
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Opportunities and Potential of Model Predictive Control for
Low-Thrust Spacecraft Station-Keeping and

Momentum-Management

Weiss, A.; Di Cairano, S.

TR2015-083 July 2015

Abstract
While electric propulsion generates fuel-efficient thrust for spacecraft control, it can only pro-
duce low levels of thrust, necessitating continuous actuation to impart an equivalent impulse
to that of chemical thrusters. Thus, many of the standard open-loop propulsion schedul-
ing techniques, developed for impulsive thrust, do not transfer to low-thrust architectures.
Continuous actuation, together with tighter anticipated requirements for spacecraft station
keeping, e.g., in geostationary Earth orbit (GEO), provides great opportunity for the applica-
tion of feedback control. We demonstrate that model predictive control (MPC) can provide
significant advantages as a control strategy for station keeping of low-thrust spacecraft, pro-
vided that its features, such as the capability to enforce output constraints, and the use of
a prediction model for the plant and disturbances, are fully exploited. We develop a basic
MPC design for station keeping in GEO, and compare its performance with an advanced
MPC design that i ludes output constraints and disturbance prediction. We show that the
basic MPC achieves precise regulation, albeit with unsustainable fuel consumption, whereas
the advanced MPC satisfies the target mission requirements with fuel consumption in line
with that of carefully designed open-loop strategies.
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Opportunities and Potential of Model Predictive Control for

Low-Thrust Spacecraft Station-Keeping and Momentum-Management

Avishai Weiss and Stefano Di Cairano

Abstract— While electric propulsion generates fuel-efficient
thrust for spacecraft control, it can only produce low levels
of thrust, necessitating continuous actuation to impart an
equivalent impulse to that of chemical thrusters. Thus, many
of the standard open-loop propulsion scheduling techniques,
developed for impulsive thrust, do not transfer to low-thrust
architectures. Continuous actuation, together with tighter an-
ticipated requirements for spacecraft station keeping, e.g., in
geostationary Earth orbit (GEO), provides great opportunity
for the application of feedback control. We demonstrate that
model predictive control (MPC) can provide significant advan-
tages as a control strategy for station keeping of low-thrust
spacecraft, provided that its features, such as the capability
to enforce output constraints, and the use of a prediction
model for the plant and disturbances, are fully exploited. We
develop a basic MPC design for station keeping in GEO, and
compare its performance with an advanced MPC design that
includes output constraints and disturbance prediction. We
show that the basic MPC achieves precise regulation, albeit with
unsustainable fuel consumption, whereas the advanced MPC
satisfies the target mission requirements with fuel consumption
in line with that of carefully designed open-loop strategies.

I. INTRODUCTION

Spacecraft equipped with electric thrusters generate force

more efficiently with respect to propellant mass than those

with conventional chemical thrusters, enabling increased

spacecraft longevity, larger payloads, and/or cheaper orbital

insertion. Conversely, electric propulsion produces relatively

low thrust, necessitating continuous thruster firing, and thus

requiring different control strategies. While continuous ac-

tuation complicates maneuvers that require large impulse,

it is suitable for maneuvers that require small forces and

torques, and thus opens the possibility to equip a spacecraft

with a single set of multipurpose thrusters for orbital station

keeping, attitude control, and momentum management.
A further area of research in spacecraft control is the

use of on-board feedback rather than the standard open-loop

approach that is scheduled from the ground (see, e.g., [1]).

For small spacecraft, ground-based control action can be the

dominant element in terms of cost and risk [2]. On-board

feedback control increases spacecraft autonomy and may

also achieve finer regulation of spacecraft orbit and attitude,

which is beneficial in light of tighter anticipated spacecraft

operational requirements, e.g., the state-space region where

the spacecraft must be maintained for correct operation.
Interest in model predictive control for spacecraft appli-

cations has developed due to MPC’s capability of control-

ling multi-input, multi-output systems subject to constraints,
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while optimizing a user defined cost function based on

a predictive model for the system dynamics. The ability

to explicitly handle multivariable systems, constraints, and

performance objectives has rendered MPC very attractive in

various fields such as automotive, factory automation, and

spacecraft control [3], [4], where it has been proposed for

orbital rendezvous [5]–[7], attitude control [8], formation

flight [9], and interplanetary transfer [10]. Even though MPC

requires higher computational load than conventional closed-

loop controllers (e.g., PID), linear-quadratic MPC results in

quadratic programs that can be solved quickly and efficiently

in resource constrained hardware by compact and easy-

to-verify algorithms, see, e.g., [11] and references therein.

