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Abstract
We propose an unsupervised, received signal strength (RSS)-based indoor localization method,
which as an infrastructure uses commercial WiFi chipsets and does not require any changes
in the existing hardware. The method relies on path loss model for measured RSS levels
where path loss coefficient is treated as a discrete random variable which takes values from
some finite alphabet. The unknown location and path loss coefficient corresponding to each
access point are jointly estimated using the Expectation Maximization (EM) approach. The
algorithm is experimentally tested in an office space area of dimensions 32- by- 52 m (1600
m2) with only five access points and the achieved average localization error is below 4.5 m.
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Abstract—We propose an unsupervised, received signal
strength (RSS)-based indoor localization method, which as an
infrastructure uses commercial WiFi chipsets and does not
require any changes in the existing hardware. The method relies
on path loss model for measured RSS levels where path loss
coefficient is treated as a discrete random variable which takes
values from some finite alphabet. The unknown location and path
loss coefficient corresponding to each access point are jointly
estimated using the Expectation Maximization (EM) approach.
The algorithm is experimentally tested in an office space area of
dimensions 32−by−52 m (1600 m2) with only five access points
and the achieved average localization error is below 4.5 m.

I. INTRODUCTION

The problem of locating objects and devices within an
indoor (enclosed) area has driven much of research attention
over the last two decades. Some of many applications include
locating people, objects and resources in multilevel garages,
hospitals, warehouses, shopping malls, airports, large bus and
train stations. The Global Positioning System (GPS), widely
used for outdoor localization, is not well suited for indoor
localization because GPS signals get attenuated when they
propagate thorough indoor environment. At best, the GPS has
to be used in conjunction with some other indoor localization
technique.

A variety of localization methods have been proposed in
the literature. Different physics such as radio waves, sound,
motion dynamics, optics, magnetics or their combination, in
conjunction with signal processing and machine learning tech-
niques have been explored to map measurements of physical
variables into location estimates. Excellent surveys of different
indoor localization methods are given in [1] and [2].

A possible classification of indoor localization methods is
based on whether or not the development and installation of
dedicated hardware is required [3]. While majority of the
proposed methods rely to some extent on the deployment
of dedicated infrastructure, infrastructure-free methods are
viewed as advantageous from a cost perspective. Given the
widespread deployment of commercial chipsets from IEEE
802.11 family, both in modern mobile (smart) devices and
access points providing internet coverage in indoor areas, WiFi
radio is one of the most prevailing technologies behind the
existing infrastructure-free localization methods. In addition,
since the measurements of the received signal strength (RSS)
levels are easily available in modern WiFi chipsets, indoor

localization based on RSS measurements of the WiFi signal
has become an attractive approach.

Traditionally, WiFi RSS based indoor localization methods
require fingerprinting which essentially creates a training data
set consisting of RSS levels measured at known locations in
an area of interest. The localization problem then boils down
to that of matching the RSS levels obtained following an
actual localization request with those in the training data set. A
variety of approaches have been used for finding best match.
As such, Radar [4] proposes a nearest neighbor search and
employs Viterbi-like algorithm for further enhancement. On
the other hand, [5] and Horus [6] treat the matching problem
probabilistically. The Compass [7] also uses probabilistic
approach and additionally accounts for antenna orientation.
In terms of accuracy, the experimental tests of Radar and
Compass conduced in a 312 m2 indoor area yielded average
localization errors of 2.26 and 1.65 m, respectively [2].

Fingerprinting is usually time and labor intensive, which
eventually increases the cost. In addition, the measured RSS
values depend on room occupancy, locations of furniture and
positions of access points. Consequently, a new fingerprinting
activity is required whenever something changes in the indoor
area, which is impractical and costly. The methods proposed
to alleviate these issues include building radio maps in a semi-
fingerprinting fashion [8] and replacing fingerprinting by using
ray tracing [9]. With the similar goal, machine learning [10]
and Gaussian processes [11] have been explored to completely
avoid fingerprinting and perform indoor localization in non-
parametric fashion.

