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ASR tasks. In this work, several integration architectures are proposed and tested, includ-
ing: (1) a pipeline architecture of LSTM-based SE and ASR with sequence training, (2) an
alternating estimation architecture, and (3) a multi-task hybrid LSTM network architecture.
The proposed models were evaluated on the 2nd CHiME speech separation and recognition
challenge task, and show significant improvements relative to prior results.
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Abstract
Long Short-Term Memory (LSTM) recurrent neural network
has proven effective in modeling speech and has achieved out-
standing performance in both speech enhancement (SE) and au-
tomatic speech recognition (ASR). To further improve the per-
formance of noise-robust speech recognition, a combination of
speech enhancement and recognition was shown to be promis-
ing in earlier work. This paper aims to explore options for con-
sistent integration of SE and ASR using LSTM networks. Since
SE and ASR have different objective criteria, it is not clear what
kind of integration would finally lead to the best word error rate
for noise-robust ASR tasks. In this work, several integration ar-
chitectures are proposed and tested, including: (1) a pipeline ar-
chitecture of LSTM-based SE and ASR with sequence training,
(2) an alternating estimation architecture, and (3) a multi-task
hybrid LSTM network architecture. The proposed models were
evaluated on the 2nd CHiME speech separation and recognition
challenge task, and show significant improvements relative to
prior results.
Index Terms: noisy speech recognition, speech enhancement,
LSTM, integration, sequence training

1. Introduction
Unlike a feed forward deep neural network(DNN), a recurrent
neural network(RNN) has a feedback structure that enables the
RNN to consider previous activations when estimating the cur-
rent ones. Such property makes it especially appropriate in
modeling audio signals, which usually have strong dependen-
cies across time. Long short-term memory(LSTM) [1] is one
specially designed architecture for RNN. In an LSTM neural
network, the neuron in each hidden layer is replaced with a
special unit called memory block. The memory blocks usually
contain a self-connected memory cell to remember the temporal
state and several gates to control the information and gradient
flow. By opening and closing the gates, an LSTM network can
control the entrance of previous information into its memory
cells as well as the emittance of information out of the cells,
and thus enables itself to learn dependencies across long time
contexts, alleviating the well-known “gradient vanishing” prob-
lem of RNN.

LSTM has been successfully applied in the problem of
speech enhancement(SE). In [2], the LSTM was trained to re-
move additive noise, using noisy mel-filterbank features as in-
put and targeting a soft-mask that is used to multiply noisy spec-
tra, and reported results were much better than non-negative
matrix factorization based models. In [3], the authors further
improved the model by incorporating speech recognition in-

formation and using a phase-sensitive objective, and achieved
state of the art performance in 2nd Chime Challenge separation
task. In [4], the LSTM was applied to enhance the reverberated
speech.

The LSTM architecture has also been explored in the prob-
lem of automatic speech recognition (ASR). The LSTM is usu-
ally used as the acoustic model, where the training target is
prediction of the HMM state [5]. In [6], the authors applied
an LSTM acoustic model for a large-vocabulary continuous
speech recognition (LVCSR) task and showed that the LSTM
can achieve better performance than a DNN, using fewer pa-
rameters. In [7], a sequence-discriminative training objective
was used in addition to the cross-entropy one, achieving state-
of-art performance for LVCSR problems. In [8], the LSTM was
applied in a medium-vocabulary scenario, where the authors di-
rectly used the phoneme label as the prediction target and form
the HMM posterior with the recognized phoneme confusion
matrix, and the performance reported was also better than the
DNN baseline.

The successes of the application in SE and ASR naturally
makes the LSTM a good candidate for the problem of noisy
speech recognition, where the noisy speech is usually first en-
hanced with the speech enhancement system, then the speech
recognizer is trained with the enhanced speech. However, one
well-known issue for noisy speech recognition is that the crite-
ria of speech enhancement and speech recognition are not the
same. Therefore, it is usually not clear what kind of combina-
tion would help the overall performance the most. For example,
in [9], the authors reported, NMF-based speech enhancement
would not help a DNN-based speech recognizer.

