equivalent to
requiring the positive semi-definiteness of

L.«n Lo
a'LT t+2a"N |-

Altogether we obtain the following SDP:

min ¢
t,aER"™
L.xn La Onxn
s.t. o'LT t+2aTK'TY O1xn > 0. 2)
Onxcn Onx1 G diag(«) + diag(a)G

2n+1x2n+1

4 TIllustrations

We briefly illustrate the proposed algorithm in the task of learning f..(z) = sin(x)+cos(3z)—(%)*+
3 defined on X = [—5,+5]. This function takes both positive and negative values in its domain.
We sample 50 noisy data points and solve the SDP formulation (2) by CVX [2, 4]. We choose

K(x1,29) = exp(—%) + 0.016(z1 — x2). We present the results for both o € {0.25,0.75}
and with the choice of regularization coefficient A = 0.01. More details are available in the longer

version of this paper.

Figure | depicts the result when the noise in the output variables has a zero-mean normal distribution
with the standard deviation of 0.5. We can see that the estimator with o = 0.75 is oversmoothed,
while the estimator with o = 0.25 is slightly overfitting. Both of them, however, are non-negative,
as expected. Finally note that one can perform a standard model selection to choose the best value
of o and A.

5 Future Work

Several interesting questions remain to be answered. One of them is studying function approxima-
tion properties of Kernel SoS. We know that RKHS with universal kernels are dense in the space
of continuous function w.r.t. the supremum norm. Can we show a similar result for Kernel SoS in
the space of positive functions? We have not studies the statistical properties of such an estimator.
Proving an estimation error upper bound is a future research topic. Designing more computationally
efficient algorithms to solve (2) than using a generic SDP solver is necessary to make this algorithm
practical.
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