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Abstract
In this paper, we propose methods to estimate the full charge capacity (FCC) of a battery
based on adaptive filters. The FCC is estimated as a ratio of the accumulated chargecurrent
to the state of charge (SoC) of the battery, which is estimated by an extended Kalman filter.
We consider bias errors on the estimated SoC caused by the error of typical value of FCC,
which is assumed in the SoC estimation. We also consider the current sensor offset, which
causes unboundedness of variables in the FCC estimation. We compose the adaptive filters
on an affine space to avoid the unboundedness, which is undesirable for an implementation
in embedded systems.
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Abstract—In this paper, we propose methods to estimate the
full charge capacity (FCC) of a battery based on adaptive filters.
The FCC is estimated as a ratio of the accumulated charge
current to the state of charge (SoC) of the battery, which is
estimated by an extended Kalman filter. We consider bias errors
on the estimated SoC caused by the error of typical value of FCC,
which is assumed in the SoC estimation. We also consider the
current sensor offset, which causes unboundedness of variables
in the FCC estimation. We compose the adaptive filters on an
affine space to avoid the unboundedness, which is undesirable for
an implementation in embedded systems.

I. INTRODUCTION

Lithium-ion batteries (LiBs) have been widely used in
electric appliances and electric cars; the application of LiBs
becomes wider because of its high energy density, high power
density and long life [1]. While it is important to assess the
battery lifetime to use LiBs for larger scale applications, such
as peak shaving, photovoltaic power generation and so on,
the battery lifetime is however difficult to predict because of
limited measurability relative to the complexity of the internal
processes.

For designing battery systems, the battery lifetime is com-
monly assessed by its full charge capacity (FCC), although it
should be evaluated by its energy storage capacity. Because
the energy storage capacity depends on the internal resistance
of the battery, which substantially varies depending on the
temperature [2]. In addition, FCC is one of the most basic
battery model parameter for the state of charge (SoC) esti-
mation, where SoC is obtained as a ratio of the accumulated
charge current to the FCC in Coulomb counting and several
model-based methods [3]–[6].

The FCC has an initial variation in each battery cell,
and decreases due to the degradation. But it takes a long
time for an actual measurement of the FCC according to its
definition: the electric quantity to charge the battery full from
the empty. Worse yet, the battery system has to be suspended
during the measurement. A solution of this problem is applying
a signal processing technology. An online FCC estimation
method based on an adaptive filter is proposed in [7], and
another method based on Kalman filter is proposed in [8].
Although additive Gaussian noises on the terminal voltage and
the current measurements are taken into consideration in these
methods, a significant degradation in the estimation accuracy

is caused by an offset on the current measurements, which are
inevitable in widely used Hall effect sensors [9].

We consider a simultaneous estimation of the FCC and
the current sensor offset by an adaptive filter. Let qcc,k be
the Coulomb counting calculated recursively by the following
algorithm:

qcc,k = qcc,k−1 + tsIk−1, qcc,0 = 0 (1)

where ts is the sampling period, Ik is the measured current,
the FCC is able to be estimated based on the following
relationship:

qcc,k = Fccsk + tkIoff − q0, (2)

where tk := kts, Ioff is the current sensor offset, Fcc is the
FCC, sk is the SoC and q0 is the initial electric quantity
charged in the battery. It is able to implement a recursive least
squares (RLS) filter or a recursive total least squares (RTLS)
filter to estimate the Ioff , Fcc and q0, if an accurate estimation
of sk is obtained [7].

The first difficulty in the FCC estimation based on the
adaptive filters is that the model-based methods for SoC
estimation depend on the FCC. If a typical value of the FCC
is used in these methods, bias errors of sk are caused by the
difference between the typical value and the true value of
the FCC. The second difficulty is caused by the term tkIoff
in (2), which increases unlimitedly with time. It is obviously
undesirable for an implementation in embedded systems.

In this paper, we propose methods to estimate the FCC of
a battery and the current sensor offset based on an RLS filter
and an RTLS filter proposed in [10], in which the bias errors
of the estimated SoC is compensated by a first order evaluation
thereof. All variables in our methods are numerically bounded
by composing the adaptive filters on an affine space.

