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Abstract

Many dynamic models of vapor compression systems ex-
perience nonphysical variations in the total refrigerant
mass contained in the system when common modeling
approaches are used. Rather than use the traditional state
variables of pressure and specific enthalpy, the use of
density as a state variable can eliminate these variations.
A set of test models is developed in Modelica to study the
effect of the state variable selection on the overall system
charge, and results indicate that this alternative approach
has significant benefits for maintaining a specified mass
of refrigerant in the cycle.
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1 Introduction

Trends toward increased integration in building and
transportation systems, as well as perennial demands for
improved system performance, have continued to en-
courage interest in the development of dynamic mod-
els of vapor compression cycles. Such dynamic cycle
models can be used for a variety of purposes, including
system design, specification, control, and fault diagnos-
tics, and can be applied to a wide variety of residential,
commercial and industrial applications to understand and
predict the behavior of field-installed systems. These dy-
namic models can also be coupled with other systems to
examine and design the behavior of systems-of-systems
to achieve specified requirements for the overall system
and satisfy constraints that must be enforced on the phys-
ical hardware.

This wealth of interest in dynamic models of va-
por compression cycles has resulted in a corresponding
growth in both the literature and the number of docu-
mented models for these cycles (Li et al., 2014b). The
Modelica language is particularly appropriate for the de-
velopment of these system models, due to its object-
oriented, declarative, and acausal modeling approach.
This can be seen in the variety of references that have
been published over the past 15 years regarding models
of vapor compression cycles, such as those found in Li
et al. (2014a), among many others.

The performance of physical system models is often
evaluated by comparing particular characteristics or out-
puts of their simulations to the related characteristics of
an experimentally observed system. Since, as George
E.P. Box said, “all models are wrong, but some are use-
ful,” (Box and Draper, 1987), model creators and users
must examine the most salient characteristics of their
model to ensure that it accurately describes the behavior
of interest. This is particularly important for such com-
plex physical systems as vapor compression cycles; it is
essential that engineers compare and validate dynamic
cycle models against known experimental behavior and
data before expecting to obtain reliable model output.
One such variable that can easily be compared between
simulation and experiment is the the cycle’s refrigerant
mass inventory, or charge, which is usually known to
a fairly high degree of precision, and is also constant
over extended time intervals. Such stability and ease of
measurement is theoretically well-suited to use in model
parameterization and calibration, and is convenient for
study in dynamic system models.

Unfortunately, many model formulations for vapor
compression cycles demonstrate significant variations in
the total system charge (Cecchinato and Mancini, 2012)
that do not correspond to observed behavior in experi-
mental systems. This is significant for a few reasons;
perhaps the most important of these is that the dynam-
ics associated with the variations in the cycle charge will
be coupled to the other system dynamics and introduce
aberrant behavior that would not be observed in an exper-
imental system. In addition, the dynamics of the refrig-
erant mass may also be important of themselves, particu-
larly as pertains to ongoing efforts to develop cycles with
minimized refrigerant charge (Corberan et al., 2011). Fi-
nally, the relative ease and precision with which the re-
frigerant mass can be measured, particularly in relation
to other quantities such as the specific enthalpy, can be
invaluable in calibrating dynamic models of these sys-
tems to experimental data.

One contribution to the related field of evapora-
tor charge management was made by Cecchinato and
Mancini (2012), in which the authors develop a moving-
boundary formulation of a single evaporator that con-
serves refrigerant mass. Previous work related to the
dynamics associated with the cycle charge also includes
that of Bonilla et al. (2012), in which the authors study



the effect of system oscillations and numerical instabil-
ity resulting from variations in the density in an evap-
orator. Other work with a similar focus includes that
of Tummescheit (2002), which discusses both chattering
(oscillations around a phase boundary) and the selection
of different state variables due to different parameteriza-
tions for the equations of state for various fluids.