Most of the parametric RSS based methods rely on a stan-
dard path loss model, where path loss coefficient is a model
parameter [12]. The unknown path loss coefficient is obtained
via power law fit in [13] and 1 m accuracy in a 4−by−3
m room with 5 access points is reported. The performance
results of some other parametric and semi-parametric RSS
based localization techniques are reported in [14] and [15].
More recent algorithms jointly estimate unknown location and
path loss coefficints. As such, the method in [16] assumes that
the path loss coefficients are the same for all access points
at a given location and estimates it jointly with an unknown
location by formulating and solving a corresponding non-
linear least squares problem. In comparison, [17] considers
different path loss coefficients associated with each access
point and defines a geometric-based function which quantifies



a compatibility between estimates of the location and path loss
coefficients. The joint estimation is carried out by optimizing
the compatibility function using the least squares method.

We propose in this paper an unsupervised, WiFi RSS based
indoor localization method which relies on path loss model
and jointly estimates an unknown location and path loss
coefficients associated with different access points. We assume
that the number of access points and their locations in the area
are known. In comparison to geometric approach in [17], we
treat path loss coefficients as random variables which take
values from some finite, pre-defined alphabet. The algorithm
carries over joint estimation by employing the Expectation
Maximization (EM) procedure. The proposed algorithm is of
low complexity and has been experimentally tested in an office
space environment during business hours. The testing area has
a rectangular shape of dimensions 32−by−52 m, with the total
area of 1600 m2, and five access points provide WiFi signal
coverage. The average localization accuracy achieved with the
proposed method is below 4.5 m.

A fair comparison between different indoor localization
methods is somewhat difficult task because the accuracies
reported in the literature are measured in indoor areas which
have different layouts, dimensions, occupancies and the num-
ber of access points. A recently held competition tested a
variety of methods under the same conditions and in an indoor
area of 300 m2 with 10 access points [3]. The best performing
infrastructure-free methods use WiFi fingerprinting and some
of them enhance the estimation accuracy by employing the
measurements obtained from the Inertial Measurement Unit
(IMU). The achieved average localization errors are in the
range between 1.6 and 2.81 m. In comparison with that result,
out method achieves around two times larger localization error
in more than five times larger area and with half the number
of access points.

II. PROPOSED ALGORITHM

A. Setup and Model

We assume that N access points are placed throughout an
indoor area of interest. The location of the j-th access point in
a coordinate system associated with the indoor area is xj =
(x(j), y(j), z(j)), where j = 1, . . . , N . An access point j is
characterized with the reference received signal strength (RSS)
level zRj , measured at the reference distance d0. We assume
that the locations of the access points xj are known. As it will
become clear later, we do not rely on accurate knowledge of
the reference RSS levels zRj .

A level of the signal received from access points j at some
unknown location x is denoted with zj , where j = 1, . . . , N .
A path loss model describes the relation between RSS mea-
surement zj and location x as [12]

zj = zRj − 10hj log10
‖x− xj‖

d0
+ vj , (1)

where hj is path loss coefficient and vj is measurement noise
corresponding to the access point j. The path loss coefficient
quantifies how quickly the radiated signal power decays as the

distance from the access point increases. In free space, h = 2.
It usually has higher values in more complicated settings such
as indoor areas.

The power of the received signal is well modeled as a log-
normal probability distribution and thus the measurement noise
vj is assumed to be Gaussian distributed with zero mean and
variance σ2

v . To keep expressions uncluttered, the variance of
the measurement noise is assumed to be the same for all access
points. The extension to a more general case is straightforward.

Given the RSS measurements zj , j = 1, . . . , N , taken
at some unknown location x, our goal is to estimate the
coordinates of this location using path loss model (1). In
the following, we first consider the case when the path
loss coefficients are known, and then study a more realistic
case when they are unknown. We point out that one path
loss coefficient is associated with each access point at each
location.

B. Known Path Losses

With the assumption that the measurement noise vj is
Gaussian, path loss model (1) yields that the RSS measurement
zj , conditioned on the path loss coefficient hj and location x,
is Gaussian distributed such that

p(zj |x, hj) ∼ N (zRj − 10hj log10
‖x− xj‖

d0
, σ2

v), (2)

where p(a|b) is the probability density function of a condi-
tioned on b, while N (a, b) denotes Gaussian distribution of
mean a and variance b.

