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Safety Verification of Implicitly Defined MPC Feedback Laws

Juraj Holaza, Bálint Takács, Michal Kvasnica, and Stefano Di Cairano

Abstract— For a closed-loop system composed of a linear
controlled plant and an MPC feedback strategy we show how
to verify that closed-loop state trajectories either enter or avoid
a given set of unsafe states. The search for the safety certificate
is formulated as a mixed-integer linear programming problem
which yields non-conservative certificates. The optimal control
commands generated by the MPC policy are represented by
Karush-Kuhn-Tucker optimality conditions, which allow to
perform the verification without the need to explicitly compute
reachable sets.

I. INTRODUCTION

It is well known that Model Predictive Control (MPC)
feedback strategies can provide an optimal operation of the
plant while taking constraints into account [9]. However,
certain safety specifications such as performance constraints
(e.g., limits on overshoots and settling time) or obstacle
avoidance constraints are difficult to impose in the standard
context of convex MPC because they lead to non-convex
formulations which are computationally expensive to imple-
ment in real time. If satisfaction of such safety bounds can
be verified off-line, then the controller can be much simpler.

Given a model of the controlled plant x(t + 1) =
f(x(t), u(t)) and the MPC feedback strategy u(t) = κ(x(t)),
the objective of this paper is to provide a rigorous certificate
that the closed-loop system f(x(t),κ(x(t))) is safe in the
following sense: Given a set of initial conditions I and a set
of unsafe states U , determine whether there exists an initial
condition x(0) ∈ I such that the MPC controller forces the
closed-loop states to enter U . If such an initial condition
exists, the controller is not safe as it eventually forces the
closed-loop system to violate design specifications. On the
other hand, if no such x(0) ∈ I exists, the controller is
deemed safe since the set of unsafe states will never be
entered by the closed-loop system.

Such a safety verification task can be tackled mainly in
two ways. The first set of approaches is based on so-called
barrier certificates [12, 15], which are closely related to the
concept of Lyapunov functions used for stability analysis.
The downside of such approaches is that construction of the
barrier certificates is usually achieved via convex relaxations
to obtain a computationally tractable problem, and is thus
conservative. Therefore such approaches might fail at finding
the desired safety certificate even if one exists.

The second set of methods is based on reachability analy-
sis where one investigates whether the set U is reachable by
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the closed-loop system from a given set of initial conditions
I [4, 13, 1]. The reachability analysis is typically performed
by computing forward reachable sets, followed by determin-
ing whether the intersection between such reachable sets and
the set of unsafe states is empty or not. The reachability-
based procedure has several limitations, though. First, and
most importantly, it assumes that the analytic description
of the closed-loop dynamics is known. MPC strategies,
however, only describe the optimal control inputs implicitly

as the optimal solution to an optimal control problem.
Hence the analytic form of the closed-loop dynamics is not
directly available. One way around this issue is to derive
the explicit solution of MPC [3] by employing parametric
optimization [5]. Such solutions, however, are often very
complex and difficult to construct especially for problems
of large dimensionality.

In this paper we take a different route which allows to
investigate closed-loop systems without the need to compute
the underlying explicit solution. Specifically, we show how to
represent the closed-loop evolution of the feedback system by
the Karush-Kuhn-Tucker (KKT) [6] conditions of the MPC
optimization problem. However, even for MPC problems
based on linear prediction models and with all constraints
being linear, the KKT conditions are nonlinear. Therefore
we show how to convert such nonlinearities, in a non-
conservative manner, to linear inequalities which involve
continuous and binary decision variables. This allows us to
provide a non-conservative answer to the safety verification
problem.

The second limitation of reachability-based approaches to
safety verification is that they require computing either exact
or approximate reachable sets [14]. Computation of exact
reachable sets is expensive in large dimensions. Approxi-
mate sets [2, 13] are easier to construct, but may lead to
conservative safety certificates. In this paper the construction
of reachable sets is avoided altogether. Instead, the safety
verification problem is posed as a series of mixed-integer
linear program (MILP) of tractable size.