There are two primary objectives of this paper: ex-
ploring the causes of the variations in the cycle charge,
and developing an alternative modeling approach that
conserves refrigerant mass. This study will be done via
the use of a simplified cycle model, developed in Mod-
elica, that eliminates extraneous complexity yet main-
tains the salient characteristics of models that cause vari-
ations in the cycle charge. While common cycle mod-
els have many important additional characteristics, such
as the use of detailed heat transfer or frictional pres-
sure drop correlations, these characteristics are not es-
sential to the analysis of, or solution to, the variations
in the cycle charge. One additional effect that is signif-
icant for experimental systems but has been neglected
for this initial study is that of the refrigerant oil; while
some of the refrigerant charge in experimental systems
is inevitably dissolved in the oil and a charge inventory
that ignores this effect will inevitably be lower than ex-
perimentally observed system charge, the challenges in-
herent in modeling the refrigerant-oil interactions and
the need for initial work in this area elicited a focus on
single-component working fluids.

Following this introduction, Section 2 discusses the
causes of the variation in the cycle charge in the context
of the finite volume pipe model, as well as a method of
eliminating these variations. Section 3 presents a discus-
sion of the construction and implementation of the com-
ponent models used in the simplified cycle models which
are both conservative and nonconservative, as well as an
approach for initializing these models to achieve a spec-
ified cycle charge. The results of simulating these modi-
fied models to eliminate the fluctuations in cycle charge
are discussed in Section 4, while the final section sum-
marizes the work presented in the paper and suggests fer-
tile areas for exploration future work.

2 Cycle Mass Variation

Basic vapor compression cycles consist of a compressor,
an expansion valve, and two heat exchangers. Common
simulation architectures are designed to take advantage
of the different timescales for the dynamics of the differ-
ent components; since the time constants of the compres-
sor and expansion valve are such smaller than those of
the heat exchangers, algebraic models are used for these
components, and dynamic models are used for the heat
exchangers. One common type of models for the heat
exchanger dynamics used in this research are so-called
finite volume models, which use the method of lines to

discretize the partial differential equations (PDEs) de-
scribing the mass, momentum, and energy conservation
in the system. The resulting model formulation consists
of a set of ordinary differential equations (ODEs) that
can be integrated forward in time to study the dynam-
ics of the system, as well as a set of algebraic constraints
including those introduced by the compressor and expan-
sion valve models. While the high complexity of the fi-
nite volume models makes them somewhat slower than
other heat exchanger modeling approaches, their abil-
ity to describe spatial variations in the heat exchanger
behavior has made them quite popular (Elmqvist et al.,
2003; Franke et al., 2009; Laughman, 2014).

As is the case with the development of any physical
system model, it is essential to clearly define the pur-
pose for which a model is constructed to ensure that it
uses an appropriate set of assumptions to describe the
desired behavior. Since the behavior of the refrigerant
mass in the cycle are the focus of this research, the mod-
els constructed in this paper only describe the behavior
of the working fluid in the pipe, rather than the dynam-
ics of the coupled primary fluid / tube wall / secondary
fluid system of a prototypical air-source vapor compres-
sion cycle. The conservation equations were also sim-
plified by neglecting both gravitational forces and ax-
ial heat conduction in the direction of the fluid flow.
Other model assumptions used in this work include that
of one-dimensional pipe flow, thermodynamic equilib-
rium in each discrete volume of the refrigerant pipe at
each instant in time, and a homogeneous flow field in the
two-phase region, meaning that the liquid and vapor ve-
locities are equal. These assumptions were employed to
avoid additional complexity in the models in an effort to
focus on the underlying causes of variations in the cycle
mass.

Under these assumptions, the PDEs describing the
conservation equations for a volume of fluid in the re-
frigerant pipe are

∂ (ρA)
∂ t

+
∂ (ρAv)

∂x
= 0 (1)

∂ (ρvA)
∂ t

+
∂ (ρv2A)

∂x
=−A

∂P
∂x
−Ff (2)

∂ (ρuA)
∂ t

+
∂ (ρvhA)

∂x
= vA

∂P
∂x

+ vFf +
∂Q
∂x

, (3)

where additional information about the symbols and
nomenclature used in these equations can be found in
the table at the end of this paper. The Reynolds transport
theorem can be used to relate the changes in state for a
control volume of fixed dimension to the the fluid flow-
ing into and out of that control volume. The resulting
expressions can then be discretized to generate a set of