II. MODEL BASED SOC ESTIMATION

A. Lithium-ion battery

An LiB consists mainly of a positive electrode, a negative
electrode, current collectors and a separator; all components
are soaked with electrolyte solution (Fig. 1). In a typical
design, the positive electrode is made of a porous material
composed of metal oxide particles such as LiCoO2, LiMn2O4

and so on. The negative electrode is also made of a porous
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Fig. 1. A typical structure of lithium-ion battery cells. Lithium-ions pass
through the separator, while electrons conduct via the electric circuit.
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Fig. 2. An equivalent circuit expression of a simplified lithium-ion battery
model. The voltage source E depends on the state of charge of the battery.

material composed of graphite (C6). Electrolyte solution is an
organic solvent with electrolyte such as LiPF6 [11].

A charge-discharge reaction in the positive electrode is
expressed by:

LiCoO2

Charge
GGGGGGGGBFGGGGGGGG

Discharge
Li1−xpCoO2 + Li+xp

+ e−xp
(3)

where xp denotes the number of reaction electrons. In the
negative electrode, the reaction is expressed by:

C6 + Li+xn
+ e−xn

Charge
GGGGGGGGBFGGGGGGGG

Discharge
LixnC6 (4)

where xn denotes the number of reaction electrons [12].

In a charge process, Li+s are emitted from the positive
electrode, then absorbed into the negative electrode from the
electrolyte solution. The electrons flow along the external
electric circuit via the current collectors, because the electrodes
are electrically isolated by the separator.

The SoC of the battery is defined as:

xp − x−p

x+p − x−p
or

xn − x−n
x+n − x−n

(5)

where [x−p , x
+
p ] and [x−n , x

+
n ] denote the rated ranges of use of

the positive electrode and the negative electrode respectively.

B. Electric characteristics

Although the mathematical model of LiBs is too complex
[13], we consider a simplified battery model described in [14]
and an extended Kalman filter based on the model for SoC
estimation to describe the evaluation of bias errors on the
estimated SoC.

Fig. 2 shows an equivalent circuit model of an LiB, where
Rd and R0 are resistors, and Cd is a capacitor. The voltage

source E is referred to as an open circuit voltage (OCV) which
is a function of the SoC [15]. Let qb,k and qd,k be the electric
quantities charged in the battery and the capacitor respectively,
and let τd := RdCd, the terminal voltage of the battery Vk is
described as follows:

xk+1 = Fxk +GIk, V = h(xk) +R0Ik, (6)

where xk := [qd,k qb,k]
⊤, h(xk) := E(qb,k/Fcc) and

F :=

[
e
− ts

τd

1

]
, G :=

[
τd(1− e

− ts
τd )

ts

]
.

C. Extended Kalman filter for SoC estimation

Let σ2
I and σ2

V be the variances of the noises on the current
and the voltage measurement respectively, A prediction step of
an extended Kalman filter (EKF) for SoC estimation is written
as follows:

x̂k+1|k = F x̂k|k +GIk, (7)

P̂k+1|k = F P̂k|kF
⊤ +Q, (8)

where x̂l|k is an estimation of xl at tk, and Q is a symmetric
positive definite matrix depending on σV . An update step of
the EKF is written as follows:

x̂k|k = x̂k|k−1 +Kk(Vk − zk), (9)

P̂k|k = (I −KkHk)P̂k|k−1, (10)

where

zk := h(x̂k|k−1) +R0Ik, Hk :=
∂h

∂xk
(x̂k|k−1),

Sk := σ2
V +HkP̂k|k−1H

⊤
k , Kk := P̂k|k−1H

⊤
k S

−1
k .

Then the estimation of the SoC is given by ŝk := q̂b,k|k/Fcc,
where

[
q̂d,k|k q̂b,k|k

]
:= x̂⊤

k|k.

III. FCC AND CURRENT SENSOR OFFSET ESTIMATION

A. Bias error compensation

The SoC of the battery is estimated from a time series of
the measured current and the terminal voltage. As we described
in section II-C, the estimation algorithm depends on the FCC
of the battery. Therefore the dependency of the estimation is
expressed by:

ŝk = Fk((Ik, Vk), . . . , (I0, V0)|Fcc), (11)

where Fk is a map from a set of measured values to an
estimated value of SoC. If a typical value of the FCC used
in the SoC estimation is slightly different from the true value
of the FCC, and/or the current sensor offset, the estimated
value of SoC is biased as expressed by:

s̃k = Fk((Ik + Ioff , Vk), . . . , (I0 + Ioff , V0)|F̃cc). (12)