Finally, the common drawback of reachability-based ap-
proaches is that they only provide a certificate of safety for
a finite number of time steps. In this paper we show that
under mild assumptions on the terminal set included in the
MPC problem, safety can be verified ad infinitum, i.e., for
an infinite number of time steps.

II. PROBLEM STATEMENT

We consider the control of discrete-time linear time-
invariant (LTI) systems of the form

x(t+ 1) = Ax(t) +Bu(t), (1)



with the state vector x ∈ Rnx and the input vector u ∈ Rnu .
The system is subject to polyhedral constraints

x ∈ X , u ∈ Z, (2)

where X ⊂ Rnx and Z ⊂ Rnu contain the origin in
their respective interiors. The constrained finite-time optimal
control problem for the prediction model in (1) is given by

U!
ol = arg min xT

NQNxN +

N−1
∑

k=0

xT
k Qxxk + uT

k Quuk (3a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (3b)

xk ∈ X , k = 0, . . . , N − 1, (3c)

uk ∈ Z, k = 0, . . . , N − 1, (3d)

xN ∈ Xf , (3e)

where xk and uk are, respectively, predictions of states and
inputs at the k-th step of the prediction horizon (denoted
by N ), initialized by x0, the measurement (or estimate)
of the current state. Moreover, QN = QT

N # 0, Qx =
QT

x # 0 and Qu = QT
u $ 0 denote weighting matrices,

and Xf ⊆ X is a polyhedral terminal set. Finally, U!
ol

denotes the open-loop sequence of optimal control moves,
i.e., U!

ol = [u!
0
T , . . . , u!

N−1
T ]T , obtained by solving (3) for

a particular initial condition x0.
The receding-horizon implementation of the MPC feed-

back law is obtained by calculating the open-loop sequence
U!

ol for a particular initial condition x0 = x(t) at each
sampling step, but only employing its first element, i.e., u!

0,
as the closed-loop control action. Hence, the RHC feedback
law κ : Rnx → Rnu is given by

κ(x(t)) =
[

I 0 · · · 0
]

︸ ︷︷ ︸

Φ

U!
ol(x(t)). (4)

Since U!
ol(x(t)) in (4) is implicitly defined as the solution of

the numerical optimization problem (3), we refer to (4) as
the implicitly defined MPC feedback law.

The closed-loop evolution of (1) subject to the MPC
feedback in (4) is defined by

xcl(t+ 1) = Axcl(t) +Bκ(xcl(t)). (5)

When initialized from x(0), the closed-loop state at any t > 0
is

xcl(t) = Atx(0) +
t−1
∑

i=0

At−i−1Bκ(x(i)). (6)

The problem we aim at solving is to verify whether the
parameters of (3) have been chosen such that the implic-
itly defined feedback law (4) forces the closed-loop state
trajectory (6) to avoid a known set of unsafe states. If
a trajectory entering the unsafe set exists, the controller
is poorly designed as it does not exhibit required safety
properties. Moreover, existence of such a unsafe closed-loop
trajectory serves as a certificate of lack of safety. If no such
trajectory entering the unsafe set exists, the controller is
deemed safe. We distinguish between two versions of such a
problem. One verifies whether the set of unsafe states can be
reached from a given set of initial conditions in finite time:

Problem 2.1 (Finite-time safety verification): Let the LTI
system (1), the implicitly defined MPC feedback law (4), the
set of investigated initial conditions I ⊆ Rnx and the set of
unsafe states U ⊆ Rnx be given. Moreover, let the integer
M < ∞ be given. Provide a certificate that xcl(t) (∈ U for
all t ≤ M with xcl(t) as in (6). !

Note that Problem 2.1 can only certify safety of the MPC
controller up to t = M , but not for t > M . Therefore,
the second more general and more useful version certifies
safety ad infinitum, i.e., that the set of unsafe states cannot
be reached in a possibly infinite number of time steps:

Problem 2.2 (Infinite-time safety verification): With the
same inputs as in Problem 2.1, provide a certificate that
xcl(t) (∈ U for all t ≤ ∞. !

