
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Driver prediction to improve interaction with in-vehicle HMI
Harsham, B.A.; Watanabe, S.; Esenther, A.; Hershey, J.R.; Le Roux, J.; Luan, Y.; Nikovski, D.N.;

Potluru, V.K.

TR2015-120 October 14, 2015

Abstract
Recently there has been a trend toward increasing the capability of the in-vehicle interface
in terms of access to information and complex controls. This has been accompanied by an
increase in the complexity of the car Human Machine Interface [HMI]. At the same time,
studies have shown that driver distraction can contribute to accidents. This paper provides
some possible ways to reduce driver cognitive load by augmenting the interface. We use
prediction of the driver’s next action or intention in order to provide UI affordances for more
quickly selecting actions. Two examples of this are presented: prediction of driver interaction
with the car HMI based on the driving history, and prediction of driver intention from the
driver speech. In the first example, we used signal processing techniques to extract meaningful
features from vehicle CAN and history data, and then we used machine learning techniques to
predict the driver’s next action. In the second example, we used ASR and natural language
processing to extract text features from driver speech, and predict user intention using a
neural network and word embedding. The proposed prediction methods for user actions and
intentions can be used to improve in-vehicle task performance.

Workshop on DSP for In-Vehicle Systems and Safety (DSP)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2015
201 Broadway, Cambridge, Massachusetts 02139

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

Driver prediction to improve interaction with in-vehicle HMI

Bret Harsham1, Shinji Watanabe1, Alan Esenther2,5, John Hershey1, Jonathan Le Roux1, Yi
Luan3,5, Daniel Nikovski1, Vamsi Potluru4,5

1: MERL, USA
E-mail: {harsham,watanabe,hershey,leroux,nikovski}@merl.com
2: The MathWorks, USA
E-mail: alan.esenther@mathworks.com
3: University of Washington, USA
E-mail: luanyi@u.washington.edu
4: Comcast Labs, USA
E-mail: vamsi potluru@cable.comcast.com
5: Alan Esenther, Yi Luan, and Vamsi Potluru contributed to this work while at MERL.

Abstract Recently there has been a trend toward incre-
asing the capability of the in-vehicle interface in terms of
access to information and complex controls. This has been
accompanied by an increase in the complexity of the car Hu-
man Machine Interface [HMI]. At the same time, studies have
shown that driver distraction can contribute to accidents. This
paper provides some possible ways to reduce driver cogniti-
ve load by augmenting the interface. We use prediction of the
driver’s next action or intention in order to provide UI affor-
dances for more quickly selecting actions. Two examples of
this are presented: prediction of driver interaction with the car
HMI based on the driving history, and prediction of driver in-
tention from the driver speech. In the first example, we used
signal processing techniques to extract meaningful features
from vehicle CAN and history data, and then we used machi-
ne learning techniques to predict the driver’s next action. In
the second example, we used ASR and natural language pro-
cessing to extract text features from driver speech, and predict
user intention using a neural network and word embedding.
The proposed prediction methods for user actions and inten-
tions can be used to improve in-vehicle task performance.

Keywords Car HMI, Prediction of driver interaction, Pre-
diction of driver intention, Machine learning, Spoken langua-
ge understanding

1. INTRODUCTION

It has been shown in numerous studies that driver distraction
is linked with higher accident risk [1]. Driver distraction du-
ring performance of a secondary task is a problem that occurs
both with handheld devices [2] and built-in car HMI devi-
ces [3]. While it can be difficult to predict which cognitive
resources will be most likely to be overloaded by a particu-
lar task, the National Highway Traffic Safety Administration
[NHTSA] has published guidelines for limiting driver distrac-

tion during interaction with a car HMI [4]. These include li-
miting task completion time, and limiting the amount of vi-
sual information presented to a driver during task performan-
ce. One way of achieving both of these improvements is to
reduce the number of actions that a driver needs to perform
and/or the number of choices offered to a driver (either vi-
sually or aurally) while performing a task. This paper looks at
two separate methods for achieving this, both based on using
machine learning techniques to make predictions about what
the driver will do next. Based on the predictions, the user in-
terface can be modified so that the average number of actions
needed to perform a task can be reduced. This will in general
reduce the task performance time.