ODEs, e.g.,

d(ρ jVj)

dt
= ṁk− ṁk+1 (4)

d(ṁil)
dt

= ρ jv2
jA j−ρ j+1v2

j+1A j+1+

A j +A j+1

2
(Pj+1−Pj)+Ff ,i (5)

d(ρ ju jA j)

dt
= Ḣk− Ḣk+1+

v jA j(Pj+1−Pj)+ vFf ,i + Q̇ j, (6)

where the set of ODEs corresponds to the number of vol-
umes used to subdivide the length of the refrigerant pipe,
and the indices refer the fact that we are using a stag-
gered flow grid (Patankar, 1980). In these equations, the
i indices are referred to the momentum grid, the j indices
are referred to the thermal grid, and the k = j+1 indices
refer to the boundaries of the thermal grid. In addition,
the term Ḣk is defined as

Ḣk = ṁkh̄upstream, j, (7)

and the mixed-cup specific enthalpy h̄ is equal to the in
situ specific enthalpy under the homogeneous flow as-
sumption (Laughman, 2014).

Thermodynamic property relations also play an im-
portant role which is complementary to the differen-
tial equations of fluid motion. These property rela-
tions, which are also algebraic, describe the relations
between the intensive and extensive fluid properties for
a given volume of fluid in thermodynamic equilibrium.
These properties include temperature, pressure, specific
enthalpy, and density, among many others. As a result
of the Gibbs phase rule, there are two degrees of free-
dom for a single-component pure fluid when there is only
one phase present, so that knowledge of two intensive
properties is sufficient to determine any other property.
When there are two-phase flows, there is only one degree
of freedom, but the specification of an intensive mixture
property is also needed to determine the state of the two-
phase mixture (Bejan, 2006). For example, the specifi-
cation of pressure P and mixture specific enthalpy h will
theoretically allow the calculation of any other properties
in the thermodynamic phase space.

The calculation of thermophysical properties for dy-
namic simulation generally needs to be very fast and ac-
curate, due to the number of function evaluations used
in a typical system model. As a result, the use of
standard equations of state is discouraged in favor of
other interpolating methods, such as cubic polynomials
or splines (Aute and Radermacher, 2014). Such methods
use function approximation to describe each of a set of
desired properties as a function of a much more limited
set of properties that are calculated at each time step in
the simulation. Many thermophysical property routines

for refrigerants use P and h as coordinates in the func-
tion approximation space to quickly calculate the variety
of necessary properties.

The construction of a dynamic model of a refrigerant
pipe must take into consideration both the structure of
the equations of fluid motion, as well as the implementa-
tion of the thermophysical property calculation methods,
to generate a computationally efficient simulation. The
selection of an infelicitous set of coordinates in which
to integrate the conservation equations 4-6 can result in
the generation of a large set of nonlinear equations that
must be solved to calculate the fluid properties at every
time step and for every fluid volume, resulting in poten-
tial numerical and practical challenges.

The most common approach taken in this regard is the
selection of pressure P and specific enthalpy h as the state
variables for the equations of motion, since these are of-
ten also used as the coordinates for calculating the fluid
properties. The derivatives of M(P,h) and U(P,h) in the
above equations can thus be written as

dM
dt

=V
(

dρ(P,h)
dt

)
(8)

=V

(
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(11)

The use of these property relations, along with the
stateSelect attribute, can help the Modelica compiler
to select P and h as the state variables for the model. By
selecting these properties as state variables, they can be
integrated by the solver used in a given Modelica tool,
such as DASSL or Radau IIa.