However, to provide superior performance, the distinguishing

characteristics of MPC (i.e., prediction, constraints, per-

formance optimization) must be properly exploited in the

context of the application, otherwise the closed-loop per-

formance may not surpass (and may even be significantly

inferior to) that of more conventional techniques.

We demonstrate the potential and opportunity of MPC

for low-thrust spacecraft by using as a case study the

simultaneous station keeping and momentum management

of a nadir-pointing spacecraft in geostationary Earth orbit

(GEO). Station keeping (SK) involves the compensation of

external perturbations so that the spacecraft remains in an

appropriate station keeping window, that is, a rectangular box

of longitude and latitude above the Earth [2]. MPC based on

an orbital element prediction model was investigated for SK

in [13]. Momentum management (MM) is the operation in

which the on-board momentum exchange devices, commonly

used for attitude control, are decelerated to prevent angular

momentum saturation and the subsequent loss of spacecraft

attitude regulation capability [12]. The torque due to decel-

eration must be compensated by the on-board thrusters in

order to maintain the nadir-pointing attitude.

The paper is organized as follows. In Section II we model

the orbital dynamics and the attitude dynamics of low-

thrust spacecraft and describe the simultaneous SK and MM

(SK-MM) requirements. We exploit the dynamics model to

derive a basic MPC policy in Section III, fairly similar to

an LQR design. The basic MPC satisfies some, but not

all, of the requirements of the case study because it does

not entirely exploit the capabilities of MPC. When this is

done in the more advanced design presented in Section IV,

all the requirements are achieved, resulting in closed-loop

performance that has similar fuel consumption to that of

well-studied optimal open-loop control techniques, yet en-

forcing a 5–10 times smaller SK window. We summarize



our conclusions in Section V.

II. SPACECRAFT STATION KEEPING AND

MOMENTUM MANAGEMENT

We consider a spacecraft equipped with six dual-axis

electric thrusters and three axisymmetric reaction wheels

attached to a rigid bus in an orthogonal and mass balanced

configuration. We assume that a bus-fixed frame is defined

for the spacecraft, and that an inertial frame is specified for

determining the attitude of the spacecraft. The spacecraft

equations of motion are given by

r̈ = −µ
r

|r|3
+

1

m
F + ap,

Jω̇ = (Jω + Jαν)× ω − Jαη + τ,

ν̇ = η,

Ṙ = Rω×,

(1)

where r ∈ R
3 is the position vector of the spacecraft with

respect to the center of the Earth, F ∈ R
3 is the vector

of external forces applied to by the thrusters, ap ∈ R
3 is

the vector of perturbation accelerations, m is the mass of

the spacecraft, µ is Earth’s gravitational constant, J ∈ R
3×3

is the moment of inertia of the spacecraft bus and reaction

wheel array, Jα ∈ R
3×3 is the moment of inertia of the

reaction wheel array, ω ∈ R
3 is the angular velocity of

the bus frame with respect to the inertial frame, ν ∈ R
3

is the angular velocity of the reaction wheel array, τ ∈ R
3 is

the torque applied by the thrusters, ω× is the cross-product

matrix of ω, and R ∈ R
3×3 is the rotation dyadic that

transforms the inertial frame into the bus frame resolved in

the bus frame. See [14] for the derivation of (1).

For a spacecraft in GEO, the main perturbation accel-

erations are due to solar and lunar gravitational attraction,

solar radiation pressure, and the anisotropic geopotential,

that is, Earth’s non-spherical gravitational field. Analytic

expressions for these perturbation forces per unit mass, i.e.,

the disturbance accelerations, are given, respectively, by

⇀
a sun = µsun

(⇀
r sun/sc

r3
sun/sc

−

⇀
r sun/earth

r3
sun/earth

)

,

⇀
amoon = µmoon

(⇀
rmoon/sc

r3
moon/sc

−

⇀
rmoon/earth

r3
moon/earth

)

, (2)

⇀
a srp = Csrp

S(1 + crefl)

2m

⇀
r sc/sun

rsc/sun
,

⇀
a J2

=
3µJ2ρ

2
E

2r5

((

5
(
⇀
r · k̂E)

r2
− 1

)

⇀
r − 2(

⇀
r · k̂E)k̂E

)