Two choices of the set of initial conditions I are typically
considered. One option is to choose I = dom(κ) where
dom(κ) is the feasibility set of (3). In such a settings
we verify the safety and properties for all feasible initial
conditions. Alternatively, I ⊆ dom(κ), in which case only
a subset of the feasible initial conditions is investigated (for
instance the typical process operating conditions).

Remark 2.3: The MPC problem (3) could be formulated
to directly include the safety constraint xk (∈ U by imposing
xk ∈ X\U where “\” is the set difference operator. However,
such constraints are, in general, non-convex and would make
the MPC computationally impossible to solve, especially in
real time. Moreover, unless additional conditions are also
employed, the avoidance of the set of unsafe states would
not be guaranteed ad infinitum. Finally, in this work we only
aim at verifying whether xcl(t) (∈ U for a specific range of
initial conditions I, not for any x(0) ∈ X . !

III. SAFETY VERIFICATION

In this section we propose a non-conservative procedure
for solving Problems 2.1 and 2.2. The presented technical
solution is based on the following assumptions:

Assumption 3.1: The set of initial conditions I contains
at least one point x0 ∈ I which is a feasible initial condition
for (3).

Assumption 3.2: The set of unsafe states U is a convex
polyhedron represented by U = {x ∈ Rnx |Sx ≤ s}.
Moreover, I is also a polyhedron.

Assumption 3.3: The set of unsafe states U does not
intersect the set of initial conditions I, i.e., U ∩ I = ∅.

Assumption 3.1 is non-restrictive and merely requires the
user to choose the initial set which is consistent with
constraints of the MPC problem (3). Assumption 3.2 is
required to obtain a computationally tractable and non-
conservative solution to the safety verification problems.
Finally, Assumption 3.3 is quite natural and not restrictive
as it merely excludes inconsistent scenarios where the MPC
problem (3) is set up in such a way that it forces violation
of safety bounds by starting from the unsafe set directly.



We start by converting the optimal control problem (3)
into a quadratic program. With the substitution

xk+1 = Akx0 +
k−1
∑

i=0

Ak−i−1Bui, (7)

the open-loop profile of predicted states in (3), i.e., Xol =
[x0

T , . . . , xN
T ]T can be compactly written as

Xol = Γx0 +ΨUol, (8)

with

Γ =















I
A
A2

...

AN















,Ψ =













0 0 0 · · · 0
B 0 0 · · · 0
AB B 0 · · · 0

...
...

...
. . .

...

AN−1B AN−2B · · · · · · B













. (9)

With the substitution (8), the open-loop optimal control
problem (3) can be rewritten, after straightforward algebraic
manipulations [5], into

U!
ol(x0) = arg minUol

1

2
UT

ol HUol + xT
0 FUol (10a)

s.t. GUol ≤ w + Ex0, (10b)

which is a strictly convex parametric quadratic program due
to the assumption that Qu $ 0, QN # 0, and Qx # 0.
Moreover, we define

XM
cl = [xcl(0)

T , . . . , xcl(M)T ]T (11)

as the closed-loop trajectory of (1) subject to the MPC
feedback law (4) over M discrete time steps, with xcl(0) =
x(0), and xcl(j) is given by (6) for each j = 1, . . . ,M .

In what follows we show how to solve Problems 2.1
and 2.2 based on the assumption that the open-loop profile
Xol from (8) is equal to the closed-loop trajectory XN

cl

from (11), and N = M in Problem 2.1.

Remark 3.4: Conditions under which Xol = XN
cl are

elaborated in [11]. One such a condition is that the terminal
penalty QN , the terminal set Xf , and the prediction horizon
N are chosen such that the value function in (3a) is equal
to the infinite-horizon value function. As shown, e.g., in [8],
such a condition is satisfied if QN is the solution to the
discret-time algebraic Riccati equation, Xf is the positively
invariant set where the LQR controller satisfies the con-
straints, and the prediction horizon is sufficiently large. !