The selection of a set of coordinates for the system can
have a significant impact on many other variables of the
system. One particular variable that is strongly affected
by this choice of state variables is the total mass of the
system Mtotal . Since no mass is stored in the compres-
sor or expansion valve models, an expression for Mtotal
can be developed by summing all of the masses for the
individual control volumes in the pipe model, e.g.,

Mtotal = ∑
k

ρkVk = ∑
k

ρk(P,h)Vk. (12)

Because the integration of the state variables results in
some error, however, it is important to note that a more
accurate description of this sum might be

Mtotal = ∑
k

ρ̂k(P+ ε,h+ ε)Vk, (13)

where ε is the error tolerance of the integration rou-
tine and ρ̂ represents the numerical approximation of



ρ . While these integration errors are not problematic in
many fluids for which the relation between P, h, and ρ

is nearly linear, two-phase refrigerant flows experience
large changes in density as the fluid passes from the liq-
uid region into the two-phase region. These large den-
sity derivatives can effectively amplify small deviations
in either P or h, resulting in large changes in the density
between subsequent time steps. Consequently, small er-
rors in the integration of both of these quantities can ac-
cumulate quickly and lead to significant and unexpected
changes in the total system mass.

Further consideration of Equation 12 suggests an al-
ternative choice of state variables that can reduce these
undesirable changes in the refrigerant mass; since the
ultimate objective of reducing nonphysical variations in
the system charge is equivalent to reducing the errors in
the cell density calculations, the selection of ρ as a state
variable will allow the integrator to minimize the errors
in the density directly, rather than through ρ(P,h). While
this choice may appear to be unconventional because of
the potential for numerical chattering caused by the large
density changes that accompany the movement of the
fluid state across the saturated liquid line, the choice of P
and ρ as state variables will eliminate the amplification
of errors in the density calculation, resulting in a corre-
sponding reduction in the variation of the total system
mass.

The alternative formulation of the state variables re-
sults in the following expressions for the derivatives of
M(P,ρ) and U(P,ρ) for each control volume, e.g.,

dM
dt

=V
dρ

dt
(14)
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d(ρu(P,ρ)V )

dt
(15)
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ρ
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−1

)
dP
dt

+

(
ρ

∂h
∂ρ
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P
+h
)

dρ

dt

]
.

(16)

As might be expected, the selection of ρ does also im-
pose additional costs to the simulation. Perhaps the most
significant of these is that the use of ρ as a state variable
will result in smaller time steps because of the large val-
ues of the derivatives at low static qualities of the flow.
In addition, the selection of these state variables will also
have an effect on the final set of equations that are gener-
ated because the change in coordinates will result in the
construction of a different set of equations to calculate
the remaining fluid properties, such as the calculation of
h(P,ρ). In the case that these equations are nonlinear, the
simulation time could also be longer than would be for
the case with the selection of the original state variables.
However, these costs may be outweighed by the benefit
of having a constant cycle charge.

Another alternative method for describing the dynam-
ics of the differential control volume involves expanding
the number of state variables to include pressure, specific

enthalpy, and density. While this approach does result in
a larger number of state variables, it has the advantage
of simultaneously minimizing the variations in system
charge while enabling the use of P and h for calculat-
ing other refrigerant properties. Such a method uses the
same differential equations as the (P,ρ) model, but also
includes the additional ODE

dh
dt

=
∂h
∂P

∣∣∣∣
ρ

dP
dt

+
∂h
∂ρ

∣∣∣∣
P

dρ

dt
. (17)

It is also important to note that the set of property
derivatives ∂h/∂P and ∂h/∂ρ from Equations 14 and 16
do not need to be separately calculated in the property
routine to use P and ρ as state variables. The original
set of property derivatives can instead be manipulated to
provide the needed derivatives, i.e.,

∂h
∂P

∣∣∣∣
ρ

= − ∂ρ

∂P

∣∣∣∣
h

∂h
∂ρ

∣∣∣∣
P

(18)

∂h
∂ρ

∣∣∣∣
P

=
1

∂ρ

∂h

∣∣∣
P

. (19)

3 Mass Conserving Models

A simplified cycle model, described in the following
section, was developed to evaluate the efficacy of these
different approaches at maintaining a specified cycle
charge. Details about the components and construction
of this test cycle model model will be discussed in this
section, as well as the means of initializing this cycle to
achieve a specified system charge.