,

where
⇀

(·) denotes a coordinate-free (unresolved) vector, µsun

and µmoon are the gravitational constants of the sun and

moon, Csrp is the solar radiation pressure constant, S is the

solar-facing surface area, crefl is the surface reflectance, ρE
is Earth’s equatorial radius, k̂E is the z-axis unit vector of

the Earth-centered inertial frame, and J2 is the dominant

coefficient in the considered geopotential perturbation model,

where additional higher order terms are ignored. The sum

of the individual disturbance accelerations yields the total

disturbance acceleration considered in (1). Figure 1 shows

an annual time history of the disturbance force components

for a 4000kg satellite in GEO.
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Fig. 1: Annual disturbance force components for a 4000kg satellite
in geostationary orbit.

For MPC design, we linearize (1). For small maneuvers

around a nominal circular orbit, the linearized CWH equa-

tions [15], [16] approximate the relative motion as

δẍ− 3n2δx− 2nẏ =
Fx

m
+ ap,x,

δÿ + 2nδẋ =
Fy

m
+ ap,y,

δz̈ + n2δz =
Fz

m
+ ap,z,

(3)

where δx, δy and δz are the components of the posi-

tion vector of the spacecraft relative to the nominal lo-

cation, Fx, Fy, Fz are the thrust force vector components,

ap,x, ap,y, ap,z are the perturbation acceleration vector com-

ponents, and n =
√

µ/R3
0 is the motion of the nominal orbit.

We parameterize the attitude-error rotation matrix R̃
△
=

RTRd using the set of 3-2-1 Euler angles (ψ, θ, φ) as

R̃ = C1(φ)C2(θ)C3(ψ), where Rd is the desired attitude

trajectory, and C1, C2, and C3 are elementary rotations

about the x, y, and z-axes by ψ, θ, and φ, respectively. The

linearization of the attitude dynamics and kinematics about

an equilibrium y-axis (principal axis) spin with an angular

rate corresponding to the mean motion n of the orbit yields

J1δ̇ω1 = − (J2 − J3 + α2 − α3)n δω3 + nα3δν3

− α1η1 + τ1,

J2δ̇ω2 = −α2η2 + τ2,

J3δ̇ω3 = − (J1 − J2 + α1 − α2)n δω1 − nα1δν1

− α3η3 + τ3,

δν̇1 = η1, δφ̇ = δω1 + nδψ,

δν̇2 = η2, δθ̇ = δω2,

δν̇3 = η3, δψ̇ = δω3 − nδφ.

(4)



Without orbital correction maneuvers, due to the dis-

turbance accelerations (2), a spacecraft in GEO will drift

from its assigned orbital position. In addition, the spacecraft

uses its reaction wheels to compensate for any torque dis-

turbances, thus maintaining a nadir-pointing configuration.

Without any momentum management, the wheels’ angular

momentum may saturate, and the spacecraft may lose the

capability to compensate for any disturbance torques.
The objective of the controller designed in this paper is

to determine control inputs for the on-board thrusters and

reaction wheels such that: (R1), the spacecraft maintains a

nadir-pointing attitude while the reaction wheels are brought

to rest, (R2), the spacecraft remains in a specified station

keeping window, (R3), the fuel consumption is minimized,

and (R4), the control produces forces and torques that can

be simultaneously realized using the same set of thrusters.

III. BASIC MPC FOR LOW THURST SK-MM

Based on the linearized attitude and orbital dynamics

model (3), (4) it is relatively easy to design a basic MPC

for SK-MM, which extends an LQR design to account for

the nadir-pointing requirement (R1) and bounds on forces

and torques due to maximum thrust magnitude.

A. Design of basic MPC for SK-MM

For MPC design, (3) and (4) are sampled with period Ts
to obtain the discrete-time linear prediction model

x(t+ 1) = Ax(t) +Bu(t), (5)

where x = [δx δy δz δẋ δẏ δż δφ δθ δψ δω1 δω2 δω3

δν1 δν2 δν3]
T, u = [Fx Fy Fz η1 η2 η3 τ1 τ2 τ3]

T,

are the state and control input vectors, respectively. We do

not include the disturbances (2) in (5) because of their highly

nonlinear form.
Due to the nadir-pointing requirement (R1), we constrain

the Euler angles to remain within the allowed tolerances

|δφ| ≤ δφmax, |δθ| ≤ δθmax, |δψ| ≤ δψmax. (6)