In this work, to achieve better performance and answer
the questions above, we integrate LSTM speech enhancement
and LSTM speech recognition systems. We design and eval-
uate several network architectures for the problem of noisy
speech recognition. First, we use a pipe-line structure, where
an LSTM SE is followed by an LSTM ASR. To further im-
prove the performance, we also explore discriminative sequence
training [10, 11] for the LSTM on the medium-vocabulary sce-
nario. Second, we propose an alternative optimization scheme
between SE and ASR. The ASR uses the SE’s output to get
the enhanced speech. And the SE also uses the ASR infor-
mation for further enhancement. And finally, we propose a
multitask LSTM network architecture, in which a unified ob-
jective that considers both the SE quality and ASR accuracy
is used. The proposed models were evaluated on the medium-
vocabulary track in 2nd CHiME speech separation and recog-
nition challenge[12]. And we show that the proposed models
outperform the best reported result and a DNN baseline.



As discussed above, several related models were proposed
in previous works. In [7], LSTM was applied for cross-entropy
and sequence training, but their target is clean speech and large
vocabulary scenario and no speech enhancement was applied.
In [8], the authors were dealing with a similar problem. How-
ever, their recognition model was phoneme-based without se-
quence training, which is different from the proposed model.
To the best of our knowledge, there is no similar work to the
one introduced in this paper.

2. Bi-directional LSTM
In this section, we briefly introduce bi-directional LSTM net-
works by explaining the forward computations in a layer of
an LSTM network followed by some discussion about the fi-
nal layer processing. We consider an LSTM memory block at
nth layer with an input vector hn−1

t and output activation hn
t

at frame t (here, we omit the utterance index). Note that the in-
put vector at the first layer corresponds to the observation vec-
tor, i.e., h0

t = yt. We first define the concatenated vector of
output activation hn

t−1 at previous time frame t − 1 and the
n − 1th layer output activation hn−1

t at current time frame t
as mn

t , [(hn−1
t )>, (hn

t−1)
>]>. Then, the LSTM memory

block has a memory cell (return: ct), which are obtained from
the input gate (return: it) and forget gate (return: ft):
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immn

t +W n
icc

n
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fn
t = σ(W n

fmmn
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fcc
n
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(1)

where W and b are affine transformation parameters to be es-
timated at the training step. �, σ(·), and tanh(·) denote the
element-wise product operation, sigmoid function, and hyper-
bolic tangent function, respectively. The memory cell and input
and forget gates are calculated from the concatenated activation
vector mn

t and the cell vector cnt−1 at the previous frame. The
relationship between cnt and cnt−1 is controlled by the forget
gate fn

t dynamically, which enables to retain the long-range de-
pendency of the cell, unlike the hidden state in standard RNNs.

Once we obtain cell vector cnt , we can calculate output gate
vector on

t , and finally calculate output activation hn
t as follows:

on
t = σ(W n

ommn
t +W n

occ
n
t + bno ),

hn
t = on

t � tanh(cnt ).
(2)

A set of these equations is a basic feed-forward operation of the
LSTM memory block at nth layer. At the top layer (N ), out-
put activation hN

t is further calculated by the following affine
transformation:

ĥt = WNhN
t + bN . (3)

This final activation ĥt would be used for the regression, clas-
sification through the softmax operation, or masking function
through the sigmoid operation.

Similar to the LSTM, Bi-directional LSTM has the same
memory block as the basic unit. Instead of propagating the in-
formation in one time direction, in BLSTM layer, there are two
separated propagation sequences from the both time directions.
Therefore, unlike equation (3), the BLSTM neural network ob-
tains the final activation ĥt by using both the final activations
from the past hN→

t and future hN←
t , as follows:

ĥt = WN→h→t +WN←h←t + bN . (4)

This property enables the BLSTM network further explore the
connection within contexts, and often lead to better perfor-
mance than LSTM.

3. Pipeline Architecture
3.1. Speech enhancement

Speech enhancement LSTM and BLSTM networks are trained
to predict a real valued mask or filter function that multiplies the
noisy signal’s STFT for each time-frequency bin. This mask
function is constrained to be in the range [0, 1] similar to a
Wiener filter or ideal ratio filter by using a sigmoid activation at
the output of the network. We believe instead of direct predic-
tion of the clean spectrum, mask prediction approach is better
since it is easier to predict the mask and it fits with a sigmoid
output layer.

