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Abstract

Dual control frameworks for systems subject to uncertainties aim at simultaneously learning
the unknown parameters while controlling the system dynamics. We propose a robust dual
model predictive control algorithm for systems with bounded uncertainty with application
to soft landing control. The algorithm exploits a robust control invariant set to guarantee
constraint enforcement in spite of the uncertainty, and a constrained estimation algorithm
to guarantee admissible parameter estimates. The impact of the control input on parameter
learning is accounted for by including in the cost function a reference input, which is designed
online to provide persistent excitation. The reference input design problem is non-convex,
and here is solved by a sequence of relaxed convex problems. The results of the proposed
method in a soft-landing control application in transportation systems are shown.
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Robust Dual Control MPC with Application to Soft-Landing @ool

Y. Cheng, S. Haghighat, and S. Di Cairano,

Abstract— Dual control frameworks for systems subject to Along the lines of [7], in this paper we develop a robust
uncertainties aim at simultaneously learning THE unknown dual control MPC (RDC-MPC), where however we only
parameters while controlling the system dynamics. We propse solve convex problems. The algorithm has general applica-

a robust dual model predictive control algorithm for systens o . .
with bounded uncertainty with application to soft landing bility although here we focus on its use for soft landing

control. The algorithm exploits a robust control invariant set ~control [10], i.e., to precisely stop a moving object at a
to guarantee constraint enforcement in spite of the uncertmty, ~ desired location, which is relevant in automotive, aerospa

and a constrained estimation algorithm to guarantee admisble  and factory automation applications. To achieve a trade
parameter estimates. The impact of the control input on ¢ petween regulation and identification, a MPC algorithm

parameter learning is accounted for by including in the cost . . . L o .
function a reference input, which is designed online to proide with robust constraint satisfaction is modified by adding an

persistent excitation. The reference input design problemis ~ additional (time-varying) term in the cost function, which
non-convex, and here it solved by a sequence of relaxed corve quantifies the reduction of the parameter uncertainty. This

problems. The results of the proposed method in a soft landig@  results in an active learning method where the controller
control application in transportation systems are shown. generates inputs that aim in part at regulating the systach, a
I. INTRODUCTION in part at exciting it to facilitate learning, where the tead

ff depends on the reliability of the current plant model.

In many applications, offline parameter estimation aniS opposed to the previous work [7], here we quantify

model identification is not possible due to numerous fac- ; : : :
: . feduction of the uncertainty due to an input sequence ingerm
tors such as expensive process downtime, and paral

rr1"the redicted persistence of excitation measured throu
eters that change while in operation. Therefore, mod%l] P P g

(re)identification may need to be performed in real-time e change in the information matrix minimum eigenvalue
) : y peri over a learning horizon. To address the non-convexity of the
(online) and in closed-loop. However, simultaneous syste

identification and closed-loop control [1]-[7] is a chaligmg @roblem, we propose a two-steps approach where both levels

. oL re executed online. First, an excitation input sequence is
problem because of the conflicting objectives of control ang__. : :
: e . . e esigned by solving a sequence of convex problems solving
identification, since control aims at stabilizing the syste

a rank minimization problem. Then, the excitation input

at the desired target, while to perform an effective Identléequence is used as reference input profile in an additional

fication, the system inputs have to (persistently) excite tr}erm of the MPC cost function, with a weight that depends
system dynamics. The parameter estimate obtained by reclls . function of the observed |’3rediction error

sive least squares converges exponentially if the system Sthe paper is organized as follows. In Section Il we briefly
persistently excited [8]. However, a controller may intetp . L . L L
review polytopic linear difference inclusions, controlami

Lgif;-cr:tattﬁg 'tzgfsflesntaedés.tt;trgince’ thus rejecting d AMant sets, and the soft landing control problem. Sectiond! d
N9 persi xcrtation. acribes the two-steps RDC-MPC framework for pLDIs. The

anlr(]:cEﬁ]t’roa}lr:a gl\j\tict);]eg:c?r?i‘:'évﬁosr)i/zséirﬂnsér;rultﬁ;g?aliiscligd ri?;llﬁel put design by convex problems is described in Section V.
d In Section V the algorithm is applied to a soft landing

is shown to be stable if the information matrix Increasefs)roblem related to the stop control of a transportationalehi

within a number of steps. In [1], a model predictive contro] . : . :
: P with uncertain parameters. The conclusions are drawn in
(MPC) and identification framework was proposed, wher ection VI

the system input is a sum of sinusoids with prescribe I .
. . . ) Notation: R, Ro, R are the set of real, nonneative real,
frequencies, for which the optimal amplitudes were proeedt .. .
positive real numbers, arfl, Z, , Z, are the set of integer,

achieve persistent excitation. In [3] persistence of aticih L L
) . : . nonneative integer, positive integer numbers. @yand co
over aY-steps learning horizon is enforced from previous . . .
. : o . e denote Minkowski sum and convex hull, respectively. For
inputs and a single future output, requiring the solution of . . . . . . )
. . a discrete-time signat with sampling period’s, =(t) is the

two convex quadratic programs. In [6] the MPC cost function 9 . .
. . . o . State at sampling instant i.e., at timeT,¢. By [X]; ; and
is augmented with a 1-step learning objective, and in [9] sét . . o

g e . : : x]; we denote thei, j)-th andi-th component of matrixX
membership identification is applied with a MPC with robus .