3.1 Component Models

The simplified cycle model developed in this section in-
cludes three components: a refrigerant pipe, a pump, and
an “enthalpy adjuster”. These components were used to
create a system cycle model which maintained mass and
energy balances. While the main focus of this work is
the refrigerant pipe, the pump is needed to define a re-
lation between the mass flow rate and the pressure drop,
so that these variables can be controlled and varied to ex-
amine their effect on the total cycle mass. An additional
component, referred to as an enthalpy adjuster, was also
used to enforce the conservation of energy throughout
the system; this component included no pressure drop,
but only modified the enthalpy of the working fluid flow-
ing through it so that energy was conserved over the cy-
cle. Neither the pump nor the enthalpy adjuster stored
any refrigerant mass; consequently, these components
had no state and imposed only algebraic constraints on
the system to achieve a desired system balance point.
The state variables were therefore only associated with
the refrigerant pipe.



A simplified pipe model, governed by the equations
described in Section 2, was developed to test the impact
of the state variable selection on the dynamics of the cy-
cle charge. In addition to the governing ODEs, these
models also required the inclusion of a set of closure
relations describing the heat transfer and the frictional
pressure drop. An ideal heat transfer connection was
assumed for the sake of simplicity, so that the thermal
energy was directly added to the refrigerant stream in
each control volume, rather than being governed by the
temperature gradients between the refrigerant pipe wall
and the bulk fluid. A simplified momentum equation that
only accounts for the steady-state frictional pressure drop
in both the single and two-phase regions was also as-
sumed, in which

∆P = K
∆P0

ṁ2
0

ṁ2, (20)

and the nominal values of ∆P0, ṁ0, and the adjustable
constant of proportionality K were set at the top level of
the model. A numerical regularization method was also
implemented to improve the numerical robustness of the
model for small values of the mass flow rate and pressure
drop (Casella et al., 2006).

One feature of the pipe model that was particularly
important to this work was the ability to use different
models for the relations between the property differen-
tials. This was achieved by implementing the set of dif-
ferential models as a replaceable model inside the larger
pipe model. Each pipe model includes its own differen-
tial volume model, but computes the same terms dMs and
dUs. While each of these underlying differential models
implements different relationships between the proper-
ties, the instantiating pipe model only needs to equate the
differentials of the mass and internal energy to the terms
on the right hand side of Equations 4-6. This is demon-
strated in the following simplified excerpt from the re-
frigerant pipe model.

// DIFFERENTIAL VOLUME MODEL
replaceable model DifferentialModel =

DifferentialModel_ph
constrainedby

PartialDifferentialModel;

DifferentialModel diffVolume(
redeclare Medium=Medium,
n=n,
fluidVolumes=fluidVolumes,
ps={mediums[k].p for k in 1:n},
hs={mediums[k].h for k in 1:n},
ddhps={mediums[k].ddhp for k in 1:n},
ddphs={mediums[k].ddph for k in 1:n},
stateChoice=stateChoice);

equation
dms = diffVolume.dms;
dUs = diffVolume.dUs;

By further establishing a PartialDifferential-
Model from which all of these differential models can
inherit, the differential volume model can be replaced
while maintaining some moderate restrictions on the pos-
sible types of replacement, enabling the state variables to
be changed without changing any of the other equations
in the pipe model.

This implementation of these differential vol-
ume models also required the careful use of the
stateSelect attribute, as the selection of states was
based upon the choice of state variables managed with
the differential volume model. A ThermoStates
enumeration with literals including states_ph,
states_pd, and states_phd was therefore used to
coordinate the use of a given differential volume model
and the corresponding state selection attribute for the
Modelica compiler.

A pump model and an enthalpy adjuster model were
also created to study the closed loop cycle dynamics. The
pump model used a scaled version of the basic relation-
ship between mass flow rate and pressure drop (Equa-
tion 20) to calculate the pressure rise across the pump for
the nominal pump speed that is inversely proportional to
the pressure drop for pipe model including a given num-
ber of control volumes, e.g.,

ṁ =

(
N

Nnom

)
ṁ0
√

∆P0√
∆P
(Nnom

N

)2
. (21)

As no mass was stored in this component, the mass flow
rates into and out of the pump were equal, and the energy
change across the pump was a quadratic function that
compensated for the change in enthalpy across the pipe
due to pressure loss. This term was much smaller than
the energy change in the pipe due to the heat flux into
the pipe. As was the case for the pressure drop model of
the pipe, regularization methods were also used to com-
pensate for numerical singularities.