We use magnitude spectrum approximation (MSA) or
phase-sensitive spectrum approximation (PSA) loss functions
which were shown to be superior to the mask approximation
(MA) loss function in earlier work [2, 3]. The input to the net-
work is log-Mel-filterbank energies of the noisy signal with 100
bins which gave the best result among alternatives in [2]. The
PSA loss function for training the network is given as follows:

Lse =
1

N

∑
u,t,f

|âu,t,fyu,t,f − su,t,f |2, (5)

where the network predicts the real masking function â from the
final activation ĥ in eqn (4), and the sum is over utterances (u)
and time-frequency bins (t, f ). Here y and s represent complex
domain noisy signal and speech signal STFTs respectively. N
is the number of all frames in the training data.

Whenever used, ASR information is added to the input by
using the one-best state alignment information received from
the recognizer. The input feature used is typically an average of
the log-Mel-filterbank feature vectors aligning to each state in
the training data [3].

3.2. Cross Entropy training

After the speech enhancement step, a BLSTM-based acoustic
model is trained with enhanced feature ŝu,t. Similar to a DNN-
HMM hybrid system[13, 14], we use HMM state ru,t at frame
t in utterance u as a training target, which is obtained from the
reference with the Viterbi alignment. The cross entropy based
cost function is represented as follows:

Lce = −
1

N

∑
u,t

log p(ru,t|ŝu,t), (6)

The HMM state posterior p(ru,t|ŝu,t) is obtained from the final
activation ĥ in eqn (4) of the BLSTM with the softmax opera-
tion, i.e., p(ru,t = k|ŝu,t) = exp(ĥu,t,k)/

∑
k′ exp(ĥu,t,k′)

for state index k.

3.3. Discriminative sequence training

Different from the cross entropy objective function that mea-
sures the error at frame level, the discriminative sequence train-
ing treats the whole sequence as target in objective function.
With uth enhanced feature sequence Ŝu = {ŝu,t|t = 1, . . . }
and uth reference word sequence Wu, the objective function
based on the state-level minimum Bayes risk crition[15] is rep-
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Figure 1: The Iterative pipeline architecture

resented as follows:

Lseq = − 1

N

∑
u

log

∑
W ppseudo(Ŝu|RWu)plm(W)A(W,Wu)∑

W′ ppseudo(Ŝu|RW′)plm(W ′)
(7)

whereRW is a set of HMM state sequence given word sequence
W , and A(W,Wu) proivdes a state-level accuracy. plm(·) is a
language model, and ppseud(·) is a pseudo likelihood obtained
from the HMM state posterior p(ru,t|ŝu,t) used in eqn (6).

3.4. Iterative pipeline architecture

As mentioned above, the speech enhancement in this work re-
quires the alignment information from the data, and more ac-
curate alignment usually leads to a higher quality of speech en-
hancement. However, the alignment is obtained using an ASR
system using HMMs for modeling and the quality of alignments
depends on the recognizer. Therefore, SE and ASR in this work
depend on each other. To help this “chicken and egg” prob-
lem, we design an alternating estimation architecture. In each
iteration, we first estimate the speech enhancement given the
alignment generated from the previous iteration. Then after the
SE step, we train a cross-entropy LSTM using the enhanced
speech. Once the CE-LSTM is trained, it would be used as an
initialization of the discriminative sequence training LSTM. Fi-
nally, the new alignment is generated from the decoder. The full
process is shown in Figrue 1.

4. Multi-task architecture
One drawback of the previous architecture is that the SE step
and ASR step are independent from each other. As discussed
in section 1, the criterion for the speech enhancement and the
recognition are different. The optimized the speech enhance-
ment might not lead to the optimum word-error-rate in the
recognition step. To further explore this, we designed a multi-
task hybrid BLSTM network architecture for the SE step, which
consider both the enhancement and the recognition accuracy.
The objective function of the proposed network is

Lmulti = Lse + αLce. (8)

In (8), α is the weight for recognition. By changing the
weight, the objective could focus more on the speech enhance-
ment or recognition. As discussed in previous sections, Lse and
Lce refers to the objective function of the speech enhancement
and speech recognition. Different from the traditional neural
network, the proposed architecture consists of two objectives,
which means the actual network should have two output layers.
The network architecture is shown in Figure 2.

