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Abstract
Dual control frameworks for systems subject to uncertainties aim at simultaneously learning
the unknown parameters while controlling the system dynamics. We propose a robust dual
model predictive control algorithm for systems with bounded uncertainty with application
to soft landing control. The algorithm exploits a robust control invariant set to guarantee
constraint enforcement in spite of the uncertainty, and a constrained estimation algorithm
to guarantee admissible parameter estimates. The impact of the control input on parameter
learning is accounted for by including in the cost function a reference input, which is designed
online to provide persistent excitation. The reference input design problem is non-convex,
and here is solved by a sequence of relaxed convex problems. The results of the proposed
method in a soft-landing control application in transportation systems are shown.
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Robust Dual Control MPC with Application to Soft-Landing Control

Y. Cheng, S. Haghighat, and S. Di Cairano,

Abstract— Dual control frameworks for systems subject to
uncertainties aim at simultaneously learning THE unknown
parameters while controlling the system dynamics. We propose
a robust dual model predictive control algorithm for systems
with bounded uncertainty with application to soft landing
control. The algorithm exploits a robust control invariant set
to guarantee constraint enforcement in spite of the uncertainty,
and a constrained estimation algorithm to guarantee admissible
parameter estimates. The impact of the control input on
parameter learning is accounted for by including in the cost
function a reference input, which is designed online to provide
persistent excitation. The reference input design problemis
non-convex, and here it solved by a sequence of relaxed convex
problems. The results of the proposed method in a soft landing
control application in transportation systems are shown.

I. INTRODUCTION

In many applications, offline parameter estimation and
model identification is not possible due to numerous fac-
tors such as expensive process downtime, and param-
eters that change while in operation. Therefore, model
(re)identification may need to be performed in real-time
(online) and in closed-loop. However, simultaneous system
identification and closed-loop control [1]–[7] is a challenging
problem because of the conflicting objectives of control and
identification, since control aims at stabilizing the system
at the desired target, while to perform an effective identi-
fication, the system inputs have to (persistently) excite the
system dynamics. The parameter estimate obtained by recur-
sive least squares converges exponentially if the system is
persistently excited [8]. However, a controller may interpret
the excitation itself as a disturbance, thus rejecting it and
canceling the persistent excitation.

In [4], an autoregressive system simultaneously identified
an controlled with a finite horizon linear quadratic controller
is shown to be stable if the information matrix increases
within a number of steps. In [1], a model predictive control
(MPC) and identification framework was proposed, where
the system input is a sum of sinusoids with prescribed
frequencies, for which the optimal amplitudes were proved to
achieve persistent excitation. In [3] persistence of excitation
over aΥ-steps learning horizon is enforced from previous
inputs and a single future output, requiring the solution of
two convex quadratic programs. In [6] the MPC cost function
is augmented with a 1-step learning objective, and in [9] set
membership identification is applied with a MPC with robust
constraint satisfaction.
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Along the lines of [7], in this paper we develop a robust
dual control MPC (RDC-MPC), where however we only
solve convex problems. The algorithm has general applica-
bility although here we focus on its use for soft landing
control [10], i.e., to precisely stop a moving object at a
desired location, which is relevant in automotive, aerospace,
and factory automation applications. To achieve a trade
off between regulation and identification, a MPC algorithm
with robust constraint satisfaction is modified by adding an
additional (time-varying) term in the cost function, which
quantifies the reduction of the parameter uncertainty. This
results in an active learning method where the controller
generates inputs that aim in part at regulating the system, and
in part at exciting it to facilitate learning, where the trade
off depends on the reliability of the current plant model.
As opposed to the previous work [7], here we quantify
reduction of the uncertainty due to an input sequence in terms
of the predicted persistence of excitation measured through
the change in the information matrix minimum eigenvalue
over a learning horizon. To address the non-convexity of the
problem, we propose a two-steps approach where both levels
are executed online. First, an excitation input sequence is
designed by solving a sequence of convex problems solving
a rank minimization problem. Then, the excitation input
sequence is used as reference input profile in an additional
term of the MPC cost function, with a weight that depends
on a function of the observed prediction error.