An analogous enthalpy adjuster model was also cre-
ated to compensate for the change in the specific en-
thalpy across the pipe due to the applied heat flux. This
model included no pressure drop or mass storage, and
only modified the specific enthalpy for the working fluid
travelling to include the effect of the total applied thermal
energy gain as the fluid travels through the pipe. Con-
sequently, the equations describing the simplified model
used to fulfill the energy balance for the overall system
are

ṁout = ṁin (22)
Pout = Pin (23)

hout = inStream(hin) + Q̇in/min (24)

hin = inStream(hout) − Q̇in/min. (25)

This model is very similar to that of
Modelica.Fluid.Pipes.StaticPipe, but also



includes a change in the outlet enthalpy corresponding
to the applied heat gain. Stream connectors and reg-
ularization methods around zero mass flow rate were
also used in these individual components to improve the
numerical robustness of the simulation.

3.2 Initialization

The problem of achieving a specified constant charge for
a cycle simulation can be effectively split into two related
problems: the initialization of the simulation so that the
cycle mass starts at the specified value, and the main-
tenance of the cycle charge at that value over the dura-
tion of the simulation. While the previous sections of
the paper address how to maintain the cycle charge at
a constant value, this brief section addresses the means
by which a specific value of the cycle charge may be at-
tained. In general, the total refrigerant mass contained
in the cycle at initialization depends on the initial refrig-
erant state in each volume of the system. Because the
refrigerant state at zero mass flow rate is relatively easier
to determine, the system was initialized as this condition
so that the pump speed was zero and there was no heat
flux applied to the pipe or the enthalpy adjuster, and then
these inputs were turned on after the conclusion of the
initialization transient.

The initial conditions for the system were developed
using basic thermodynamic reasoning. The specification
of a value of cycle charge Mtotal for a given system vol-
ume V effectively specifies the average density of the
fluid in the system ρinit ; this specifies one variable that
determines the state of the system. Independent specifi-
cation of one other variable for the system, such as the
system pressure Pinit at zero pump speed and zero heat
flux, determines the state of the refrigerant in the sys-
tem. The specific enthalpy hinit for every component and
control volume can therefore be directly calculated from
this refrigerant state in a set of initial equations. Since it
is common to initialize most components with pressure
and specific enthalpy, these calculated initial values for
the pressure and specific enthalpy of the working fluid
were then used to initialize all of the components in the
system to achieve the desired cycle charge.

4 Results

The models described in Section 3 were implemented in
Modelica and tested to evaluate the efficacy of the pro-
posed strategy for maintaining a constant cycle mass.
Three related models were created with identical geo-
metric parameters and input waveforms. These models
used the R410a refrigerant property model included in
the AirConditioning/ThermoFluidPro library, written by
Modelon (Modelon AB, 2015), as well as the simple
relationship between frictional pressure drop and mass
flow rate described in Equation 20, where ∆P0 = 500 Pa

and ṁ0 = 10 g/s. Other salient parameters of the model
are included in Table 1. These models were tested in sim-

Table 1. Common parameters for the test cycle models.

Parameter Name Value

Pipe diameter 8 mm
Pipe length 12 m
Maximum heat input 130 W/cell

(3120 W total)
Initial pressure 1 MPa
Initial system charge 150 g
Number of pipe control volumes 24

ulation using Dymola 2015 FD01, and were executed on
an i7 PC with 8G of RAM.

Figure 1. Inputs of pump speed (upper) and heat input (lower)
applied to the test cycle.