Section 2 introduces a method for prediction of driver in-
teraction with the car HMI based on the driving history. Mo-
dern vehicles are equipped with many different kinds of sen-
sors which are capable of providing information about the
state of the vehicle, the road network, and the occupants of
the vehicle. Traffic patterns and human behavioral patterns are
strongly dependent on time and circumstances. We developed
a feature set based on the driving history, and unsupervised
method of feature selection by ordering the feature set based
on which features were most informative.

Section 3 focuses on spoken language understanding
(SLU) for in-vehicle dialog systems, which predict user in-
tentions from the output of an automatic speech recognizer
(ASR) [5, 6]. In this paper we focus on two key tasks in tar-
geted dialog and understanding applications: user intention
understanding and user goal estimation. User intention un-
derstanding is the extraction of the intended meaning (called
“intention” hereafter) of one user utterance, performed by
the SLU module. User goal estimation is a similar concept,
but is an estimation of the final system action (called “goal”
hereafter) that the user wishes to accomplish during the dia-
log. A dialog usually consists of a series of user utterances

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 1

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

and system actions, so the goal estimation takes place over
a longer time scale than user intention understanding. In-
tention understanding and goal estimation are performed by
employing a (recurrent) neural network with word embed-
ding based feature augmentation and/or network pre-training
[7, 8, 9, 10].

2. PREDICTION OF DRIVER INTERACTION WITH
THE CAR HMI BASED ON THE DRIVING HISTORY

2.1. Data Collection

The data set used for this work was collected in Japan in se-
veral vehicles equipped with a logging system which captu-
red driving state data from the CAN bus, and HMI event and
state data from a modified car navigation system. CAN bus
data is high frequency, but low level, information about the
state of the car including vehicle speed, position of brake and
accelerator pedal, window, shift lever, lighting and gasoline
states, etc. The car nav system reported information about the
current destination (such as distance, location, genre and cate-
gory), map data about the road network (distance from home,
distance from destination, road type, data about points of in-
terest and roads near the vehicle, etc.), and information about
the HMI state and user actions. Each of the instrumented ve-
hicles was driven by one user at a time for a period ranging
from a few days to a month, but typically approximately two
weeks. Users were asked to use the car to perform scripted
scenarios, such as going to a particular kind of store during
a set time of the day. The scripted tasks were designed to in-
clude regular trips such as going to/from work, and also more
spontaneous trips such as shopping or going to a restaurant.
This is a scripted data collection, but because the users inter-
acted with the car HMI while driving, it also contains natu-
ralistic user actions, e.g. re-routing or changing the map view
in response to driving conditions. The full data set consists
of data from 26 users across 186 driving days. Our data pro-
cessing and analysis treats all actions the same - we made no
attempt to separate scripted actions and naturalistic actions.

2.2. Feature Processing

Many machine learning algorithms work best with indicator
variables that indicate the presence or absence of a particular
condition, for example, “it is rush hour”. However, using hard
range boundaries to determine indicator values is problematic
with many of the kinds of data variables present in the data
set, and with driving data in general, in the sense that users
tend to take similar actions during a time range rather than
always at the same time. For instance, even if morning rush
hour is typically 7 am - 9 am in a particular area, if it is 9:30
in the morning, there may still be rush hour traffic, and the
user may still be doing his or her typical morning actions.

Because of this, we use sampling functions to generate a
set of probabilistic (“soft”) indicator variables from a single
data variable over a continuous range: we overlay a series of
N evenly spaced Gaussian random variables G1 - GN on the
range of the input variable. Given a particular input value x,
we use the value of the probability density function fGi(x)
of each Gaussian at x as a sampling function, with the values
normalized so that they sum to 1. This gives us a group of N
soft bin indicator values I1 - IN representing the input value
x.