Let the current sensor offset and difference between Fcc

and F̃cc parameterize by Ioff ≈ Itypp1 and F̃cc ≈ Fcc(1+ p2),
the biased estimation s̃k is approximated as:

s̃k ≈ ŝk +
∂Fk

∂p1
p1 +

∂Fk

∂p2
p2 (13)



by a Taylor series expansion (see [16] for matrix derivatives),
where Ityp is a constant introduced to ensure p1 ≪ 1. Then
we get the following relation:

qcc,k =
F̃cc

1 + p2

(
s̃k − ∂Fk

∂p1
p1 −

∂Fk

∂p2
p2

)
+ Itypp1tk − q0 (14)

by substituting (13) into (2). The equation (14) is rewritten as:

qcc,k − F̃ccs̃k =

(
Ityptk − F̃cc

∂Fk

∂p1

)
p1

− F̃cc

(
s̃k +

∂Fk

∂p2

)
p2 − q0 (15)

by omitting higher order terms of p1 and p2.

B. Adaptive filter on affine space

For simplicity, we rewrite (15) as:

yk = p⊤uk − q0, (16)

where

yk := qcc,k − F̃ccs̃k, uk :=

[
Ityptk − F̃cc

∂Fk

∂p1

−F̃cc

(
s̃k + ∂Fk

∂p2

)]

and p := [p1 p2]
⊤. Obviously the parameter p is able to

estimate by an RLS filter or an RTLS filter. We simply refer to
these methods as RLS and RTLS respectively in the following
sections.

The pair of the term Qcc,k and the term Ityptk is the main
obstacle due to those unboundedness. A simple solution is a
differential approach, that is an RLS filter or an RTLS filter
based on the following relation:

∆yk = p⊤
k ∆uk, (17)

where ∆yk := yk − yk−1, ∆uk := uk − uk−1. We refer to
these methods as DRLS and DRTLS.

Our approach is considering a time-dependent local coor-
dinate system of the vector space to which the pair (yk,uk)
is belonging. The local coordinate of the pair is able to be
bounded, if the origin of the local coordinate system is set
close to the pair.

Let V be a vector space to which the pair (yk,uk) is
belonging, we regard V as an affine space. Let Tk be a tangent
space of V whose origin is set on (yk,uk) and whose bases
are same to those of the original vector space. Then the local
coordinate of (yl,ul) ∈ V is written as (yl − yk,ul − uk) =:
(ϕ−1

k (yl), ψ
−1
k (ul)) in Tk for all l.

Now we consider a weighted mean of yk and uk defined
as follows:

ȳk :=
1

Sk

k∑
l=0

λk−lyl, ūk :=
1

Sk

k∑
l=0

λk−lul (18)

where Sk :=
∑k

l=0 λ
k−l and λ is a forgetting factor in (0, 1).

Then the following relationship holds between the deviations
of yl and ul from the weighted mean: yl− ȳk = p⊤(ul− ūk).

(ȳk, ūk) (ȳk+1, ūk+1)

(yk,uk)

(yk+1,uk+1)

ζk

ξ
k

ζk+1

ξ
k+1

Fig. 3. Geometric relationship among the tangent spaces Tk , the samples
(yk,uk) and the weighted mean (ȳk, ūk). The ellipses express the distribu-
tions of the samples. The equations (20) and (21) are the direct calculation
from (ζk, ξk) to (ζk+1, ξk+1). Remark the difference between the two
distributions is extremely emphasized.

The relationship also holds on the tangent space Tk, because
the map ϕk and ψk conserves the inner product of V . Therefore

ζk = p⊤ξk, (19)

where (ζk, ξk) := (ϕ−1
k (ȳk), ψ

−1
k (ūk)) (see Fig. 3).

The local coordinate of the weighted means ζk, ξk are
calculated recursively by follows:

ζk = ϕ−1
k (λSk−1ϕk−1(ζk−1) + yk)/Sk

=
λSk−1

Sk
(ζk−1 −∆yk) , (20)

ξk = ψ−1
k (λSk−1ψk−1(ξk−1) + yk)/Sk

=
λSk−1

Sk

(
ξk−1 −∆uk

)
. (21)

The variables ∆yk and ∆uk are bounded if yk and uk are
smooth time series, and calculated without dealing with the
term qcc,k and tk, by using following equations: tk − tk−1 =
ts, qcc,k − qcc,k−1 = tsIk−1. The term Sk is also bounded
obviously, and calculated recursively by Sk = Sk−1 + λk and
λk = λ · λk−1. Therefore ζk and ξk are bounded for each k,
because λSk/Sk−1 < 1.