Because the variations in the cycle charge are related
to phase transitions in the fluid volumes across the liq-
uid saturation line, a series of inputs was designed to re-
peatedly produce these transitions in an effort to induce
variations in the cycle charge. These input waveforms,
both for the pump speed and the heat source, are illus-
trated in Figure 1. After the cycle was initialized with the
specified refrigerant mass and zero mass flow rate, the
pump speed was initially ramped up at 50 seconds from
0 to 1800 rpm over 5 seconds. The resulting transients
were then allowed to subside before ramping up the heat
source at 350 seconds from 0 to 3120 W over 100 sec-
onds, with the heat being distributed equally over each
of the 24 control volumes in the pipe. Finally, a ramp
sawtooth waveform was applied to the pump speed to
repeatedly cause transitions across the liquid saturation
line; the resulting pump speed had a minimum value of
1800 rpm, a maximum value of 2800 rpm, a period of 50
seconds, and a duty ratio of 0.052. All of the simulations
used identical input waveforms, and were integrated by
using the DASSL solver.



Figure 2. Total cycle mass for three different numerical toler-
ances with identical applied inputs.

The effect of this waveform on the model using P and
h as state variables are illustrated in Figure 2. While
many notable features are evident, perhaps the most
striking is the amount of variability in the total cycle
charge. Such large changes in the total cycle charge can
be quite problematic, as they will have a significant im-
pact on the behavior of the cycle. The amount of varia-
tion in the total cycle mass is strongly correlated with the
tolerance of the solver, suggesting that it is indeed related
to the integration tolerances. Moreover, the changes in
the mass inventory usually occur by steps, suggesting
the presence of a discontinuity that gives rise to these
changes.

Figure 3. Static quality x at the first, second, and third control
volumes in the pipe during the increasing portion of the pump
speed waveform, as well as the total system charge at the same
moment.

Figure 3 illustrates the relation between the discon-
tinuity caused by the changes in the static quality x =
Mvap/Mtotal for control volumes 1, 2, and 3 and the varia-
tions in the total system charge. The dashed line drawn at
t = 603 seconds shows a strong correlation between the

time that the static quality for all three of these control
volumes goes above zero and the time of the step discon-
tinuity in the total system charge. It is also particularly
interesting to note that while the quality of the third con-
trol volume increases above zero a number of subsequent
times in this plot, there are no other variations in the to-
tal system charge. This phenomenon suggests that the
variations in the refrigerant charge are related not only to
a transition across the liquid saturation line, but also to
the rate and duration of this transition. The small magni-
tude of the abrupt excursions over x = 0 for control vol-
umes 1 and 2 which are associated with large changes in
the refrigerant density, as well as the corresponding large
changes in the cycle mass, is compatible with the asser-
tion that the variations in the total system charge could
be caused by the errors in the state variables.

Figure 4. Cycle mass inventory for M(P,ρ) and M(P,h,ρ)
models, with an integration tolerance of 1e-04.

In comparison to the large variations in the total sys-
tem charge exhibited in Figure 2 for the system using
(P,h) as state variables, the minuscule variations present
in Figure 4 demonstrate that the models that use either
(P,ρ) and (P,h,ρ) as state variables have much improved
behavior. The variations in the mass for both of these cy-
cles are on the order of 0.25 milligrams, or 1.7×10−4%
of the total cycle charge. This compares quite favorably
to the output of the simulation of the (P,h) model with
the same tolerance, which resulted in an 82% change in
the total cycle charge. Further reductions in the error tol-
erance for the (P,ρ) and (P,h,ρ) simulations will result
in a corresponding reduction in the variation in the total
cycle charge.

Additional insights can be gained from the informa-
tion contained in Table 2, which compares the errors in
the simulations and the total time required to run each
simulation for different sets of state variables and er-
ror tolerances. The errors in this table were generated
by calculating the maximum deviation between the total
system charge and 150.0 grams, which was the specified
charge. As might be expected, the error in the total sys-
tem charge is far greater for the model with the (P,h)



Table 2. Max and percentage errors and CPU time for different
choices of state variables and integrator tolerances.