Im =
fGm

(x)∑
i∈{1..N} fGi

(x)
(1)

Fig. 1. Soft bin Indicators, evenly spaced

Figure 1 shows an example group of 8 soft indicator bins.
The indicator variables change smoothly as the input value
x varies over its range. This type of indicator is suitable for
many kinds of data, including time data. For other kinds of
data, such as the vehicle speed, it can be more suitable to use
logarithmically spaced bins, as shown in Figure 2.

2.3. Prediction Models and Feature Selection

We used the Scikit-learn [11] machine learning Python fra-
mework to build several kinds of prediction models based on
our features. In order to decide which features to include, we
implemented an automatic method of feature selection based
on repeatedly evaluating prediction performance with diffe-
rent sets of features groups. In general, the feature selection
method is as follows:

By repeatedly removing the feature group that reduces
performance the least, we first remove features that are not ac-
tually informative, thus reducing overtraining, and improving
performance. As we continue to remove features, we remo-
ve the least helpful features first, generating an ordered list
of how informative the features are. Figure 3 shows an ex-
ample of prediction accuracy during feature selection. In this

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 2

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

Fig. 2. Soft bin Indicators, log spacing

case, the model was trained to predict the general type of ac-
tion that the driver would perform next. We started with 40
feature groups. Performance improves until there are only a
few feature groups remaining. In this case the remaining fea-
ture groups were, in decreasing order of information content:
Whether the car had arrived at the destination, The elapsed
time from the start of the trip to setting the destination, The
current distance to the destination, The total distance of traf-
fic jams on the current route, Whether the current day was
a weekday, The motion status of the car (driving, paused, or
stopped), and The user’s current preference for the type of
route to be selected by the navigation system. Our proposed
method of feature selection improved prediction performance
from 93.0% to 94.1% when predicting the general type of the
next action performed. Although this is a preliminary result
based on scripted data, the prediction accuracy is promising
and the most relevant features after feature selection are in
general intuitively related to driver behavior.

2.4. Interface Augmentation using predictions

Several different kinds of dynamic modifications to the car
HMI are possible based on prediction of what the user’s next
actions will be. Active modifications include removing or re-
ordering choices in the standard HMI menus (graphic or dia-
log state). We have some concerns about this kind of modi-
fication, as this can result in a mismatch between the user’s
mental model of the system and the actual system behavior,
which can lead to user confusion or stress. It is also possible
to have a more passive interface affordance which is a dyna-
mic overlay of suggested actions in addition to the fixed set
of HMI menus. This preserves the match between the user’s
mental model and the system, while still providing a set of
shortcuts that the user can choose when they correspond to

Algorithm 1 Feature Selection for a set S of n feature groups
procedure SELECTFEATURES(S)

L← []
best acc← 0
least useful← None
R← S . R is the set of remaining feature groups
while ‖R‖ ≥ 0 do

for g in R do . g is a group of related features
R′ ← R− g
m← train model(R′)
acc← eval model(m)
if acc ≥ best acc then least useful← g
end if

end for
L← L.append(least useful)
R← R− least useful

end while
return L . L is the list of feature groups

end procedure

a desired action. Anytime one of the shortcuts is correct, the
number of actions needed to complete the task will be redu-
ced, thus reducing task completion time.

3. PREDICTION OF DRIVER INTENTION FROM
THE DRIVER SPEECH

This section describes the prediction of driver intention from
the driver speech based on a neural network classifier. Let
g ∈ G be a classification category with a classification set G,
which can be either goal or intention. The prediction is formu-
lated as the following multiple output classification problem:

ĝ = arg max
g∈G

p(g|X). (2)

p(g|X) is a posterior distribution given word sequences
(ASR outputs) X = {X(1), X(2), . . . , X(i), . . . , X(T)}
in a speech utterance/dialog, where X(i) ∈ {0, 1}|W| is a
one-hot word vector at word position i. T is the number of
words in a sequence. The number of dimensions |W| corre-
sponds to the vocabulary size (the number of distinct words)
in vocabulary W . One of the issues for this classification is
that X is a variable-length vector sequence in an utterance
or a dialog, and we need to deal with this property in the
classification framework. Conventional intention and goal
estimation approaches use the bag of word (BOW) feature,
XBOW ∈ R|W| (or bag of intention features in goal estimati-
on) as fixed-dimension vector inputs, i.e.,