Assume that QN , Xf and N have been chosen such that
the equivalence between Xol and XN

cl is established per
Remark 3.4. Since Xol = XN

cl is assumed, the closed-loop
state profile XN

cl in (11) is equal to Xol from (8) where the
optimal open-loop sequence of control inputs, i.e., U!

ol, is
employed. Introduce Mj ∈ Rnx×Nnx as

Mj =
[

0nx×(j−1)nx
Inx×nx

0nx×(N−j)nx

]

. (12)

Then MjXN
cl = x(j). In other words, the matrix Mj

extracts from the closed-loop state trajectory in (11) its j-
th element. Reachability/unreachability of the set of unsafe

states U in exactly j steps with 0 ≤ j ≤ N can then be
stated as

find x(0) (13a)

s.t. x(0) ∈ I, (13b)

Mj(Γx(0) +ΨU!
ol) ∈ U , (13c)

U!
ol = arg minUol

1/2UT
ol PUol + x(0)TQUol (13d)

GUol ≤ w + Ex(0), (13e)

x(0) ∈ I, (13f)

where (13c) translates to x(j) ∈ U via (8) and (12).

Problem (13) is a bilevel optimization problem where
U!

ol in (13c) is the optimal solution of the lower-level
problem (13d)−(13f). This lower-level optimization prob-
lem implicitly defines the open-loop sequence of control
inputs which are optimal for a particular value of the initial
condition x(0), which is investigated in the higher-level
problem. Note that the higher-level problem, represented
by (13a)−(13c), is related to the lower-level problem via
x(0). Therefore as x(0) changes in the higher-level problem,
a different U!

ol will be generated by the lower-level problem
and vice versa.

Our first two results provide conditions under which a
positive or a negative answer to Problem 2.1 exists.

Theorem 3.5: Let the sets I and U satisfy Assump-
tions 3.1 and 3.3, respectively. If the bilevel problem (13)
is feasible for some j = 1, . . . , N then there exists x(0) ∈ I
such that xcl(j) ∈ U for some 0 < j ≤ N (i.e., the set U is
reachable from I in, at most, N steps).

Proof: First note that constraints (13b) and
(13d)−(13f) can always be satisfied by a suitable choice of
x(0) due to Assumption 3.1. Therefore feasibility of (13)
depends only on feasibility of (13c). Since Xol = XN

cl is
assumed, the j-th open-loop predicted state xj is equal to
the actual closed-loop state xcl(j). Thus (13c) translates to
xcl(j) ∈ U due to (12). Therefore if (13) is feasible for some
value of j, we have that x(0) ∈ I and xcl(j) ∈ U , which
shows that feasibility of (13) implies reachability of U from
I.

Theorem 3.5 provides a way for finding the counter-example
for the safety properties investigated in Problem 2.1. Such a
counter-example is represented by the existence of the initial
condition x(0), along with the number of time steps j the
closed-loop system takes to reach the set of unsafe states.

The following result is a direct corollary of Theorem 3.5
and establishes conditions under which U cannot be reached
from I in, at least, N steps, and thus provides a positive
certificate of controller’s safety according to Problem 2.1:

Corollary 3.6: If the bilevel problems (13) is infeasible
for j = 1, . . . , N , then there does not exist any x(0) ∈ I
for which xcl(t) ∈ U for some t ≤ N , i.e., the set U is not

reachable from I in, at least, N steps, thus xcl(t) (∈ U for
t ≤ N . "

Next we show that the infinite-time safety verification task
of Problem 2.2 can be answered in finite time providing the
following assumption hold:



Assumption 3.7: The terminal set Xf in (3e) is a posi-
tively invariant set with U ∩ Xf = ∅. !

Existence of a positive invariant terminal set is a standard
assumption in MPC to obtain closed-loop stability guaran-
tees. Here, in addition we required that the terminal set is
chosen not to intersect the unsafe set, i.e., the terminal set
is guaranteed to be safe.

Theorem 3.8: Let the sets I and U satisfy Assump-
tions 3.1 and 3.3, and let Xf in (3e) fullfil the conditions of
Assumption 3.7. If the bilevel problems (13) are infeasible
for each j = 1, . . . , N , then the set U is not reachable from
I in any number (including infinity) of steps, i.e., xcl(t) (∈ U
for all t > 0.