In addition, note that the RSS measurements zj , correspond-
ing to different access points j, are independent conditioned
on location x. Therefore, the joint log-likelihood of the RSS
measurements is given by

l (z1, . . . , zN |x, h1, . . . , hN ) =

− 1

2σ2
v

N∑
j=1

(
zj − zRj + 10hj log10

‖x− xj‖
d0

)2

. (3)

Consequently, the maximum likelihood (ML) estimate of
the unknown location x is obtained from the joint log-
likelihood (3) as

x̂ML = argmax
x

l (z1, . . . , zN |x, h1, . . . , hN ) (4)

C. Unknown Path Losses

The path loss coefficients are unknown and location depen-
dent because a single obstacle which prevents a direct line-of-
sight (LOS) to an access point may change the correspond-
ing path loss coefficient dramatically. Thus, to estimate an
unknown location using the path loss model, the path loss
coefficients also need to be inferred.

In general, a path loss coefficient is a continuos variable.
However, for the reasons that will become clear later, we
model a path loss coefficient as a discrete random variable
which takes values from some finite, pre-defined, alphabet
H. The probability distribution of the path loss coefficient hj



E
p
(k−1)
j (h)

[l (z1, . . . , zN |x, h1, . . . , hN )] = − 1

σ2
v

N∑
j=1

∑
h∈H

p
(k−1)
j (h)

(
zj − zRj + 10h log10

‖x− xj‖
d0

)2

(6)

corresponding to access point j, is denoted by pj(h), where
j = 1, . . . , N and h ∈ H.

Without loss of generality, we implicitly assume that path
loss coefficients corresponding to different access points take
values from the same alphabet. The size of alphabet H should
be large enough such that the RSS measurements accurately
fit path loss model (1). On the other hand, the computational
complexity scales with the size of H.

Given this setup, the Expectation Maximization (EM) algo-
rithm is used to iteratively estimate path loss coefficients and
the unknown location [18]. Without any prior information, we
initialize the EM algorithm with the uniform distribution on
path loss coefficients

p
(0)
j (h) =

1

|H|
, h ∈ H, j = 1, . . . , N, (7)

where the superscript () denotes the iteration index.
The k-th iteration of the EM algorithm starts with evaluat-

ing the expectation of the joint log-likelihood with respect
to probability distributions of model parameters hj , j =
1, . . . , N , obtained in the previous iteration. Therefore, taking
the expectation of (3) and treating hj’s as random variables
with distributions p(k−1)j (h), j = 1, . . . , N , evaluated in the
previous iteration (k− 1), the expected joint log-likelihood is
given by (6).

The estimate of the unknown location at iteration k, is
updated in the M step by maximizing the expected log-
likelihood (6). Swapping the sign, the location estimate at
iteration k is evaluated as

x̂(k) = argmin
x

C, (8)

where the objective function C is given by

C =

N∑
j=1

∑
h∈H

p
(k−1)
j (h)

(
zj − zRj + 10h log10

‖x− xj‖
d0

)2

.

(9)
The optimization problem (8) is solved by using one

of the gradient based optimization techniques for nonlinear
programming [19]. Note that the objective function admits
closed form expression for the gradient and Hessian. Also,
the objective function is non-convex and a possible approach
to partially overcome it would be to start a certain number of
optimization procedures with different initial points and run
them in parallel. Once all procedures converge, the solution
which minimizes the objective function is chosen as the final
estimate. Alternatively, one can perform a greedy search over
the indoor area of interest. The greedy search is justified if the
area of interest is not too large. A step size in the greedy search
of about 1 m is a reasonable choice because the accuracy of
the RSS based localization is most often above 1 m.

The probability distribution pj(h), j = 1, . . . , N , required
for the E step of the next iteration, is updated using the location
estimate x(k). This distribution is effectively the probability
distribution of the path loss coefficient hj , conditioned on the
location x and measured RSS level zj , and is using the Bayes’
rule given by

p(hj |x, zj) ∝ p(zj |x, hj)p(hj |x), (10)

where the likelihood p(zj |x, hj) is given by (2).
The conditional distribution p(hj |x) essentially represents

our current knowledge about the path loss hj , which is
summarized in p

(k−1)
j (h). However, recalling the concept of

extrinsic information, successfully applied in turbo coding and
equalization [20], a uniform prior on path loss coefficient hj
is used in place of p(hj |x). We point out that p(k−1)j (h) has
already been used in the E step of the current iteration and
using this distribution again would lead to overuse of the same
information.