ĝ = arg max
g∈G

p(g|XBOW). (3)

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 3

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

Fig. 3. Feature selection - accuracy as feature groups are re-
moved

We use multivariate logistic regression to computeP (g|XBOW)
for classification target g and feature vector XBOW as

P (g|XBOW) = softmax([WBOWXBOW]g), (4)

where [X]g means a g-th raw element of vector X . WBOW ∈
R|G|×|W| is a weight matrix to be estimated at the training
step. The softmax function softmax(·) is defined as follows

softmax(zm) ,
ezm∑
n e

zn
(5)

Thus, once we obtain the fixed-length vector representation
(XBOW in the BOW feature case), the method provides a po-
sterior distribution of the classification category, which can
predict intention or goal.

However, one of the problems of applying BOW features
to SLU tasks is that the feature vector tends to be very spar-
se. Each utterance only includes a dozen words at most un-
like document analysis. Therefore, the feature vector someti-
mes lacks enough semantic information to accurately estimate
user intentions or goals. This section first investigates the use
of additional semantic information by using word embedding
[12] and latent topic model based on Latent Dirichlet Allo-
cation (LDA) [13] techniques for intention understanding and
goal estimation.

3.1. Incorporating Semantic information

In this section, we import semantic text embeddings to our
SLU tasks. Two kinds of semantic features are trained in un-
supervised fashion using large-scale web data. One is a word-
level embedding which learns contextual information about
word sequences by a feed-forward neural network. The other
is document-level topic embedding, which models the latent

topic information of a given sentence or article. The two kinds
of semantic features have respective advantages: word-level
embedding captures local contextual information, while topic
embedding capture the statistics of the corpus, and thus provi-
des more global information. Then, we extracted an augmen-
ted featureXLDA ∈ RK from LDA andXw ∈ RJ from word
embedding, where K is the number of latent topics in LDA
and J is the number of dimensions in an embedded space.
Note that |W| > K or J . Thus, the classification problem in
Eq. (3) can be extended as:

ĝ = arg max
g∈G

p(g|[X>BOW , X>LDA, X
>
w]>). (6)

Augmented vectorsXLDA andXw provide the dense features
in addition to the BOW based sparse features, which contri-
butes to improve the classification performance.

3.1.1. Word embedding

Many current NLP systems use a bag-of-words or one-hot
word vector as an input, which leads to feature vectors of ex-
tremely large dimension. An alternative is a word embedding,
which projects the large sparse (|W|) word feature vector into
a low-dimensional (J < |W|), dense vector representation.

There are two main model families for learning word vec-
tors: 1) matrix factorization methods, such as latent seman-
tic analysis (LSA) [14] and 2) neural network language mo-
del (NNLM) based methods, which model on local context
window, such as Continuous Bag of Words (CBOW), Skip-
gram [12]. The Skip-gram predicts surrounding words given
the current word X(i), as follows:

p(X(i−L), . . . X(i−1), X(i+1), . . . , X(i+L)|X(i)). (7)

X(i− L), . . . X(i− 1), X(i+ 1), . . . , X(i+ L) are 2L sur-
rounding word contexts, which will be predicted in the skip
gram framework. This can be estimated by one-hidden layer
neural network, and the first liner transformation matrix φ ∈
K × |W| corresponds to embed high-dimensional (|W|) one-
hot vector to the low dimensional (J) dense vector, i.e.,

Xw(i) = φX(i). (8)

Then for each turn or sentence, Xw is obtained by summing
over normalized embedded word vectors for each word in the
turn or sentence:

X̄w =
∑

i∈{1..T}

Xw(i)

||Xw(i)||
(9)

X̄w is used in Eq. (6) as an augmented feature vector, instead
of unnormalized feature Xw.