The paper is organized as follows. In Section II we briefly
review polytopic linear difference inclusions, control invari-
ant sets, and the soft landing control problem. Section III de-
scribes the two-steps RDC-MPC framework for pLDIs. The
input design by convex problems is described in Section IV.
In Section V the algorithm is applied to a soft landing
problem related to the stop control of a transportation vehicle
with uncertain parameters. The conclusions are drawn in
Section VI.

Notation:R,R0+,R+ are the set of real, nonneative real,
positive real numbers, andZ,Z0+,Z+ are the set of integer,
nonneative integer, positive integer numbers. By⊕ and co
we denote Minkowski sum and convex hull, respectively. For
a discrete-time signalx with sampling periodTs, x(t) is the
state at sampling instantt, i.e., at timeTst. By [X ]i,j and
[x]i we denote the(i, j)-th andi-th component of matrixX
and vectorx, respectively.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we present some fundamental notions and
preliminary results, and describe the dual control problem
for soft landing control.



A. Polytopic Linear Difference Inclusions

Given ℓ ∈ Z+, {(Ai, Bi)}
ℓ
i=1, Ai ∈ R

nx×nx , Bi ∈
R

nx×nu , i = 1, . . . , ℓ, Bw ∈ R
nx×np and a polytope

W = co({wi}
η
i=1), wherewi ∈ R

np , i = 1, . . . , p, the
additive disturbance polytopic Linear Difference Inclusion
(dpLDI) based on theℓ vertex systemsx(k+1) = Aix(k)+
Biu(k), i = 1, . . . , ℓ is

x(k+ 1) ∈ co{Aix(k) +Biu(k)}
ℓ
i=1 ⊕ co{Bwwi}

p
i=1. (1)

The trajectories generated by (1) includes those of

x(k+ 1) =

ℓ
∑

i=1

[θ]i(Aix(k) +Biu(k)) +

p
∑

i=1

[η]iBwwi, (2)

whereθ ∈ R
ℓ andη ∈ R

p are unknown and constant,0 ≤
[θ]i ≤ 1, 0 ≤ [η]i ≤ 1, and

∑ℓ

i=1[θ]i =
∑p

i=1[η]i = 1.

B. Robust Control Invariant Set

Consider the constrained discrete-time system

x(k + 1) = fd(x(k), u(k), w(k)), (3a)

x(k) ∈ X , u(k) ∈ Uw(k) ∈ W , (3b)

Definition 1: A set C ⊆ X is a robust control invariant
(RCI) set for (3) if x ∈ C ⇒ ∃u ∈ U : fd(x, u, w) ∈
C, ∀w ∈ W . C∞ ⊆ X is the maximal RCI (mRCI) set inX ,
if it is RCI and contains all the other RCI sets inX .

Given a RCI setC for (3), the set of admissible state-input
pairs isC∞x,u = {x ∈ C, u ∈ U : fd(x, u, w) ∈ C, ∀w ∈ W}.
The setC∞x,u is the set of admissible state-input pairs forC∞.

The mRCI set construction relies on the Pre-set operator

Pre(Ω,U ,W) =

{x ∈ X : ∃u ∈ U , fd(x, u, w) ⊂ Ω, ∀w ∈ W}, (4)

which computes the set of states that can be robustly driven
to the target setΩ ∈ R

n in one step. Based on (4),C∞

for (3) is the fixpoint of the sequence{Ωk}k, whereΩ0 = X ,
Ωk = Pre(Ωk−1,U ,W) ∩ Ωk−1. Indeed,Ωk ⊆ Ωk−1, and
if there existsk̄ ∈ Z+ such thatΩk̄ = Ωk̄−1, Ωk̄ = C∞.
Conditions for convergence are discussed, e.g., in [11].

For the dpLDI system (1), the RCI set isC = {x ∈ X :
∃u ∈ U , Aix + Biu + Bww ∈ C, ∀i = 1, . . . , ℓ, ∀w ∈ W}
and the Pre-set computation is detailed, e.g., in [10].