Proof: If (13) is infeasible for all j = 1, . . . , N ,
then either U is unreachable in at least N steps, or it
could be reached with more than N steps. The former case
is already covered by Corollary 3.6 and thus xcl(t) (∈ U
for t = 1, . . . , N . The latter case is impossible under
Assumption 3.7. To see this, note that positive invariance
of Xf means that xcl(t + k) ∈ Xf for any k > 0 once
xcl(t) ∈ Xf . Since Xol = XN

cl is assumed, xN (which is
equal to xcl(N)) will be contained in the terminal set Xf

via (3e). Thus from positive invariance of the terminal set
we have xcl(N + k) ∈ Xf for any k > 0. Finally, since
U∩Xf = ∅ by Assumption 3.7, we have that xcl(N+k) (∈ U
for all k > 0. Therefore xcl(t) (∈ U for all t > 0.

The safety verification taks of Problems 2.1 and 2.2 for the
scenario discussed here can thus be solved by determining
the feasibility of the bilevel optimization problem (13) for
j = 1, . . . , N , where N is the prediction horizon in (3).
If the problem is feasible for a particular j, the answer
to Problems 2.1 and 2.2 is that the set U of unsafe states
is reachable from some x(0) ∈ I, and the controller is
thus not safe. In such a case further values of j need not
be considered. Moreover, a feasible solution to the bilevel
optimization problem also provides the initial condition
which serves as a counter-example to safety verification.

On the other hand, if the bilevel problem (13) are infea-
sible for all j = 1, . . . , N , then the answer to Problem 2.1
is that U is not reachable, and the controller is thus safe
for at least N steps. Answering Problem 2.2 requires that
the terminal set satisfies Assumption 3.7. In such a case the
infinite-dimensional problem reduces to a finite-dimensional
one.

Next we determine feasibility of (13) in a non-conservative
fashion by converting it to a mixed-integer linear program.
To do so, we first formulate the Karush-Kuhn-Tucker (KKT)
conditions [6] of the lower-level problem in (13d)−(13f):

HU!
ol + FTx(0) +GTλ = 0, (14a)

GU!
ol ≤ w + Ex(0), (14b)

λ ≥ 0, (14c)

λk(GkU
!
ol − wk − Ekx(0)) = 0, (14d)

where (14a) is the stationarity condition, (14b) represents
primal feasibility, (14c) is the dual feasibility, and (14d)
stands for the complementary slackness condition, which

is imposed for k = 1, . . . , nc, where nc is the number of
rows of G. Moreover, Gk, wk, Ek denote the k-th row of
the corresponding matrix. Since the lower-level problem is
a strictly convex parametric QP, the KKT conditions (14)
are necessary and sufficient [6]. However, they are nonlinear
due to product between the Lagrange multipliers λ and the
decision variables U!

ol in (14d).
Such a nonlinearity can be worked around by realizing that

for (14d) to hold, either λk = 0 or GkU!
ol−wk−Ekx(0) = 0

for all k = 1, . . . , nc. One can introduce binary indicators
δk ∈ {0, 1} and γk ∈ {0, 1} such that

(δk = 1) ⇔ (λk = 0) (15a)

(γk = 1) ⇔ (GkU
!
ol − wk − Ekx(0) = 0). (15b)

By applying standard rules of propositional logic [16], also
known as the big-M technique, the equivalences in (15) can
be furthermore rewritten into a set of inequalities that are
linear in the decision variables λk, U!

ol, δk, and γk,

− Z(1− δk) ≤ λk ≤ Z(1− δk), (16a)

− Z(1− γk) ≤ GkU
!
ol − wk − Ekx(0) ≤ Z(1− γk),

(16b)

where Z is a sufficiently large constant. It is trivial to verify
that if δk = 1 in (16a), then λk = 0 is the only feasible
value. If δk = 0, then (16a) is inactive. Similar reasoning
holds for (16b). Then the complementarity slackness condi-
tion (14d) can be equivalently written as the propositional
logic statement of the form δk ∨ γk (i.e., either the k-th
Lagrange multiplier is zero, or the k-th constraint is active),
or, equivalently, be written as δk + γk ≥ 1. Therefore the
KKT conditions (14) can be equivalently written as

HU!
ol + FTx(0) +GTλ = 0, (17a)