An adaptive filter based on (17) or (19) is more desirable
for implementation in embedded systems than that based on
(16), because all variables in the recursive calculation are
bounded.

C. Rayleigh quotient-based fast RTLS filter

Let δk be the error of ζk and ϵk be the error of ξk, an
RTLS filter minimizes the following objective function:

Jk(p, Ẑk, Ξ̂k) :=
k∑

l=0

λk−l(δ2l + ϵ⊤l W
−1ϵl), (22)

such that ζk − δk = p⊤(ξk − ϵk), where Ẑk := {ζ̂0, . . . , ζ̂k},
Ξ̂k := {ξ̂0, . . . , ξ̂k}, ζ̂k := ζk − δk, ξ̂k := ξk − ϵk and W is
a symmetric positive definite weighting matrix. Let p̂k be an



estimator of p at tk, the minimum point of (Ẑk, Ξ̂k) for each
p̂k is given by:

η̂k := Ak(A
⊤
k Λ

−1Ak)
−1A⊤

k Λ
−1ηk, (23)

where

η̂k :=

[
ζ̂k
ξ̂k

]
, ηk :=

[
ζk
ξk

]
, Ak :=

[
p̂⊤
k
I

]
and Λ := diag{1,W}.

A nonzero vector ak such that A⊤
k ak = 0 exists uniquely

except for scalar multiplies, because the kernel of Ak is an
1-dimensional subspace. Then minimizing objective function
Jk is equivalent to minimizing a Rayleigh quotient defined as
follows:

Qk :=
a⊤
k R̄kak

a⊤
k Λak

, where R̄k :=
k∑

l=0

λk−lηlη
⊤
l . (24)

The vector ak must be parameterized as a⊤
k =

[
−1 p⊤

k

]
to satisfy the orthogonality condition. Now we consider the
following incremental update equation:

p̂k = p̂k−1 + θkwk, (25)

where wk is a direction of a line search. The direction wk

is desirably a time series of vectors which efficiently spans
the image of Ak in a short time range. Although authors
employ ξk as wk in [10], we employ a random unit vector
uniformly distributed on the unit circle (actually it is not
necessarily normalized), because ξk is strongly time-correlated
and inefficient to span the image of Ak in our case.

Substituting (25) into (24), the Rayleigh quotient Qk

forms a rational function of θk. The numerator Nk and the
denominator Dk of Qk is written as

Nk = N2,kθ
2
k + 2N1,kθk +N0,k, (26)

Dk = D2,kθ
2
k + 2D1,kθk +D0,k, (27)

where

N2,k := w⊤
k Rkwk,

N1,k := w⊤
k Rkp̂k−1 − c⊤k wk,

N0,k := p̂⊤
k−1Rkp̂k−1 − 2c⊤k p̂k−1 + d

D2,k := w⊤
kWwk,

D1,k := w⊤
kW p̂k−1

D0,k := p̂⊤
k−1W p̂k−1 + 1

and [
dk c⊤k
ck Rk

]
:= R̄k =

k∑
l=0

λk−l

[
ζ2k ζkξ

⊤
k

ξkζk ξkξ
⊤
k

]
.

The extreme points of Qk are given by the solutions of
following equation

∂Nk

∂θk
Dk −Nk

∂Dk

∂θk

D2
k

=
αkθ

2
k + βkθk + γk
D2

k/2
= 0, (28)

TABLE I. THE FIRST DERIVATIVE TEST OF THE RAYLEIGH QUOTIENT

For αk > 0

θk −∞ · · · θ−
k · · · θ+

k · · · ∞
∂Qk/∂θk 0 + 0 − 0 + 0

Qk *1 ↗ ↘ ↗ *

For αk < 0

θk −∞ · · · θ+
k · · · θ−

k · · · ∞
∂Qk/∂θk 0 − 0 + 0 − 0

Qk * ↘ ↗ ↘ *
1 Regardless of positive ak or negative ak , limθk→±∞ Qk =
w⊤

k Rkwk/w
⊤
k Wwk .

TABLE II. BATTERY MODEL PARAMETERS USED IN NUMERICAL
EVALUATION

Parameter Value Parameter Value

R0 10mΩ F̃cc 1.0Ah

Rd 1.0mΩ E0 2.6V

Cd 5.0 kF E1 1.6V
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Fig. 4. Input current for the simulation. The time axis is zoomed in during
the first 50 minutes.

where

αk := N2,kD1,k −N1,kD2,k,

βk := N2,kD0,k −N0,kD2,k,

γk := N1,kD0,k −N0,kD1,k.

