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Abstract
We present a statistical inference based multi-pilot aided CPE algorithm and analyze its
performance via simulations. We experimentally verify LDPC coded back-to-back perfor-
mance using 10 GBd DP-64QAM and DP-256QAM modulation, with transmitter and receiver
linewidths of 100 kHz.
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Abstract We present a statistical inference based multi-pilot aided CPE algorithm and analyze its
performance via simulations. We experimentally verify LDPC coded back-to-back performance using
10 GBd DP-64QAM and DP-256QAM modulation, with transmitter and receiver linewidths of 100 kHz.

Introduction
The need to increase spectral efficiency in coher-
ent optical transmission systems has led to signif-
icant interest in high order quadrature amplitude
modulation (QAM) formats. One of the difficulties
associated with dense modulation formats is their
sensitivity to phase noise, and carrier phase es-
timation (CPE) has become an increasing prob-
lem. Blind CPE algorithms, such as the Viterbi
and Viterbi algorithm1, are unsuitable for sys-
tems employing dense modulation formats. Con-
sequently, a variety of approaches for CPE have
been proposed. The blind phase search (BPS)
algorithm2 provides excellent performance but at
very high computational cost. Alternatively, low
complexity feedback only decision-directed CPE
(DD-CPE)3 requires sequential processing on a
symbol-by-symbol level. A two-stage approach4

has been studied recently, first coarsely estimat-
ing the phase with one algorithm and then after
phase unwrapping refining the estimates with a
more accurate method. Machine learning meth-
ods such as particle filtering8 for amplitude and
phase noise estimation have also been recently
explored.

In this paper, we analyze the performance of
our recently proposed multi-pilot aided CPE algo-
rithm6. This method is based on statistical infer-
ence, is of moderate complexity, and is suitable
for block-based parallel implementation in hard-
ware. We test this method with DP-64QAM and
DP-256QAM via simulations and experiments.

Multi-Pilot CPE Algorithm
We assume all channel impairments except
phase noise are compensated and the received
signal at discrete time n is given by

yn = xne
jθn + vn, vn ∼ CN (0, σ2), (1)

where xn is the transmitted symbol, σ2 is the vari-
ance of the additive Gaussian noise and θn is the
phase noise modeled as a Wiener process, i.e.,

θn − θn−1 ∼ N (0, σ2
p), σ2

p = 2π∆νTs, (2)

where ∆ν is the combined laser linewidths and Ts
is the symbol duration.

The pilot symbols aiding CPE are uniformly in-
serted into the data sequence every N informa-
tion symbols. The multi-pilot CPE algorithm es-
timates the phase of an information symbol by
employing K pilots preceding and K pilots follow-
ing that symbol. An example for K = 2 is shown
in Fig. 1, where CPE of information symbols be-
tween pilots p2 and p3 is performed with the aid of
pilots p1, p2, p3 and p4.

A block diagram of the multi-pilot CPE al-
gorithm is shown in Fig. 2. The algorithm
starts with approximating the posterior distribu-
tion p(θpk |xpk , ypk) of the phase of each pilot
with Gaussian distribution whose mean µpk is the
maximum likelihood phase estimate and the vari-
ance σ2

pk
is approximated as an observed Fisher

information5. The initial phase estimates are then
smoothed by accounting for phase noise statis-
tics (2). This is achieved by processing the pos-
teriors p(θpk |xpk , ypk), k = 1, . . . , 2K, through a
Kalman filter, yielding means and variances of
Gaussian posteriors of pilot symbol phases. We
note that 2K = 4 has been used in this paper,
minimizing delay and complexity in the Kalman fil-
ter.

The phase θn of the n-th information symbol
in a block is Gaussian distributed, with mean
µn which is directly evaluated from the Gaussian

Fig. 1: Multipilot approach for 2K = 4.



Fig. 2: Block diagram of the CPE of an information block aided with 2K pilots.

posteriors corresponding to pilots pK and pK+1.
These means are initial phase estimates and are
refined by employing the Expectation Maximiza-
tion (EM) algortihm on each symbol separately in
parallel. The EM routine for the n-th information
symbol is initialized with θ̂(0)n = µn. The k-th itera-
tion evaluates the likelihood p(xn|yn, θ̂(k−1)

n ) given
the phase estimate θ̂

(k−1)
n from the previous iter-

ation. The phase θ̂
(k)
n is then updated from the

expected value of the transmitted symbol and the
received signal yn. Two iterations of the EM al-
gorithm were used. Finally, the phase estimates
were filtered with a moving average FIR filter.