C. Soft Landing Control

Soft landing control aims at stopping a moving object in
(and only in) a target regionEtgt, while the object speed-of-
approach is kept below an upper bound that decreases as the
distance from the target decreases [10]. The dynamics of the
object moving in a one dimensional space is

d̈(t) = v̇(t) =
1

m

nf
∑

i=1

Fi(t), (5)

whered is the position with respect to the target,v is the
velocity, andFi, i = 1, . . . , nf are the external forces. Here,
we assumed(0) < 0, v(0) > 0, 0 ∈ int(Etgt), whereEtgt =
{d ∈ R : ǫmin ≤ d ≤ ǫmax}, ǫmin ≤ ǫmax.

d

v

Etgt

γmin

γmax

Fig. 1. Schematics of the soft landing problem

Result 1 ( [10]): Any infinite-time admissible trajectory
of

ẋ(t) = f(x(t), u(t), ϑ(t)) (6a)

y(t) =
[

d(t) v(t)
]T

= h(x(t)) (6b)

[y(t)]2 ≤ γmax(ǫmax − [y(t)]1) (6c)

[y(t)]2 ≥ γmin(ǫmin − [y(t)]1) (6d)

x(t) ∈ X̄ , u(t) ∈ U . (6e)

wherex ∈ X̄ ⊆ R
nx , u ∈ U ⊆ R

nu , y = [d v]T ∈ Y ⊆ R
2,

and ϑ ∈ O ⊆ R
nϑ is the uncertainty,γmin, γmax ∈ R+,

γmin < γmax, and (6e) are constraints on states and inputs
solves the soft landing problem.
The constraints (6c), (6d) define thesoft landing cone,
see Figure 1. For computational purposes, in what fol-
lows (6a), (6b) are linear subject to additive disturbances
and parametric uncertainty, and̄X , U are polytopes.

D. Problem Statement

ConsiderP1 = {θ ∈ R
ℓ : 0 ≤ [θ]i ≤ 1, ∀ℓi=1,

∑ℓ
i=1[θ]i =

1}, P2 = {η ∈ R
p : 0 ≤ [η]i ≤ 1, ∀pi=1,

∑p

i=1[η]i = 1} and
for an appropriately small sampling periodTs, let (6a) be
represented in discrete-time by

x(k + 1) = Asx(k) +Bsu(k) +Bwws, (7)

wherex ∈ R
nx , u ∈ R

nu , ws ∈ R
nw , As =

∑ℓ

i=1[θ]iAi,
Bs =

∑ℓ

i=1[θ]iBi, ws =
∑p

i=1[η]iwi, and Bw, Ai, Bi,
i = 1, . . . , ℓ, andwi, i = 1, . . . , p are known, whileθ ∈ P1,
η ∈ P2 are unknown.

Let X , U be polyhedral sets whose elements satisfy (6c),
(6d), (6e). Based on Sections II-A, II-B, we obtain the mRCI
and the set of admissible state-input pairs

C∞ = {x ∈ R
nx : H∞x ≤ K∞}, (8a)

C∞x,u = {x ∈ C∞, u ∈ U : H∞
x x+H∞

u u ≤ K∞
u }. (8b)

Let P = P1×P2 ⊂ R
ℓ+p, andϑ = [θT ηT ]T ∈ P denote

the unknown parameters. For anȳϑ = [θ̄T η̄T ]T ∈ P we
obtain the prediction model

xk+1 = Āxk + B̄uk +Bww̄, (9)

where Ā =
∑ℓ

i=1[θ̄]iAi, B̄ =
∑ℓ

i=1[θ̄]iBi, and w̄ =



∑p

i=1[η̄]iwi, and the trajectories of (9) are included in (1).
Consider the MPC policy that at every step solves the finite
horizon optimal control problem

min
U

Jc = F (xN ) +

N−1
∑

i=0

L(xi, ui) (10a)

s.t. xi+1 = Āxi + B̄ui +Bww̄ (10b)

ui ∈ U , (10c)

H∞
x x0 +H∞

u u0 ≤ K∞
u (10d)

x0 = x(k), (10e)

whereU = [u0, . . . , uN−1]
T , N ∈ Z+ is the prediction hori-

zon,F andL are the terminal and stage cost, respectively,
and appliesu(k) = u∗

0, whereU∗ = [u∗
0, . . . , u

∗
N−1]

T is the
optimal solution of (10). By the properties of the RCI set, for
any initial statex(0) ∈ C∞, (10) is recursively feasible and
hence the closed loop satisfies the constraints for allk ∈ Z+,
for all admissible disturbances and parameter values.