Mikolov’s toolkit ’word2vec’ which implement Skip-
gram and CBOW can train on large-scale corpora very effi-
ciently. Therefore, in this paper, we used word2vec to train

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 4

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

Skip-gram and CBOW on a large scale web corpus collec-
ted from the internet and chose the embedding that gave the
best SLU performance. The typical word usage in our route
guidance task differs from web texts, so we expected that
fine-tuning of the word embedding would yield additional
performance improvements by adapting the word embedding
model to our target task.

3.1.2. Latent topic models

Latent topic models are algorithms that can discover seman-
tic information from a collection of documents. Topic em-
bedding, widely used in information retrieval, treats a docu-
ment as a mixture of topics and uses a vector to represent
the topic distribution. Classic latent topic models have been
used for SLU including Probabilistic Latent Semantic Ana-
lysis (PLSA) [15] and LDA [13]. Most latent variable mo-
dels are generative models, which therefore can be used in
unsupervised fashion. The latent topic model provides the po-
sterior probability p(k|XBOW) for each topic given (BOW)
feature XBOW , which is used as the kth element of an aug-
mented LDA feature vector XLDA, i.e.,

[XLDA]k = p(k|XBOW), (10)

The augmented feature XLDA is also used in Eq. (6). Howe-
ver, since LDA embedding is obtained an iterative inference
algorithm (variational EM) or sampling method, it is hard to
fine-tune an LDA embedding within a neural network frame-
work. Therefore, in this paper, we do not fine-tune LDA fea-
tures. It could be possible to use a deep unfolding method to
fine-tune the LDA inference, such as that presented in [16].

3.2. Fine-tuning of linear input networks

The previous section applies the semantic information as in-
put features. This section uses them as an additional input
layer in neural network architectures, by following the gre-
at success of neural network approaches in various SLU tasks
with pre-training [17]. In applying these techniques to SLU,
one major difficulty is that we often have insufficient training
data for a task, since the annotation of collected data can be
expensive. The performance of a neural network trained in
low resource conditions is usually inferior because of over-
training. Our approach uses word embedding as an additio-
nal input layer of a neural network, which mitigates the over-
training problem. To accomplish this, we initialize the affine
transformation of the first layer by using a word embedding
matrix estimated from a large-scale general corpus with un-
supervised training methods (pre-training). Then, the entire
SLU network is trained with the annotated training data, with
word embeddings fine-tuned to the SLU task. This concept
has been studied in [8, 18], and the following section also de-
scribes the pre-training idea by employing word embedding
framework.

Fig. 4. Two-layer feed-forward architecture of goal/intention
prediction network with pre-training based on φ.

3.2.1. Feed-forward architecture

We start from Eq. (6) without the LDA feature XLDA. By
using the logistic regression equation (Eq. (4)), the posterior
distribution p(g|[X>BOW , X>w]>) can be rewritten as the two
matrix multiplication for input features XBOW and Xw as
follows:

p(g|[X>BOW , X>w]>)

= softmax([WBOWXBOW +WwXw]g),
(11)

where Ww ∈ R|G|×J is a weight matrix. Let Xw be ob-
tained as an unnormalized vector of Eq. (9), i.e., Xw =∑

i∈{1..T}Xw(i), Eq. (11) is rewritten with Eq. (8), as fol-
lows:

p(g|[X>BOW , X>w]>)

= softmax([WBOWXBOW +WwφXBOW]g)

= softmax([(WBOW +Wwφ)XBOW]g)

(12)

Thus, we can regard Eq. (12) as a two-layer neural network
given input feature XBOW . That is, the feed-forward ar-
chitecture changes the baseline structure by adding a linear
hidden layer between the Bag-of-Words input layer and the
output layer (as Figure 4). The posterior probability of the
goal/intention given the input features is calculated through
the final softmax layer. Although the proposed architecture
has three weight matrices φ, WBOW , and Ww, φ can be in-
itialized from the word embedding matrix (pre-training), and
we can efficiently estimate these matrices. Note that the goal
estimation task uses several utterances as an input feature,
and our experiments use utterance-wise feature XI . We use
the N-best intention confidence score obtained by the other
intention estimation module than that described in this paper
as XI .