Then θk should be a root of the quadratic form of the
numerator of (28). From the first derivative test of Qk shown
in Table I, the quadratic form has two distinct roots for nonzero
ak, and the minimum point of Qk is given by θ+k , where

θ±k :=
−βk ±

√
β2
k − 4αkγk

2αk
. (29)

When the ak is incidentally close to zero, we employ θk = 0
to avoid numerical instability.

IV. NUMERICAL EXAMPLE

In this section, we illustrate the performance of our al-
gorithm by a numerical simulation. In our simulation, we
employed the simplified battery model shown in Fig. 2 with
the battery model parameters in Table II, and sampling period
ts = 100ms. We assumed the dependency of the voltage
source E on the state of charge s is described as E = E0+E1s,
where E0 and E1 are constants.

First, we calculated the terminal voltage of the battery using
the input current shown in Fig. 4 (the true SoC is also shown
in Fig. 5 for visibility). We slightly varied the FCC of the
battery from the typical value as Fcc = 0.9F̃cc.
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Fig. 5. State of charge simulated from the input current shown in Fig. 4.
The full charge capacity Fcc is assumed to be 1.0Ah.

TABLE III. VARIATION OF EVALUATED ALGORITHMS

Basic Differential Affine
RLS RLS DRLS ARLS

RTLS TLS DTLS ATLS
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Fig. 6. Estimated Fcc (square) and Ioff (triangle) by RLS.

Next, we estimated the SoC of the battery and the derivative
thereof from the current and the voltage using a Kalman filter
based on the simplified battery model, where we offset the
current by 0.3A, and added a Gaussian noise of variance
σ2
I = 10−4 and σ2

V = 10−5 to the current and the voltage
respectively.

After that, we estimated the FCC and the current sensor
offset from the estimated SoC, the derivative thereof and the
measured current (or Coulomb counting in some methods) by
various adaptive filters shown in Table III. The differential
filters are based on (17), while the basic and affine algorithms
are based on (16) and (19) respectively.

We employed λ = e−τ/ts where τ = 20min, Ityp = 100A
and W = I . Then we tuned the intial Rk, ck, dk as far as
possible, so that the estimated values converge while tk ≤
100min.

The results of the estimation are shown in Fig. 6–11.
All filters well estimate the current sensor offset, and well
estimate the FCC except RTLS. The estimation errors, means
and standard deviations thereof are shown in Fig. 12–15. ARLS
and ARTLS achieve equivalent accuracy to that of RLS, while
the results of DRLS and DRTLS are biased in Fcc and have
larger deviations in Ioff .

V. CONCLUSION

In this paper, we propose a method to estimate the FCC of
a lithium-ion battery by an adaptive filter from the current and
the SoC of the battery. The SoC is estimated by a Kalman filter
based on an simplified battery model from the current and the
terminal voltage of the battery. The bias error of the estimated
SoC caused by the current sensor offset and the difference
between a true value of the FCC and a typical value thereof
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Fig. 7. Estimated Fcc (square) and Ioff (triangle) by DRLS.
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Fig. 8. Estimated Fcc (square) and Ioff (triangle) by ARLS.
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Fig. 9. Estimated Fcc (square) and Ioff (triangle) by RTLS.
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Fig. 10. Estimated Fcc (square) and Ioff (triangle) by DRTLS.
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Fig. 11. Estimated Fcc (square) and Ioff (triangle) by ARTLS.

assumed in the Kalman filter is compensated in the meaning
of first order approximation.

In the FCC estimation by commonly used RLS filter or
RTLS filter where the current sensor offset is taken into
consideration, the variables used in the estimation algorithms
are unbounded. In our approach, the RLS filter or RTLS filter
is composed on an affine space to avoid the unboundedness,
instead of differentiating the input signals, which is another
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Fig. 12. Estimation error of Fcc by RLS, DRLS and ARLS, and means and
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Fig. 14. Estimation error of Fcc by RTLS, DRTLS and ARTLS, and means
and standard deviations of the errors from 100 min. to 500 min.
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Fig. 15. Estimation error of Ioff by RTLS, DRTLS and ARTLS, and means
and standard deviations of the errors from 100 min. to 500 min.

approach to keep the variables bounded. We illustrate that
our approach outperforms the differentiation approach by a

numerical example.
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