Therefore, the probability distribution of path loss coeffi-
cient j is up to normalization constant given by

p
(k)
j (h) ∝ p(zj |x, hj) ∝ (11)

∝ exp

{
− 1

2σ2
v

(
zj − zRj + 10h log10

‖x̂(k) − xj‖
d0

)2
}
,

where h ∈ H and j = 1, . . . , N . The normalization yields
the updates of probability distributions p(k)j (h) of path loss
coefficients corresponding to each of N access points. To
avoid underflow issue, this computation should be done in
the logarithmic domain.

The EM routine is carried out a predefined number of
iterations Imax. Alternatively, we can formulate a stopping
criterion for checking if the algorithm converged. For example,
the convergence can be declared if the difference between
the location estimates obtained in consecutive iterations falls
below a certain threshold.

As a final remark, we point out that the described algorithm
is not sensitive to accurate knowledge of the reference RSS
levels zRj , j = 1, . . . , N . Essentially, lack of information on
reference RSS values can be overcome by choosing a broader
range of values for path loss coefficients in the alphabet H.
In fact, this approach is used in our experimental testing.

We conclude this section with the summary of the proposed
indoor localization method in Algorithm 1.

III. EXPERIMENTAL TESTING

The proposed indoor localization method is experimentally
tested in our office building. This section first describes the
experimental setup and then presents performance results
corresponding to two collected data sets.



Fig. 1: Floor plan of the office space. Fig. 2: Color-coded location indicating existence of LOS.

Algorithm 1: RSS based Indoor Localization Method

Require: RSS measurements z1, . . . , zN
Ensure: Locations of access points x1, . . . ,xN

Initialize p1(h), . . . , pN (h), h ∈ H
for i = 1, 2, . . . , Imax do

x̂(k) = argmin
x

C, where C is given by (9)

for j = 1 to N do
p
(k)
j (h) ∝ p(zj |x, hj), as detailed in (12)

Normalize to obtain p(k)j (h) for h ∈ H.
end for

end for
return Final location estimate x̂ = x̂(Imax)

A. Experimental Setup

The accuracy of the proposed localization method is mea-
sured in the Mitsubishi Electric Research Labs’ office space,
whose floorplan is shown in Fig. 1. The considered indoor area
consists of offices, cubicles, labs with different equipment,
hallways and common areas. The cubicles in the upper left part
of the office area are strengthen with a number of thick metal
poles represented with black circles in Fig. 1. In addition,
a number of storage metal boxes are placed in the hallways
throughout the area (not shown in the floor plan).

The WiFi signal coverage in the considered area is provided
from five access points whose positions are shown in Fig. 1.
Note that the dimensions of the access points do not scale with
the dimensions in the floor plan.

Two measurement campaigns were conducted on two dif-
ferent days and times in a week during the working hours. The

TABLE I: Heights of the access points with respect to the
height of the RSS module.

AP1 AP2 AP3 AP4 AP5
1.49 m 0.37 m 1.58 m 0.2 m 0.39 m

campaigns took place in two different areas in the considered
office space. A traffic common for an office space during
a working day was observed. In addition, a construction in
the area close to access point AP3 was happening during
measurement campaign 1 (whose locations came close to the
construction area in the beginning and end). The proposed
algorithm is tested on two data sets separately because the
measurements were taken at different days and times.

In each measurement campaign, a person is walking, taking
RSS measurements and recording his true locations. The
traversed paths enclose loops in clock-wise direction and are
shown in Fig. 1. The coordinate system, positions of the mea-
surement locations and positions of five access points, along
with their labeling, are shown in Fig. 2. The true measurement
locations and positions of the access points are measured with
respect to the coordinate system associated with the area using
a regular tape. The RSS levels are measured with a particular
WiFi module which operates at 2.4 GHz, extracts beacons
associated with access points from the received signal and
outputs the RSS level for each access point, along with its
identifiers (MAC address and SSID). The measured RSS level
is expressed in dBm with the resolution of 1 dBm. The heights
of the access points with respect to the RSS measuring module
are given in Table I.