We also introduce bounds on forces, torques, and the angular

accelerations of the reaction wheels, yielding

umin ≤ u ≤ umax. (7)

While constraint (7) accounts for the maximum input

magnitudes, we assume that the thrusters can generate all

requested forces and torques, i.e., we ignore the force-torque

coupling induced by utilizing the same thrusters for SK-MM.
Using (5)-(7), the finite-horizon optimal control problem

of MPC with a linear-quadratic cost function is given by

min
Ut

xTN |tPxN |t +

N−1
∑

k=0

xTk|tQxk|t + uTk|tRuk|t,

s.t. xk+1|t = Axk|t +Buk|t,
x0|t = x(t),
umin ≤ uk|t ≤ umax,
δφmin ≤ δφk|t ≤ δφmax,
δθmin ≤ δθk|t ≤ δθmax,
δψmin ≤ δψk|t ≤ δψmax,

(8)

where N is the prediction horizon, Ut = [u0|t, . . . , uN−1|t],
Q ≥ 0, R > 0 are the stage cost weight matrices, and P > 0
is the terminal cost weight [17], which is the solution of

the discrete algebraic Riccati equation for (5), with Q, R
as in (8). At every sampling instant t, MPC computes the

optimal solution U∗
t of (8) for the current state x(t) and

applies u(t) = u∗
0|t to the spacecraft.

While (R1) is enforced via constraints (6), the MPC based

on (8) enforces (R2) and (R3), which are the regulation

performance and the control effort, by tuning the cost func-

tion weights, Q, R, respectively, similar to a classical LQR

design. Finally, (R4) is assumed to be enforced a posteriori,

e.g., by control allocation [18].

B. Simulation results of basic MPC for SK-MM

The results for an annual simulation of the spacecraft

dynamics under the control of the MPC based on (8) are

reported in Figure 2. Here, Tmax = 100mN is the maxi-

mum thrust for each thruster, used to compute the bounds

in (7). Figure 2a shows that MPC achieves very accurate

regulation performance, but this comes at the cost of very

high fuel consumption (∆v). In fact, [19] reports that for a

positional accuracy of 0.05-0.1 degrees, out-of-orbital-plane

SK requires between 41 and 51 m/s/year, and in-orbital-plane

SK requires 1.9 m/s/year, while from Figure 2b, the MPC

based on (8) requires ∆vz = 66.3 m/s/year out-of-orbital-

plane (z-direction), while for in-orbital-plane, ∆vy = 174.7
m/s/year and ∆vx = 162.9 m/s/year, (although the accuracy

is almost three orders of magnitude higher).

As indicated in Section III-A, (R3) is achieved by tuning

the cost function. However, an attempt to reduce fuel con-

sumption by simply reducing Q (or increasing R) reduces

the regulation performance, leading to violation of (R2), and

still does not achieve the desired range for annual ∆v. We

have found two reasons for this: (i), the prediction model (5)

neglects the disturbances (2), and (ii) the control effort of

the MPC based on (8) is mostly linear with respect to the

state. Due to (i), the controller does not take advantage

of the periodicity of the disturbances, and overreacts or

under-reacts depending of the cost function weights. Also,

MPC’s nonlinear behavior is due to the constraints, and

hence (ii) follows from the fact that in (8), the orbital

dynamics are essentially unconstrained. While these results

seem disappointing, they are a result of not exploiting the full

potential of MPC. Next we show a slightly more advanced

design that is aimed at resolving (i) and (ii).

IV. ADVANCED MPC FOR LOW THRUST SK-MM

The limitations of the design in Section III can be removed

by exploiting some of the key features of MPC, namely the

prediction of the dynamics and the capability of enforcing

states and (combined) input constraints.

A. Design of Advanced MPC for SK-MM

To improve the prediction of MPC, we augment (5) with

a prediction model of the disturbance accelerations (2),

x(t+ 1) = Ax(t) +Bu(t) +OH/Eap,t, (9)
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Fig. 2: Annual simulation of spacecraft in closed-loop with basic
MPC for SK-MM.

where ap,t+k is the total disturbance acceleration at time

step t at the desired nominal orbit, and OH/E is the rotation

matrix that transforms the components of ap,k from the

inertial frame into the components of the same acceleration

in Hill’s frame. In (9) we have approximated the disturbance

assuming the spacecraft is at its nominal orbit. Thus, the

disturbance is obtained by integrating (2) along the nominal

orbit, i.e., before solving the finite-time optimal control

problem.