GU!
ol ≤ w + Ex(0), (17b)

λ ≥ 0, (17c)

− Z(1− δk) ≤ λk ≤ Z(1− δk), (17d)

− Z(1− γk) ≤ GkU
!
ol − wk − Ekx(0) ≤ Z(1− γk),

(17e)

δk + γk ≥ 1, (17f)

where (17d)−(17f) are imposed for k = 1, . . . , nc.
Abbreviate (17) by KKT(x(0), U!

ol,λ, δ, γ) ≤ 0. Then the
bilevel optimization problem (13) can be equivalently written
as

find x(0) (18a)

s.t. x(0) ∈ I, (18b)

S(Mj(Γx(0) +ΨU!
ol)) ≤ s, (18c)

KKT(x(0), U!
ol,λ, δ, γ) ≤ 0, (18d)

where (18c) is equivalent to (13c) since U is assumed to be
a polyhedron, cf. Assumption 3.2. Since all constraints are
linear (cf., (17)), problem (18) is a mixed-integer feasibility
problem with continuous decision variables x(0) ∈ Rnx ,
U!

ol ∈ RNnu , λ ∈ Rnc , and binary decision variables
δ ∈ {0, 1}nc and γ ∈ {0, 1}nc , where nc is the number



of constraints of the pQP formulation of the MPC problem
in (10).

Remark 3.9: Note that showing safety of the MPC feed-
back per Corollary 3.6 and Theorem 3.8 relies on infeasibility
of (18) for each j = 1, . . . , N . To prevent numerical
problems which might lead to false indication of infeasibility,
we propose to soften the hard constraints (18c) by

S(Mj(Γx(0) +ΨU!
ol)) ≤ s+ ω, (19)

where ω ∈ RnS are the slack variables (here, nS is
the number of rows of S in Assumption 3.2), satisfying
ω ≥ 0. Moreover, the objective (18a) should be replaced
by min ‖ω‖1. Such a modified problem is always feasible.
If ω = 0 in the modified problem, (18) is feasible by
Assumption 3.1. If ωi > 0 for at least one component of
ω in the modified problem, then (18) is infeasible. !

Finally, we remark that even though the MILP prob-
lem (18) is non-convex due to presence of binary decision
variables, its feasibility can always be determined in finite
time, and the optimal solution of the modified problem per
Remark 3.9 can always be found in finite time, e.g. by
branch-and-bound methods.

IV. CASE STUDY

A. Four Tanks System

We apply the procedure of Section III to verify safety
properties of an MPC controller which governs inflows into a
four tank system depicted in Fig. 1. The linearized dynamics
of such a system is represented by [7]

ẋ =











− 1
T1

0 F3

(F1T3)
0

0 − 1
T2

0 F4

(F2T4)

0 0 − 1
T3

0

0 0 0 − 1
T4











x+











γ1

F1
0

0 γ2

F2

0
(1−γ2)

F3
(1−γ1)

F4
0











u,

(20)

with

Ti =
Fi

ki

√

2hs
i

g
, (21)

where x = (h−hs), u = (q−qs) are the deviations of states
and inputs from respective steady-state values. Here, hi are
the liquid levels of the corresponding tanks, and qa and qb
are the manipulated inflows. Finally, γ1 and γ2 are constants
which govern the split of inflows into the lower and upper
level tanks In this case study we have used hs

i = 0.2m,
i = 1, . . . , 4, qsa = qs

b = 1 · 10−4 m3s−1, Fi = 0.06m2,
i = 1, . . . , 4, k1 = 8.7932 · 10−4, k2 = 7.3772 · 10−4, k3 =
6.3495 ·10−4, k4 = 4.3567 ·10−4, g = 9.81ms−2, γ1 = 0.2,
γ2 = 0.4, and discretization of (20) with sampling time of 5
seconds.

B. Control Objective

The control objective is to manipulate the liquid levels in
all four tanks to their respective steady-state values (i.e., for
the deviation states xi to reach zero levels), while satisfying
state constraints −0.2 ≤ xi ≤ 0.2, i = 1, . . . , 4 (which
corresponds to 0m ≤ hi ≤ 0.4m) and input constraints −1 ·
10−4 ≤ uj ≤ 1 ·10−4 (which translate to 0m3s−1 ≤ qj ≤ 2 ·

q1 q2

q3 q4

qa qb
h1 h2

h3 h4

Fig. 1. The four tanks system.
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(a) Closed-loop profile of tanks’ states.
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(b) Closed-loop control actions.