Thus, the MPC policy based on (10) robustly enforces
constraints on the dpLDI system (1), and hence by Result 1,
it solves the soft landing control problem. However, the
transient performance in terms of energy, time, jerk, i.e.,the
trajectory to achieve soft landing, is significantly affected by
the uncertainty in the system parameters. Thus, here we aim
at developing a control strategy with the following features.

Problem 1: Given {Ai, Bi}
ℓ
i=1, {wi}

p
i=1 andBw for (7),

design a robust dual control MPC (RDC-MPC) for soft
landing of (7) that:(i) guaranteesx(k) in C∞, and hence
x(k) ∈ X , u(k) ∈ U , for all k ∈ Z+, (ii) excites the system
to improve learning ofϑ ∈ P (iii) trades off excitation and
control objectives based on the reliability of the estimated
prediction model. Furthermore,(iv) given a convexJc, the
RDC-MPC should only solve convex problems. ✷

III. ROBUST DUAL CONTROL MPC

Next, we propose a two-steps RDC-MPC for uncertain
systems modeled as dpLDI systems which combines the
objectives of control and excitation for parameter estimation.

Definition 2: ( [8]) An input profile is persistently exciting
if for every k ∈ Z0+ there existsΥ ∈ Z+ and ρ0 ∈ R+,
such that parameter information matrixRk (the inverse of
the covariance matrix) satisfiesRk+Υ −Rk � ρ0I.

A. Constrained RLS

For system (7), we form a linear regression model for the
unknown coefficients vectorϑ =

[

θT ηT
]T

given by

x(k + 1) + ǫ(k + 1) =
ℓ

∑

i=1

[θ]i(Aix(k) +Biu(k)) (11)

+

p
∑

i=1

[η]iBwwi + ǫ(k + 1) = MT (k)ϑ(k + 1) + ǫ(k + 1),

where M(k) = [A1x(k) + B1u(k), . . . , Aℓx(k) +
Bℓu(k), Bww1, . . . , Bwwp]

T is the regressor matrix,ν(k +
1) = x(k+1)+ ǫ(k+1), andǫ(k+1) is measurement noise
that is introduced for estimator design.

Recursive least squares (RLS) filters have been extensively
used to implement dual control systems [3]–[6]. However, the
parameter vector in (11) needs to be constrained inP , which
is needed to ensure that the corresponding prediction model
generates trajectories included in those of (2), otherwisethe
guaranteed robust feasibility of the MPC optimal control
problem (10). Thus, here we use a constrained RLS (cRLS)

K(k + 1) =P (k)M(k)(αI +MT (k)P (k)M(k))−1 (12a)

ϑ̂(k + 1) = argmin
ϑ∈P

‖ν(k + 1)−MT (k)ϑ‖2

+ ‖ϑ̂(k)− ϑ‖2αR(k) (12b)

P (k + 1) =
1

α
(I −K(k + 1)MT (k))P (k) (12c)

R(k + 1) =αR(k) +M(k)MT (k) (12d)

where P (k) ∈ R
(ℓ+p)×(ℓ+p) is the covariance matrix,

R(k) ∈ R
(ℓ+p)×(ℓ+p) is the information matrix, and0 <

α ≤ 1 is the forgetting factor.

B. Robust MPC with Active Learning

We propose a two-steps RDC-MPC, which consists of an
input design step and a control step with robust constraint
guarantees such that it only solves convex problems.