The error introduced in (9) by approximating the dis-

turbance is relatively small if the spacecraft is close to

its nominal orbit, which is guaranteed with proper station

keeping. To further guarantee this, and to solve the second

limitation of the MPC in Section III, we introduce SK

window constraints that impose a limit on the error of the

spacecraft orbit in terms of latitude and longitude,

|δy| ≤ r0tan(λ1,max), |δz| ≤ r0tan(λ2,max), (10)

where λ1,max is the maximum tolerable longitude error, and

λ2,max is the maximum tolerable latitude error. As it will be

discussed later, constraint (10) forces nonlinear behavior on

SK control action, which can be leveraged to reduce the fuel

consumption while keeping the spacecraft in the desired SK

window.
Finally, by replacing (7) with slightly more complex

constraints, we can also enforce (R4) and hence command

torques and forces that can be generated by the single set

of (low-thrust) thrusters, with thrust vector T such that

‖T ‖∞ ≤ Tmax. For a spacecraft equipped with six dual-axis

thrusters, assuming that the attitude error is small and that

the spacecraft is in nadir-pointing configuration, (guaranteed

by (6)), we introduce the constraints
∥

∥

∥

∥

∥

[

Γ Γ
L −L

]−1 [

OL/H 0
0 I

] [

F
τ

]

∥

∥

∥

∥

∥

∞

≤ Tmax, (11)

where Γ, L, OL/H are appropriate matrices related to the

geometry of the thruster locations in the spacecraft frame.

The torques and forces that satisfy (11) can be achieved with

the available thrust magnitude and thruster configuration.
Using (6), (9), (10), and (11) we obtain a more advanced

MPC design, replacing (8) with

min
Ut

xTN |tPxN |t +
N−1
∑

k=0

xTk|tQxk|t + uTk|tRuk|t,

s.t. xk+1|t = Axk|t +Buk|t +OH/Eap,k|t,
x0|t = x(t),

−Tmax ≤ Duk|t ≤ Tmax,
δymin ≤ δyk|t ≤ δymax,
δzmin ≤ δzk|t ≤ δzmax,
δφmin ≤ δφk|t ≤ δφmax,
δθmin ≤ δθk|t ≤ δθmax,
δψmin ≤ δψk|t ≤ δψmax,

(12)

where the matrix D is derived from (11). Due to the

introduction of (10), the cost function weights in (12) can

be selected to significantly penalize the control effort, thus

avoiding any actuation until the predicted trajectory evolves

outside the allowed SK window. In order to take advantage of

the periodicity of (2), the time length of the MPC prediction

horizon should be at least half an orbit. For SK-MM, the

relatively fast attitude dynamics imposes constraints on the

maximum sampling period. Hence, increasing the time length

of the prediction horizon can be only achieved by increasing

N , and hence the computational cost of solving (12).

B. Simulation results of advanced MPC for SK-MM

The results for an annual simulation of the spacecraft

dynamics under the control of the MPC based on (12) are

reported in Figure 3. Figure 3a shows that the spacecraft

position error always resides in the allowed SK window, that

is, (R2) is satisfied. Note that the trajectory fills the window,

i.e., the controller uses almost the entire range of allowed

SK error. As opposed to the design in Section III, Figure 3b

shows that the advanced MPC design based on (12) requires

much less ∆v. In detail, in the out-of-plane z-direction,

∆vz = 59 m/s/year, while in the orbital plane, ∆vy = 1.6
m/s/year and ∆vx = 0.45 m/s/year. These values are very



close to those presented in [19] (see Section III-B), where

however, the SK window is 5-10 times larger than the one

considered here.
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Fig. 3: Annual simulation of spacecraft in closed-loop with ad-
vanced MPC for SK-MM.

The coupling between forces and torques is demonstrated

by the results reported in Figure 4, where the MPC based

on (12), although with different cost function weights from

the ones used in the annual simulation, aggressively regulates

the SK error and reduces the speed of the reaction wheels.

Figure 4 shows that the controller first commands torques to

dump the momentum of the reaction wheels. The spacecraft

thus avoids any gyroscopic effects due to momentum stored

in axes not coincident with the orbital rotation axis, which

would lead to Euler angle constraint violations. Then, the

controller commands forces so that the SK error is regulated

to zero. Such complementary behavior is a result of con-

straint (11), which assures the feasibility of simultaneously

realizing the requesting forces and torques using a single set

of thrusters.