Shared BLSTM layer 

Noisy speech 

Recognition layer Enhancement layer α 

Figure 2: Multi-task LSTM network

5. Experiments
5.1. Data

In our experiments, all the systems were evaluated on the
medium-vocabulary track in 2nd CHiME speech separation and
recognition challenge task. The noisy data in ChiME challenge
was constructed from the Wall Street Journal dataset. The clean
16kHz WSJ data was firstly convolved with the room impulse
response to model the reverberation. Then the reverberated
speech was mixed with the recorded background noise the at
6 different SNRs from−6dB to 9dB. The training set contains
7138 utterances from 83 speakers, totaling 14.5 hours. The de-
velopment set contains 4.5 hours data, which consists of 2460
utterances from 10 speakers that are disjoint with the training
set. The test set consists of 1980 utterance from 8 speakers, 4
hours in total.

5.2. Pipeline architecture

As discussed in section 3.1, the 100-dimensional noisy logarith-
mic mel-filter bank was calculated from noisy speech for the
speech enhancement. To calculate the spectrogram, the window
size of 25 ms and a hop of 10 ms were used. To provide the ASR
information to SE, the noisy alignment was generated from the
DNN recognizer. The alignment mel-filter bank was then gener-
ated from the alignment and the state dictionary, which was the
average noisy logarithmic mel-filter bank among the training
data for each state. The final input feature for speech enhance-
ment was the concatenation of noisy logarithmic mel-filter and
alignment mel-filter bank, totaling 200 dimensions. And the
training target for SE step was selected as the phase sensitive
spectrum mask, as in [3]

We used the same network topology for the speech en-
hancement LSTM as in [3], in which two 384 BLSTM layers
were firstly applied to the input layer, followed with 2 feedfor-
ward layer with activation function of tanh and logistic to get
the final output. In the first iteration, the SE network was ini-
tialized with random Gaussian noise with mean 0 and standard
deviation 0.1. After the first iteration, the trained SE network in
the previous iteration was used as the initialization for each new
iteration. The learning rate was set to 10.

For the recognition LSTM, the double delta logarithmic
mel-filter bank from the enhanced speech was used as the in-
put feature. To generate the feature, we used 26 coefficients
for the filter bank, covering 20∼ 8000Hz, with one extra co-
efficient for the frame energy. Then the double delta with the
context window of 5 was applied and resulted in 81 dimension
input feature. The recognition target was the clean alignment
states, which is generated from the decoding process of GMM
likelihood on clean data.

For the cross entropy LSTM, three different networks were
evaluated, which were (1) two 300 BLSTM layers, (2) two 500



BLSTM layers, (3) three 300 BLSTM layers. Networks in (1)
and (2) were randomly initialized, and the trained network in (1)
was used to initialize the first two layers in (3), while the third
BLSTM layer in 3) was initialized randomly. In the later iter-
ation, since the performance were similar in the first iteration,
only (1) was re-trained, using the trained net in the first itera-
tion as initialization. The learning rate for all the cross entropy
LSTM training was set to 50.

The stochastic gradient descent with momentum of 0.9 was
adopted as the optimizer for all experiments. To alleviate the
local optimum problem, Gaussian noise with 0 mean and 0.6
standard deviation was added to the inputs. For all the experi-
ments, the training was stopped if there was no improved result
for the development set for 20 epochs.

The sequence training LSTM was initialized with the
trained cross entropy LSTM in the same iteration. Because of
the well known overfitting problem of sequence training, the
learning rate should be smaller than the CE training, which was
set to 1 in the experiment. In the experiment, we observed that
only the first epoch of sequence training gave the biggest boost
in performance. Therefore, for all the experiments, the discrim-
inative sequence training was performed for one epoch.

The sequence trained Kaldi DNN[16] was used as the com-
parison. The Kaldi DNN contains 8 feedforward layers, each of
which has 4096 hidden nodes. Following the CHiME challenge,
the word-error-rate (WER) was used as the evaluation criterion,
lower meaning the better performance. Note that for the itera-
tive architecture, since the result didn’t improve after the second
iteration, the results of first two iterations are reported.