For the input design step the minimum eigenvalue of the
change in the information matrix along the input design
horizonΥ, λmin(RΥ − R0) is adopted as a as the measure
of the excitation provided by an input sequence. As we will
show later, with this choice we can obtain a convex relaxation
that allows to design a RDC-MPC that only solves convex
problems. We formulate the problem for the input design
step as

max
Uexc(k)

λmin(RΥ −R0) (13a)

s.t. xi+1 = Âkxi + B̂kuexci +Bwŵk (13b)

Ri+1 = Mi(xi, uexc,i)M
T
i (xi, uexc,i) + αRi (13c)

H∞
x x0 +H∞

u uexc,0 ≤ K∞
u (13d)

R0 = R(k), (13e)

where the information matrixRi is computed fromxi and
ui, andUexc(k) = [uexc,1, uexc,2, · · · , uexc,Υ]

T is the input
sequence designed to excite the system.

For the control step, similarly to [4]–[7], we add to the
MPC cost function a term that favors the system excitation.
Here, the additional term penalizes the deviation of the
control input sequence from the input sequence designed to
excite the system in a way that retains convexity

min
U

Jc (14a)

+β(x(k) −MT (k − 1)ϑ̂(k))‖U − Uexc(k)‖
2
I(14b)

s.t. xi+1 = Âkxi + B̂kui +Bwŵk, ∀
N−1
i=0 (14c)

ui ∈ U , ∀
N−1
i=0 (14d)

H∞
x x0 +H∞

u u0 ≤ K∞
u , (14e)

x0 = x(k), (14f)



whereβ(·) is a positive, non-decreasing function of the norm
of the estimation error. When the prediction model represents
well the system dynamics, the relative importance of the
control objective increases, while when the prediction model
does not represent well the system dynamics, more emphasis
is placed on following the excitation input, which facilitates
learning. The complete two-steps RDC-MPC framework is
described in Algorithm 1.

Algorithm 1 Two-steps RDC-MPC
1: repeat
2: Receivex(k).
3: Update the parameter estimateϑ̂(k) by (12).
4: Compute the excitation input sequenceUexc(k) ∈ R

Υ

by (13).
5: Solve the RDC-MPC problem (14).
6: Apply u(k) = u∗(0) to the system.
7: until (stop)

If Jc is convex, (14) is a convex problem. However, (13)
is still non-convex, which is addressed next.

IV. CONVEX RELAXATION OF INPUT DESIGN PROBLEM

In order to obtain an RDC-MPC algorithm that only solves
convex problems, we solve (13) by a sequence of convex
relaxations. The information matrix at stepi is

Ri = αiR0 +

i−1
∑

j=0

αjMi−j−1M
T
i−j−1. (15)

From (15), each component ofRd = RΥ−R0 is a quadratic
function ofU , [Rd]i,j = UTQijU+fT

ijU+cij . Furthermore,
for X positive semidefinite

λmin(X) = ρ∗ = max ρ (16a)

s.t. X − ρI � 0 (16b)

which is a convex problem. Thus, we obtain the following.
Theorem 1:Problem (13) is equivalent to

min
Ũ,U,ρ

− ρ (17a)

s.t. Rd − ρI � 0 (17b)

[Rd]i,j = Tr(QijŨ) + fT
ijU + cij ∀

ℓ+p
i,j=1 (17c)

V =

[

Ũ U
UT 1

]

� 0 (17d)

rank(V ) = 1 (17e)

AU − b ≤ 0 (17f)

where (17f) models constraints (13b), (13d).
Proof (sketch): (Sketch)rank(V ) = 1 if and only if

there exists a vectorU , such thatŨ = UUT . In turn,
Ũ = UUT implies that[Rd]i,j = Tr(QijŨ) + fT

ijU + cij =
Tr(QijUUT ) + fT

ijU + cij = UTQijU + fT
ijU + cij . ✷

Problem (17) is convex except for the rank-1 con-
straint (17e). While there exists algorithms and tools for
enforcing (17e) directly, see, e.g., [12], the computational
burden increases prohibitively with the problem dimension.