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 5

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

3.2.2. Multi-scale recurrent neural network (MSRNN)

The limitation of the above methods is that we do not explicit-
ly deal with a sequential property. This can be performed by
using RNN. By considering the dialog structure based on mul-
tiple scale property based on word and utterance unit, we al-
so propose a novel Multi-Scale RNN (MSRNN) architecture
pre-trained with word embedding in order to capture long-
term characteristics over the entire dialog for goal estimation.
The proposed MSRNN uses two sub-networks to model the
different time scales represented by word and turn sequences.

The goal estimation task has two input sequences for each
sample: a word sequence X = {X(1), . . . , X(i), . . . , X(T)}
and an utterance sequence I = {I(1), . . . , I(j), . . . , I(M)}.
The two sequences have different time scales, and T > M .
However, the baseline architecture treats word input as bag-
of-words, which ignores the contextual information of the
input. Both input sequences, word and intention, contain con-
textual information, and intuitively a system that captures
this information may perform better than one which does
not. Therefore, the proposed MSRNN architecture can model
the different time scales represented by word and intention
sequences, shown in Figure 5.

The lower half of this figure represents the short time scale
RNN, which accepts feature vectors for words X(i) in all hi-
story utterances, as an entire sequence. The recurrent connec-
tion is represented as follows:

hx(i) = sigmoid(φxX(i) +Wxhw(i− 1)), (13)

where we use the element-wise sigmoid function at the hidden
layer defined as:

sigmoid(x) =
1

1 + e−x
. (14)

Wx and φx are weight matrices of recurrent connection and
word embedding, respectively. φx is initialized by a word em-
bedding matrix, similar to the discussion in the previous secti-
on, and the back propagation through time is used to fine-tune
φx.

The upper half of the figure represents the long time scale
RNN, which accepts a single intention feature vector I(j) for
each utterance, and use all intentions in history as a sequence.
The recurrent connection is represented as follows:

hI(j) = sigmoid(φII(j) +WIhI(j − 1)). (15)

WI and φI are also weight matrices of recurrent connection
and word embedding, respectively. The upper RNN has lon-
ger sequence than lower RNN. The two RNN structures have
different parameters and are jointly trained. The goal is pre-
dicted at the end of each turn, and the last hidden vector of
word sequence hx(T) and last hidden vector of intention se-
quence hI(M) are concatenated to predict the output layer

Fig. 5. Multi-scale recurrent neural network (MSRNN) com-
posed of utterance and word level RNNs

(goal of the current turn), i.e.,

p(g|X , I) = softmax(WThx(T) +WMhI(M) + b) (16)

where WT , WM , and b are weight matrices and bias vector,
respectively, which combine the long and short time scale
RNNs. φI , Wx, WI , WM , WT , and b are randomly initiali-
zed, unlike φx.

3.3. Experiments

We built and tested models using data from a Japanese rou-
te guidance spoken dialog system. We used a 1.8G Japane-
se web text corpus from the Internet to train word2vec, and
the full Japanese Wikipedia (900k documents) to train LDA.
Combination of 50, 100, 150, and 300 word2vec dimensions,
and 50, 100 LDA dimensions were tested. The dimensiona-
lity with the best result was selected. All text was tokeni-
zed and morpholized first by a Japanese morpholizer, Cha-
Sen. For each word, we use the word, pronunciation, and
part of speech as individual token elements. Each token is
in Word+Pronunciation+POS format. For both Japanese web
data and Wikipedia data, low frequency words (frequency <
5) are replaced by UNKNOWN token. The total reduced vo-
cabulary is around 150k.