To give more details about the propagation environment,
the measurement locations in Fig. 2 are color-coded such that



the existence of line-of-sight (LOS) between a location and an
access point is indicated by shading the two using the same
color. The locations that do not have LOS with any of the
access points are shaded in black. Note that some locations
close to access point AP3 lose LOS to AP3 due to think metal
poles shown in Fig.1. We also note that only three locations
have LOS with access point AP2 because the AP2 is placed
in a cubicle at lower height. These three locations also have
LOS with access point AP1 and they are represented with two
colors in Fig. 2.

The proposed localization algorithm is supplied with floor
plan which defines a set of constraints in optimization prob-
lem (8). The search space for our experimental verification is
a 32−by−52 m rectangle between the axes and dashed lines
shown in Fig. 1. Effectively, we assume no prior knowledge
of where the walls are. In addition, the search area is larger
than that implied by the floor plan. By doing this, we show
that the algorithm is capable of estimating unknown locations
in a larger indoor area with relatively small number of access
points.

As a final remark, we note that the algorithm does not
exploit the fact that the RSS measurements are taken at consec-
utive locations. That is, each location is treated independently
and location estimate at a particular localization request is
not used for localization in the following requests. Fusion
of this possibility into the proposed method is left for future
consideration.

B. Experimental Results

The RSS measurements taken at two measurement cam-
paigns are plotted in Figures 3 and 4. As expected, the mea-
sured RSS levels closely follow the distance pattern between
measurement locations and corresponding access points so that
the signals transmitted from distant access points are weak and
get close to the measured noise floor of -94 dBm.

An impact of random shadowing, cased by people passing
by, can be observed from the measured RSS levels at the
beginning and end of measurement campaign 1. As can be seen
from Fig. 2, 10 measurement locations at the beginning and
end of the campaign are aligned along parallel lines which are
spaced by ∼0.5 m. However, the RSS levels measured along
these lines differ as much as ∼10 dBm, as can be observed
from Fig. 3.

The proposed algorithm estimates indoor location based
on the measured RSS levels taken at that location. The
path loss coefficients take values form finite alphabet H =
{2, 2.5, 3, 3.5, 4}. The EM routine converges after 2 iterations.
The estimation performance is quantified with localization
error, defined as the distance between the estimated and true
location. The plots of the localization errors versus location
index for two measurement campaigns are shown in Fig. 5.
The empirical cumulative distribution functions (cdf’s) corre-
sponding to two measurement campaigns are shown in Fig. 6.
The statistics of the localization errors from two campaigns, in
particular 25%, 50%, 75% and 90% percentiles, as well as the
average, are summarized in Table II. To conclude, the average
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Fig. 3: Measured RSS levels in measurement campaign 1.
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Fig. 4: Measured RSS levels in measurement campaign 2.

localization error is below 4.5 meters in both measurement
campaigns.

IV. CONCLUSION

We propose in this paper an indoor localization algorithm
which estimates unknown location based on the measured
strengths of the signals received from the WiFi access points.
The algorithm is unsupervised in nature. In addition, it solely
relies on existing WiFi chipsets and does not require any
change on the hardware side. The algorithm is developed
by modeling the measured RSS level using the path loss
model, where path loss coefficient corresponding to each
access point and at a given location is modeled as a discrete

TABLE II: Summary of the localization error statistics.

percentiles 25% 50% 75% 90% mean
Campaign 1 3.44 m 4.04 m 5.32 m 6.33 m 4.46 m
Campaign 2 2.65 m 4.38 m 6.06 m 6.63 m 4.36 m
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random variable which takes values from a finite alphabet.
Both an unknown location and path loss coefficients are
jointly estimated using the Expectation Maximization (EM)
procedure. The proposed method was experimentally tested in
a 32−by−52 m (i.e., 1600 m2) office space area where five
access points provide WiFi signal coverage. Two experimental
tests were conduced at two different times, days and places in
the office area, and the attained average localization error was
below 4.5 m in both tests.
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