Algorithm 2 Relaxation of (17) using Rank Minimization
and Bisection

1: {Ũ∗, U∗, ρ∗} =

arg min
Ũ ,U,ρ

−ρ,

s.t. Rd − ρI � 0,

[Rd]i,j = Tr(Qij Ũ)

+fT
ijU + cij , ∀

ℓ+p
i,j=1

V =

[

Ũ U
UT 1

]

� 0,

AU − b ≤ 0,

2: calculate upper and lower bounds forρf ,

[X ]i,j = Tr(QijU
∗U∗T ) + fT

ijU
∗ + cij , ∀

ℓ+p
i,j=1,

ρmax ← ρ∗,

ρmin ← λmin(X).

3: while (ρmax − ρmin)/ρmax > δ1 do
4: ρf ← 0.5(ρmin + ρmax), W (0) ← I, h← 0
5: repeat
6: {Ũ∗, U∗} =

argmin
Ũ,U

Tr(W (h)V (h)) (18)

s.t Rd − ρfI � 0,

[Rd]i,j = Tr(QijŨ) + fT
ijU + cij ,

V (h) =

[

Ũ U
UT 1

]

� 0,

AU − b ≤ 0

7: W (h+1) ← (V(h) + σ2(V
(h))I)−1 where

V
(h) =

[

Ũ∗ U∗

U∗T 1

]

andh← h+ 1
8: until σ2(V

(h−1)) ≤ δ2σ1(V
(h−1)); or (18) is infea-

sible; or h = hmax.
9: if σ2(V

(h−1)) ≤ δ2σ1(V
(h−1)) then

10: ρmin ← ρf (rank-1 solution has been found);
11: else
12: ρmax ← ρf (rank-1 solution has not been found).
13: end if
14: end while

Instead, here we exploit an inner-outer decomposition and
a convex relaxation of the inner problem, which is described
in Algorithm 2, where δ1, δ2 ∈ R+, and hmax ∈ Z+

are parameters that determine the accuracy of the results,
and σi(V ) denotes thei-th singular value ofV . After the
initialization phase (Steps1, 2), Algorithm 2 solves for a
fixed value of ρ = ρf a convex relaxation of the rank-
1 problem, being an iterative rank minimization problem
where, at every iteration, the weighted nuclear norm ofV is
minimized (Step6), and the weight is updated (Step7). The



outer problem updates the value ofρ (Step4) by bisection
based on the results of the inner problem (Steps10, 12).

A detailed discussion of the properties and convergence
of the inner problem can be found in [13]. Due to the bisec-
tion search, Algorithm 2 converges to the optimal solution
of (17) with precision due toδ1, δ2, and to the maximum
iterationshmax. For guaranteeing persistence of excitation,
Algorithm 2 can terminate when a Rank-1 solution to (18)
is found andρmin > 0. Stopping Algorithm 2 before that
may compromise persistence of excitation, but constraint
enforcement is still guaranteed by (14). Next, the properties
of RDC-MPC algorithm are summarized.

Proposition 1: Algorithm 1, where (13) is solved by Al-
gorithm 2,x(0) ∈ C∞, andJc is convex, solves Problem 1
in the sense that:(i) u(k) ∈ U , x(k) ∈ C∞ and hence
x(k) ∈ X , for all k ∈ Z0+, (ii), the control input excites
the system,(iii) the trade off between control and excitation
is based on the reliability of the estimated prediction model,
(iv) only convex problems are solved.

Proof: (Sketch)(i) is guaranteed by usingC∞x,u, and
the recursive feasibility of (14) follows from (12) enforcing
{(Âk, B̂k)} ∈ co{(Ai, Bi)}

ℓ
i=1, ŵk ∈ co{wi}

p
i=1. (ii)

and (iii) follow by using (13) and (14b) for designing
the excitation input sequence and accounting for it in the
optimal control problem weighted byβ, which is a non-
decreasing function of the observed prediction error. Finally,
(iv) follows from Algorithm 1 solving (12) at Step2, (13) at
Step3, and (14) at Step4. Due to the definition ofP , (12) is a
convex constrained quadratic program. By Algorithm 2, (13)
is solved by a sequence of convex LMIs. By the assumption
on Jc and (14b), (14) is a convex optimization problem.