3.3.1. Intention understanding

We evaluated the performance of fine-tuning on the intention
understanding task. We collected a database of Japanese ut-
terances in an automobile scenario with annotated intentions,
which contains 39,328 training samples, 5,000 dev samples
and 5,000 test samples. The number of intention categories
is 562, and the vocabulary size is 3,602. Each sentence is
represented as a Bag-of-Words feature vector. We tested the
performance of word2vec features by concatenating the 300-
dimensional word2vec features with the Bag-of-Words featu-
res, and additionally tested the system both with and without
fine-tuning.

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 6

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

Table 1. Average error rate for intention prediction task, (ft) means with fine-tuning
Dev (%) Test (%)

Baseline (Bag-of-Words) 15.7 15.9
BOW + word2vec 13.0 13.5

BOW + word2vec (ft) 12.4 12.3

Table 2. Average error rate for goal estimation task, (ft) means with fine-tuning
Dev (%) Test (%)

Baseline (intention only) 18.9 19.5
intention (100 dim) + word2vec (50 dim) 17.2 17.5

intention (100 dim) + word2vec (50 dim + ft) 16.0 16.1
intention (100 dim) + word2vec (50 dim + ft) + LDA (50) 16.0 16.2

The experimental results are shown in Table 1. By using
the word2vec features, the performance was improved from
the baseline system by 2.7% (dev.) and 2.4% (eval) (absolu-
te reduction in error). With the fine-tuning, the performance
further improves to 3.3% (dev.) and 3.6% (eval), absolutely.
This result confirms the effectiveness of fine-tuning for our
intention understanding task.

3.3.2. Goal estimation

We collected a dataset from a Japanese rule-based spoken dia-
log system, which contain 7059 turns in total. The log data
contains the Japanese ASR results, system prompts, estima-
ted N-best intentions, system actions, and an annotated goal
for each turn. The intention vector consists of a sparse vec-
tor concatenated by N-best intentions (545 dimensions) and
N-best system actions (545 dimensions). The dimension for
user intention and system action together is 1090, the dimen-
sion for goal is 544 in total. Since the data size was very limi-
ted, we split the data into 4 folds, 3/4 used for training, 1/8
for validation and 1/8 for test respectively. To evaluate the
performance of our proposed approaches, we used the ave-
rage accuracy across the 4 folds. We compared the result of
using embeddings alone versus embeddings with fine-tuning.
In the RNN architecture, hidden layer sizes of 100, 200 and
300 for the intention RNN module were trained and the one
with best result was selected (100 for both with and without
fine tuning). The model was trained by stochastic gradient de-
scent.

We observe from Table 2 that importing semantic text fea-
tures gives a better performance than using intention featu-
res alone. The best performance occurs on smaller semantic
embedding dimensions and smaller hidden layer dimensions.
The reason for this is due to the limited data size, for which
fine-tuning high dimensional embeddings could lead to over-
training problems.

Fine-tuning word embeddings improves upon the feature
engineering results by a small but consistent margin. The

first four rows of the table are implemented by the feed-
forward structure and the last two rows are implemented by
the MSRNN structure. Among all the feed-forward structures,
fine-tuning word2vec plus LDA features gives the best result
with 2.9% (dev.) and 3.3% (eval.) absolute improvement
from the baseline. The MSRNN structure itself (without fine-
tuning) already gives a significant performance improvement
over simply importing semantic text features. When we add
fine-tuning to the MSRNN training, we get the best overall
result of 3.3% (dev.) and 3.6% (eval.) absolute improvement
from the baseline. This proves that modeling time sequential
input by using our MSRNN architecture with different time
scales gives a gain to the system.

4. CONCLUSIONS

This paper investigates the use of driver action prediction
through 1) the driver interaction with the car HMI based on
the driving history and 2) in-vehicle dialog systems based on
SLU. The first topic focuses on the processing and selection
of data features from the driving history, followed by feature
selection to improve prediction performance. The second to-
pic improved the prediction performance of user intention
and goal estimation tasks based on a novel recurrent neural
network.