Simulation
We simulated the variation of required signal-to-
noise ratio (RSNR) to achieve a target BER of
10−2. An additive Gaussian white noise (AWGN)
channel was used, with purely Lorenzian phase
noise. A comparison is made between the al-
gorithm presented in this work, and the decision-
directed carrier phase estimation (DD-CPE) algo-
rithm described in3.
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Fig. 3: RSNR to achieve target BER of 10−2 for 64QAM.

We note that the DD-CPE operates on a symbol-
by-symbol basis, and is unsuitable for hardware
implementation due to the requirement of sym-
bol rate feedback. The results of these simu-
lations are shown in Fig. 3 and 4 for, respec-
tively, 64QAM and 256QAM. The RSNR corre-
sponding to the AWGN channel is also indicated
in the figures. As can be observed, when 64QAM

is used, the proposed method with pilot inser-
tion ratio (PIR) of 1% outperforms the DD-CPE.
However, when 256QAM is used, a PIR of 2% is
needed to achieve acceptable performance in the
considered range of ∆νTs.
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Fig. 4: RSNR to achieve target BER of 10−2 for 256QAM.

Experimental Validation
CPE performance was then validated experi-
mentally in a back-to-back configuration for DP-
64QAM and DP-256QAM at 10 GBd. The ex-
perimental setup used is shown in Fig. 6. A pair
of digital-to-analog convertors (DACs) operating
at 20 GSa/s were used to generate 64QAM and
256QAM signals at 10 GBd, including 1% pilot
symbols. These signals were filtered with a root-
raised cosine (RRC) filter with a roll-off factor of
0.1%. After amplification, these signals were ap-
plied to an I/Q modulator operating in the linear
regime. The optical carrier was generated by an
external cavity laser, with a linewidth of 100 kHz.
Polarization-multiplexing was emulated passively
in the optical domain with a polarization sensitive
delay. Noise loading was performed by coupling
in a variable power source of amplified sponta-
neous emission (ASE) noise. A discrete compo-
nent coherent receiver was used with a bandwidth
of 70 GHz, while the local oscillator was an ECL
with linewidth of 100 kHz. Quantization was per-
formed using a oscilloscope with 63 GHz band-
width and 160 GSa/s. Post-processing was then
performed offline.
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Fig. 5: Setup used for experimental validation.

Our receiver DSP consisted of conventional
deskew and normalization blocks, 4th power intra-
dyne frequency estimation, and matched RRC fil-
tering. A 2×2 multiple input multiple output equal-
izer was used to compensate for polarization ro-
tation, residual intersymbol interference removal
and timing phase recovery. The equalizer was ini-
tially radially trained for good convergence, before
being switched to pilot-aided operation. A con-
stant modulus error term was calculated based
on the pilot symbols only, with updating performed
using the least mean square algorithm and an er-
ror term averaged over 10 pilot symbols. Carrier
phase estimation was then performed as previ-
ously described. We then calculated bit-wise log-
likelihood ratios (LLRs) using a clustering algo-
rithm to account for transmitter distortion. A low-
density parity check (LDPC) code with rate 0.78
(28.2% overhead) was then decoded using the
sum-product algorithm. We assume the use of
an outer hard-decision code with rate 0.93 (7%
overhead) and BER threshold of 3 × 10−3. The
systems under consideration therefore have net
bit rates of 86.5 Gb/s and 115.5 Gb/s for DP-
64QAM and DP-256QAM respectively. This cor-
responds to intra-channel spectral efficiencies of
8.65 b/s/Hz and 11.55 b/s/Hz respectively, while
the total overhead is 38.6%.

The results of our back-to-back characteriza-
tion are presented in Fig. 6. We note that both
formats exhibit a BER floor – around 3 × 10−4

for DP-64QAM and 10−2 for DP-256QAM. How-
ever, it was noted that we were able to achieve
error-free LDPC decoding over 65,536 symbols
for both DP-64QAM and DP-256QAM at OSNRs
of 17 dB and 23 dB respectively. As we have pre-
viously noted7, performance in the high spectral
efficiency asymptote may be limited by electrical
impairments rather than optical noise. We there-
fore note that there are OSNR penalties of 1.9 dB
and 2.9 dB at the thresholds of DP-64QAM and
DP-256QAM respectively.

Conclusions
We have analyzed the performance of multi-pilot
aided carrier phase estimation with DP-64QAM
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Fig. 6: Experimental results for DP-64QAM and DP-256QAM
at 10 GBd, before and after LDPC decoding.

and DP-256QAM. We have noted that this al-
gorithm exhibits good performance with moder-
ate complexity and a fully parallelizable struc-
ture. Furthermore, we experimentally demon-
strated LDPC coded performance back-to-back
using 10 GBd DP-64QAM and DP-256QAM,
with transmitter and receiver laser linewidths of
100 kHz, resulting in implementation penalties of
1.9dB and 2.9dB, respectively.
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