C. Discussion

The MPC design presented in Section IV is not signifi-

cantly more complex than the one introduced in Section III.

The novel elements are the disturbance prediction, which

is a constant vector that can be pre-computed, and the

SK window and the torque-force constraints, which are

additional state and input constraints, respectively. Thus, the

change in terms of performance may be surprising.

However, if we look at the modifications, they address the

two main sources of excessive fuel consumption for the MPC

in Section III. By introducing constraints on the SK window,

and increasing the cost function weight on the control effort,

the MPC policy avoids large actuation until the spacecraft

is predicted to leave the SK window. This achieves (R2)

without excessive penalty on (R3). When this is coupled with

the disturbance prediction, which allows the controller to

exploit situations when the disturbance “eventually works in

the controller favor,” the gains in terms of fuel consumptions

are fully justified. The force-torque constraint guarantees that

the desired forces and torques are actually achievable with

the available propulsion system, so that control allocation

becomes trivial.

It is indeed surprising, however, that the MPC based

on (12) achieves fuel consumption very close to that reported

in [19], especially as it has a SK window 5-10 times smaller,

since MPC uses a limited knowledge of the future, applies

a continuous feedback, and, in terms of computational cost,

results in a quadratic program of limited complexity, to the

point that it can be solved quickly even by low complexity

and easy-to-verify iterative algorithms [11]. In fact, this is

the real potential of MPC in low thrust SK-MM: being able

to extract a complex high performance solution despite a

relatively simple design and with limited computational load.

V. CONCLUSIONS

Model predictive control has shown significant potential

for spacecraft control applications, due to its capability of

handling multivariable constrained systems. By exploiting

enforcement of constraints and predictive capabilities, to-

gether with an appropriate design of the cost function,

MPC can achieve high performance in spacecraft control

applications with a computational load that is feasible for

on-board implementation. Thus, MPC is a valid candidate

to meet tight mission requirements and increase spacecraft

autonomy.

We have demonstrated such potential in a case study of

simultaneous SK-MM for all-electric spacecraft. The MPC

design achieves fuel consumption similar to that of open-loop

optimal control techniques, while achieving 5–10 times more

precise spacecraft positioning. Additionally, the MPC policy

can coordinate the same set of thrusters to, simultaneously,

generate forces for SK and torques for MM. The proposed

MPC approach with some modifications can be also applied

in more complex situations, such as in non-circular Halo

orbits around the Earth-Moon L2 Lagrange point [20].
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Fig. 4: Simulation of aggressive SK-MM maneuver for spacecraft
in closed-loop with advanced MPC.
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Supérieure des Mines de Paris, 2007.

[14] A. Weiss, I. Kolmanovsky, D. S. Bernstein, and A. Sanyal, “Inertia-
free spacecraft attitude control using reaction wheels,” Journal of

Guidance, Control, and Dynamics, vol. 36, no. 5, pp. 1425–1439,
2013.

[15] W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite
rendezvous,” J. Aerospace Sci, vol. 27, no. 9, pp. 653–658, 1960.

[16] B. Wie, Space Vehicle Dynamics and Control, 2nd ed. Reston, VA:
AIAA, 2008.

[17] S. Di Cairano and A. Bemporad, “Model predictive control tuning by
controller matching,” IEEE Tr. Automatic Control, vol. 55, no. 1, pp.
185–190, 2010.

[18] W. C. Durham, “Constrained control allocation,” Journal of Guidance,

Control, and Dynamics, vol. 16, no. 4, pp. 717–725, 1993.
[19] M. Martinez-Sanchez and J. E. Pollard, “Spacecraft electric

propulsion-an overview,” Journal of Propulsion and Power, vol. 14,
no. 5, pp. 688–699, 1998.

[20] U. Kalabic, A. Weiss, S. Di Cairano, and I. Kolmanovsky, “Station-
keeping and momentum-management on halo orbits around L2:
Linear-quadratic feedback and model predictive control approaches,”
in Proc. AAS Space Flight Mechanics Meeting, Williamsburg, VA,
AAS 15-307, 2015.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2015-083.pdf
	Opportunities and Potential of Model Predictive Control for Low-Thrust Spacecraft Station-Keeping and Momentum-Management
	page 2
	page 3
	page 4
	page 5
	page 6