In both cases we showed the feasibility of predicting the
driver’s actions, even from training with a small dataset. Fu-
ture development of this work will involve using these pre-
dictions to improve the car HMI, and evaluating the effect on
task completion rates and completion times. Also, we expect
that further work on issues of sparse data will be needed: both
methods rely on machine learning techniques and currently
require large amounts of data to obtain robust performance.

5. REFERENCES

[1] S. G. Klauer, T. A. Dingus, V. L. Neale, J. D. Sudweeks,
and D. J. Ramsey, “The impact of driver inattention on

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 7

The 7th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Oct. 14-Oct. 16, 2015, San Francisco, CA

near-crash/crash risk: An analysis using the 100-car na-
turalistic driving study data,” tech. rep., 2006.

[2] D. D. Salvucci, D. Markley, M. Zuber, and D. P. Brum-
by, “ipod distraction: Effects of portable music-player
use on driver performance,” in Proceedings of the SIG-
CHI conference on Human factors in computing sy-
stems, pp. 243–250, ACM, 2007.

[3] L. Garay-Vega, A. Pradhan, G. Weinberg, B. Schmidt-
Nielsen, B. Harsham, Y. Shen, G. Divekar, M. Romo-
ser, M. Knodler, and D. Fisher, “Evaluation of different
speech and touch interfaces to in-vehicle music retrieval
systems,” Accident analysis & prevention, vol. 42, no. 3,
pp. 913–920, 2010.

[4] N. H. T. S. Administration et al., “Visual-manual nhtsa
driver distraction guidelines for in-vehicle electronic de-
vices,” Washington, DC: National Highway Traffic Sa-
fety Administration (NHTSA), Department of Transpor-
tation (DOT), 2012.

[5] D. Jurafsky and J. H. Martin, Speech & Language Pro-
cessing. Pearson Education, 2000.

[6] R. De Mori, “Spoken language understanding: a sur-
vey.,” in Proceedings of IEEE Automatic Speech Reco-
gnition and Understanding Workshop (ASRU), pp. 365–
376, 2007.

[7] R. Sarikaya, G. E. Hinton, and A. Deoras, “Application
of deep belief networks for natural language understan-
ding,” IEEE/ACM Transactions on Audio, Speech and
Language Processing, vol. 22, no. 4, pp. 778–784, 2014.

[8] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investiga-
tion of recurrent-neural-network architectures and lear-
ning methods for spoken language understanding,” in
Proceedings of Interspeech, 2013.

[9] K. Yao, B. Peng, G. Zweig, D. Yu, X. Li, and F. Gao,
“Recurrent conditional random field for language under-
standing,” in Proceedings of IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4077–4081, IEEE, 2014.

[10] Y. Luan, S. Watanabe, and B. Harsham, “Efficient lear-
ning for spoken language understanding tasks with word
embedding based pre-training,” in Proceedings of the In-
terspeech, 2015.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Mi-
chel, B. Thirion, O. Grisel, M. Blondel, P. Prettenho-
fer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” ar-
Xiv preprint arXiv:1301.3781, 2013.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” the Journal of Machine Learning Research,
vol. 3, pp. 993–1022, 2003.

[14] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman, “Indexing by latent seman-
tic analysis,” the Journal of the American Society of In-
formation Science, vol. 41, no. 6, pp. 391–407, 1990.

[15] T. Hofmann, “Probabilistic latent semantic indexing,” in
Proceedings of the 22nd annual international ACM SI-
GIR conference on Research and development in infor-
mation retrieval, pp. 50–57, ACM, 1999.

[16] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfol-
ding: Model-based inspiration of novel deep architectu-
res,” arXiv preprint arXiv:1409.2574, 2014.

[17] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[18] X. Song, X. He, J. Gao, and L. Deng, “Unsupervised
learning of word semantic embedding using the deep
structured semantic model,” Tech. Rep. MSR-TR-2014-
109, August 2014.

Harsham, Watanabe, Esenther, Hershey, Le Roux, Luan, Nikovski, Potluru – 8

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2015-120.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