Fig. 2. Closed-loop regulation of the four tanks system from the initial
condition x0 = [0, 0, 0.15, −0.1]T . Black dashed lines represent
corresponding constraints.

10−4 m3s−1). This is achieved by devising an MPC feedback
strategy which solves (3) with Qx = diag(1, 1, 1, 1), Qu =
diag(1, 1), QN equal to the solution of the algebraic Riccati
equation, Xf being the constraint admissible set of the plant
in closed-loop with the LQR controller, obtained for the same
cost function of the MPC. Finally, N = 8. The closed-loop
trajectory of the system in (20) subject to the MPC policy (4)
is provided in Fig. 2. As can be seen, the response of x1

and x2 (which represent levels in the bottom tanks) exhibits
a non-minimum phase behavior, which is a consequence of
γ1 < 0.5 and γ2 < 0.5.

C. Safety Verification

We wish to verify that the MPC policy provides that the
overshoots and undershoots in lower tanks due to the non-
minimum phase behavior do not exceed prescribed bounds.
Specifically, for the set of initial conditions I = {x | −0.2 ≤
x3,4 ≤ 0.2, x1,2 = 0} (i.e., bottom tanks at their steady-state
levels with upper tanks being filled up to arbitrary levels
within constraints) we aim at verifying that the closed-loop
system avoids the sets U1 = {x |x1 ≥ 0.05}, U2 = {x |x1 ≤
−0.05}, U3 = {x |x2 ≥ 0.05}, and U4 = {x |x2 ≤ −0.05}.
The reasoning behind such a choice is verifying whether
the MPC controller rejects disturbances in the upper tanks
without large changes of the levels in the bottom tanks.
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Fig. 3. Example of an unsafe trajectory of lower tanks which starts from
x0 = [0, 0, −0.13, 0.2]T and violates the limits of maximal under/over-
shoots, represented by the dotted black lines.

Remark 4.1: It may not be desirable to include −0.05 ≤
x1,2 ≤ 0.05 as hard constraints in (3) since it would render
the MPC problem infeasible for several initial conditions.
The objective here is to verify whether the MPC policy is
tuned in such a way that it “voluntarily” maintains these
limits for a specific range of initial conditions. !

Since the conditions of Remark 3.4 are satisfied, the open-
loop predicted sequence is equal to the actual closed-loop
response, thus we can use the procedures of Section III
to solve the infinite-time verification task of Problem 2.2
by employing Theorems 3.5 and 3.8. Specifically, we have
formulated (18) using YALMIP [10] and solved the resulting
MILPs by CPLEX. After 1.0 seconds1 a feasible solution
to (18) was found which, according to Theorem 3.5 means
that the safety specifications are violated. The associated
counter-example is represented by the initial condition x0 =
[0, 0, −0.13, 0.2]T , for which the MPC feedback forces x2

to exceed 0.05, as can be seen in Fig. 3

V. CONCLUSION

We have proposed non-conservative methods which allow
to verify whether a closed-loop system, composed of a
linear controlled plant and an MPC controller, avoids a
certain set of unsafe states. The procedure was based on
exploiting the Karush-Kuhn-Tucker optimality conditions,
which characterize the optimal control inputs. Subsequently,
an optimization problem was set up to determine whether
there exists an initial condition for which the closed-loop
response enters the unsafe set. The safety certificate was
then based on infeasibility of such a problem. Under mild
conditions on the terminal set employed in the MPC setup,
safety properties can be verified to hold ad infinitum, i.e., for
an infinite number of time steps. Moreover, we have proposed
an alternative formulation in which infeasibility is replaced
by feasibility of softened constraints. The resulting safety
verification problem to be solved is a mixed-integer linear
problem for which efficient solvers exist.

1On a 1.8 GHz CPU running Matlab R2013a.
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