5.3. Multitask Architecture

Similar to the pipeline experiment, the 100-dimensional noisy
logarithmic mel-filter bank was used in the multitask experi-
ment. However, in multitask architecture, the clean alignment
was given as the objective, the noisy alignment was not used in
the input,making the overall dimension of input feature 100.

As shown in Figure 1, the multitask network has two
BLSTM layers with 300 hidden nodes at bottom, shared be-
tween the SE and ASR networks. Then separate feedforward
output layers were used for the SE and ASR tasks correspond-
ingly. The SE branch including the BLSTM layers were initial-
ized with the separately trained SE BLSTM network. And the
ASR feedforward layer was initialized randomly.

Four different α values were experimented with, which are
0 10−1, 10−2 and 10−3. Note that when α = 0, the model
would be reduced to the BLSTM for speech enhancement only.
After the multitask training, a cross entropy LSTM of the same
setting as in pipeline experiment was trained on the enhanced
speech to obtain the WER results.

5.4. Results and discussion

The results are shown in Table 1∼ 3. The WER-dev and WER-
eval refer the word-error-rate for the development set and eval-
uation set.

Table 3: Multitask architectue results

α WER-dev% WER-eval%
0 25.09 20.60

10−3 25.43 20.11
10−2 25.20 20.39
10−1 25.39 21.70

Table 1: Result for different LSTM topologies

Network Topology WER-dev% WER-eval%
Kaldi-DNN 22.42 17.13

Cross 300-300 21.28 17.04
Entropy 500-500 21.78 17.08

300-300-300 21.81 16.99
Kaldi-DNN 21.54 16.58

Sequence 300-300 20.11 16.04
Training 500-500 20.26 16.12

300-300-300 20.29 16.09

Table 2: Iterative architectue results

Iteration WER-dev% WER-eval%
Cross 1 21.28 17.04

Entropy 2 21.03 17.36
Sequence 1 20.11 16.04
Training 2 19.91 16.32

From Table 1, we can see that the proposed structure per-
formed significantly better than the DNN baseline on both the
development and evaluation data, and in both the cross entropy
and sequence training conditions. We can observe that, com-
pared with cross entropy training, the discriminative sequence
training would lead to significantly better result. Also note that
the best reported WER for the same task in [17] and [18] are
26.86% and 22.77%, which are much lower than the results for
the proposed models. It further proves the effectiveness of the
proposed model.

In Table 2, although the performance on the development
set improved for the second iteration, the WER on the evalu-
ation set did not benefit from the iterations. One possible ex-
planation is that although the alignment for the second iteration
was more accurate than the first iteration because of the better
recognizer, the confusion between similar states, which is the
main bottleneck for the recognition, did not increase much.

In Table 3, we can see that the WER of multi task network
was lower than the baseline when α = 10−2 and 10−3 but was
higher when α = 10−1. Since the recognition branch is mainly
designed for increasing the discrimination among states in the
enhanced speech, it is a compromise between the enhancement
quality and discrimination. When α is too large, the worse en-
hancement quality may counter effect the better discrimination
achieved for the recognition, which may lead to worse overall
result. Compared with the results in Table 1, the WERs in Table
3 were higher. This shows that the noisy alignment is important
for the speech enhancement. Also it suggests that by combin-
ing the input noisy alignment and the multitask architecture, it
could have more potential to have better performance.

6. Conclusions
In this work, the problem of speech recognition under noisy
conditions is investigated. Three different integration models
between LSTM speech enhancement and LSTM speech recog-
nition was proposed and evaluated. By combining the LSTM
speech enhancement, cross entropy LSTM and discriminative
sequence training LSTM, the WER of the proposed system was
significantly lower than the state of the art. A novel multi-task
LSTM architecture is also proposed and demonstrate potential
in better ASR performance.
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[10] K. Veselỳ, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks.” in INTER-
SPEECH, 2013, pp. 2345–2349.

[11] W. Macherey, L. Haferkamp, R. Schlüter, and H. Ney, “Inves-
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