State Var Tol Max Error % Error Time

M(P,h) 1e-4 -122.6 g 81.7% 277 s
1e-5 3.96 g 2.6% 127 s
1e-6 -19.3 g 12.8% 1925 s

M(P,ρ) 1e-4 1.9e-4 g 1.2e-4% 766 s
1e-5 2.0e-4 g 1.3e-4% 1250 s
1e-6 2.0e-4 g 1.3e-4% 1374 s

M(P,h,ρ) 1e-4 2.0e-4 g 1.3e-4% 137 s
1e-5 2.0e-4 g 1.3e-4% 315 s
1e-6 2.0e-4 g 1.3e-4% 450 s

state variables than for the other models. One particu-
larly striking and counterintuitive trend is the decrease in
the simulation time for the (P,h) models that accompa-
nies the reduction in the tolerance from 1e-4 to 1e-5; this
can be attributed to the stiffness of the system of equa-
tions during the abrupt changes in the mass inventory in
the simulation with the higher tolerance. It is also in-
teresting to note that the simulation time for the (P,h)
model with a tolerance of 1e-6 is much greater than for
any of the other simulations for any combination of state
variables. This can potentially be attributed to the pres-
ence of so many discontinuities in the simulation wave-
form due to the changes in the refrigerant mass; since the
solver must take very small time steps past each discon-
tinuity to maintain the specified error tolerance, the sum
effect of these discontinuities is that the average time step
of the solver must be much smaller than might otherwise
be necessary.

Comparison of the simulation time of the (P,h) mod-
els to the (P,ρ) models indicates that the (P,ρ) models
are slower, as expected, because the large variations in
refrigerant density cause the solver to take correspond-
ingly smaller time steps. Finally, it is also evident from
Table 2 that the (P,ρ) and (P,h,ρ) methods have identi-
cal accuracy for practical intents and purposes, but the
time required to run the (P,h,ρ) simulations is much
smaller than that of the (P,ρ) simulations. This can
potentially be attributed to the nonlinear equations that
must be solved to calculate h(P,ρ) when h is not used as
a state variable.

5 Conclusions and Further Work

Over the course of this paper, the causes of variations in
the total system charge were studied and two alternative
selections of the state variables that can essentially elim-
inate such variations were proposed. The effect of these
different state variable selections was demonstrated on
a simplified cycle model, and the manifestations of the
underlying causes for the cycle variation when P and
h are solely used as state variables were examined by

analyzing the simulation output. While both the (P,ρ)
and (P,h,ρ) models had similar accuracy for simulating
the total system charge, the (P,h,ρ) models simulated
much faster because h(P,ρ) does not have to be calcu-
lated when it is also included as a state variable. More-
over, though one ostensible motivation for using (P,h)
as state variables is the speed by which the property cal-
culations can be executed, the dynamics associated with
the variation in total system charge can somewhat iron-
ically result in simulations that take longer to run than
simulations with (P,ρ) as state variables because of the
small step sizes required. Models for refrigerant pipes
that include either (P,ρ) or (P,h,ρ) as state variables
could therefore result in simulations that are both faster
and more accurate than might be possible with a choice
of (P,h) as state variables.

The results obtained in this work may be extended in
a number of directions for future investigation. As sug-
gested in the introduction, an extension of these meth-
ods to models which describe the behavior of refriger-
ant/oil mixtures would be quite valuable. In addition,
an error analysis to rigorously demonstrate the causes
of these cycle variations would clarify the observations
discussed in this paper, and a study of the energy con-
servation for the system might also provide interesting
results. While it is expected that these general trends
would hold for different solvers, choices of the nominal
attributes of the states, or reference values of the specific
enthalpy, further work to explore such trends would be
beneficial. Additional study of alternate thermodynamic
coordinates might also yield fruitful results; for example,
specific entropy is sometimes used to decouple the hy-
draulic and thermal equations describing fluid flow, and
the selection of this or alternate coordinates may also
be relevant to these applications. We hope that future
studies of these and associated phenomena will continue
to yield new insights into these complex and fascinating
systems.

Nomenclature

A cross-sectional area
Ff frictional pressure drop
Ḣ enthalpy flow rate
K proportionality constant for ṁ→ ∆P relation
M mass
N pump speed
P pressure
Q̇ heat transfer rate
U internal energy
V volume
h in situ specific enthalpy
h̄ “mixed-cup” specific enthalpy
ṁ mass flow rate
t time
u specific internal energy



v velocity
ρ density
ρ̂ numerical approximation of density
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