V. A CASE STUDY ON TRANSPORTATIONSYSTEMS

We consider a large transportation vehicle moving on a
straight line that has to stop inEtgt = {d ∈ R : −0.3 ≤ d ≤
0.3} m. The vehicle dynamics are described by

ḋ(t) = v(t), (19a)

v̇(t) =
ka
rm

χ(t)−
c0µg

m
−

c1
m

v(t), (19b)

χ̇(t) = −
1

τa
χ(t) +

1

τa
u(t), (19c)

whered[m], v[m/s], andχ are position, velocity, and traction
actuator state, respectively,m[kg] is the vehicle mass,r[m] is
the wheel radius, andka[Nm] is the traction actuator gain.
The rolling resistance and the bearing friction coefficients
arec0, c1, respectively. Model (19) is discretized withTs =
0.75s, with a constant stateζ(k) = c0µg/m for all k ∈ Z0+.
The upper states and inputs are constrained,d ∈ [−200, 1],
v ∈ [−5, 30], χ ∈ [−1, 1], u ∈ [−1, 1].

We consider (19) that is affected by uncertainties in mass
and actuator time constant,m ∈ [(1− δm) m̄, (1 + δm) m̄]
andτa ∈ [(1− δτa) τ̄a, (1 + δτa) τ̄a], whereδm = 0.25 and
δτa = 0.05 define the relative uncertainties. We model the
system as a dpLDI (2) with vertex systems{Ai, Bi}

ℓ
i=1,

ℓ = 4, andp = 0, and we compute the corresponding mRCI
set and the related admissible state-input pairs.
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Fig. 2. Soft landing cone, RCI set, RDC-MPC and MPC-RPL trajectories

We develop a soft landing RDC-MPC and compare it with
an MPC with RCI set with passive learning (MPC-RPL),
i.e., the controller does not attempt to shape the input to
increase the information on the system. The control stage
cost function isL(x, u) = xTQx + uTRu + ∆uTR∆∆u,
where∆u(k) = u(k) − u(k − 1) and the learning horizon
Υ and the prediction horizonN are equal,Υ = N = 5.
We simulate the system in closed-loop with the RDC-MPC
based on Algorithm 1, and MPC-RPL from the same initial
conditions, which has been chosen randomly in a subset
of the RCI set, far from the stopping range. In average
Algorithm 2 solves6 LMIs per iteration, each taking in
average0.15s.

Due to Result 1, both RDC-MPC and MPC-RPL stop
the vehicle in the desired range, as shown in Figure 2. As
shown by Figure 3, the RDC-MPC obtains a more significant
reduction in the system uncertainty, as measured by the trace
of the parameter estimation error covariance matrix, than
MPC-RPL because it continues to excite the system. This
results in the estimate converging close to their true values,
as shown in Figure 4. As shown in Figure 5, RDC-MPC
commands control inputs which provide higher excitation,
without affecting constraint satisfaction or significantly sac-
rificing the closed-loop performance.

Next, we briefly show how RDC-MPC improves perfor-
mance over the soft landing control method in [10] that does
not learn the system parameters. For a slightly different cost
function calibration, we compare an MPC withperfect model
(MPC-PM), which represents the desired behavior, an MPC
with uncertain model(MPC-UM), where both MPC-PM and
MPC-UM are based on [10], and the RDC-MPC where
the prediction model is learned during execution. Figure 6
shows a case where due to the error in the prediction model,
MPC-UM operates close to the minimum velocity, which
is significantly different from MPC-PM. Instead RDC-MPC
learns the model parameters and produces a trajectory close
to that of MPC-PM.
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Fig. 3. Time histories of the trace of the predicted error covariance matrix
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Fig. 4. Time histories of parameter estimates

VI. CONCLUSIONS

We have developed a robust dual control MPC that simul-
taneously facilitates the estimation of the system parameters
and controls the uncertain system. At every iteration first
a feasible input sequence is designed to provide excitation,
which is then used as a reference input in an MPC with
RCI set constraints. The input design problem is solved
by a rank minimization through a iteratively re-weighted
nuclear norm minimization, so that the algorithm only solves
convex problems. The method as been demonstrated on a soft
landing control case study in transportation systems showing
the advantages of RDC-MPC over passive learning, and the
benefits of applying learning in the soft landing problem.
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