. ) : and vectorz, respectively.

constraint satisfaction.
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A. Polytopic Linear Difference Inclusions

Given ¢ € Zy, {(Ai,B)}_,, Ai € R=*" B, €
R XMu g U, B, € R"™*™ and a polytope
W = co({w;}]_;), wherew; € R", i = 1,...,p, the
additive disturbance polytopic Linear Difference Inchusi
(dpLDI) based on thé vertex systems:(k+1) = A;z(k)+
Blu(k), i=1,...,¢ is

z(k+1) € co{ Az (k) + Biu(k) Y, @ co{ Byw; }P_,. (1)

The trajectories generated by (1) includes those of

14

E:Wh@%x%)+l%u%»—%§:Mthw“(a

=1

z(k+1)=

wheref € R* andn € R? are unknown and constartt, <
00 < 1,0 <[ <1, and 325, (6l = X0 [n] = 1.
B. Robust Control Invariant Set
Consider the constrained discrete-time system
x(k+1) falz(k),u(k),w(k)),
x(k) € X,u(k) € Uw(k) e W,

(3a)
(3b)

Definition 1: A setC C X is a robust control invariant
(RCI) set for ) ifz € C = Fu € U : fi(z,u,w) €
C,Yw € W. C>* C X is the maximal RCI (mRCI) set i,
if it is RCI and contains all the other RCI sets .

Given a RCI set for (3), the set of admissible state-input

pairs isCeS, = {r € C,u € U : fa(z,u,w) € C,Yw € W}.
The setCe, is the set of admissible state-input pairs €6 .

~ 4

gtgt

Fig. 1. Schematics of the soft landing problem

Result 1 ( [10]): Any infinite-time admissible trajectory
of

i(t) = flz(t),ut),d(t)) (6a)

y(t) = [dO) o®)]" = () (6b)

[y(t)]2 < Ymax(€max — [y(t)]1) (6¢)

[y(t)]2 > Yamin(€min — [y(?)]1) (6d)

x(t) € X, u(t) eU. (6e)

wherez € X CR", w e U CR"™, y=[dv]l € Y CR?,

andd € O C R™ is the uncertainty;ymin, Ymax € R4,
Ymin < Ymax, and (6€) are constraints on states and inputs
solves the soft landing problem.

The constraints (6¢), (6d) define theoft landing cong

The mRCI set construction relies on the Pre-set operatQfee Figure 1. For computational purposes, in what fol-

Pre(Q,U, W) =

{xeX:Juel, fo(r,u,w) C Q, Ywe W}, (4)

which computes the set of states that can be robustly driven

to the target sef € R™ in one step. Based on (4§,
for (3) is the fixpoint of the sequend&. } ., whereQy = X
Qi = PreQp_1,U, W) N Qk_1. Indeed,;, C Q,_q, and
if there existsk € Z, such thatQ; = Qz_;, Q = C™®.
Conditions for convergence are discussed, e.g., in [11].
For the dpLDI system (1), the RCI sets= {z € X :
Ju € U, Ajx + Biu+ Byw € C,Vi = 1,...,L,Yw € W}
and the Pre-set computation is detailed, e.g., in [10].

C. Soft Landing Control

lows (6a), (6b) are linear subject to additive disturbances
and parametric uncertainty, ard, &/ are polytopes.

D. Problem Statement

ConsiderP, = {# e RY : 0 < [0]; < 1,V¢_,, 320 [0 =
1}, Po={neRP:0<[n; <1,V2_,>F [n;, =1} and
for an appropriately small sampling peridd, let (6a) be

represented in discrete-time by

x(k+1) = Az (k) + Bsu(k) + Byws, )
wherex € R, y € R™, wy, € R, A, = Zle[e]iAi,
Bs - Zle[o]le Ws = Zf:l[n]lwm and Bwi Ail Bil
i1=1,...,¢, andw;, i =1,...,p are known, whiled € Py,
n € Py are unknown.

< 1,ve

Soft landing control aims at stopping a moving object in Let X, &/ be polyhedral sets whose elements satisfy (6¢),
(and only in) a target regiofi..;, While the object speed-of- (6d), (6e). Based on Sections II-A, 11-B, we obtain the mRCl
approach is kept below an upper bound that decreases as &imel the set of admissible state-input pairs
distance from the target decreases [10]. The dynamics of the

object moving in a one dimensional space is

1 &
= E;Fi(ﬂ

whered is the position with respect to the target,s the
velocity, andF;, i =1,...,
we assumel(0) < 0, v(0) > 0, 0 € int(Egt), WhereEiy =
{d eR: €min S d S 6max}v €min S €max-

d(t) = (5)

ny are the external forces. Here,

C® ={zeR™ : HYr < K>},
={rxelC®ueld: HXx+ Hu < K°}.

(8a)
(8b)

Let P = Py x P, C R“P, andy = [§7 »T]" € P denote
the unknown parameters. For any= [#7 77]7 € P we
obtain the prediction model

= Axj, 4+ Buy + By,w,
[é]zAu B = Zle[é]zBu and w

9)

Tp+1

4
2iz1

where A



>F_ [7]swi, and the trajectories of (9) are included in (1). Recursive least squares (RLS) filters have been extensively
Consider the MPC policy that at every step solves the finitesed to implement dual control systems [3]-[6]. Howeves, th
horizon optimal control problem parameter vector in (11) needs to be constraing,imhich
N_ is needed to ensure that the corresponding prediction model
min J¢ = F(zy) + Z L(zi,u;) (10a) 9enerates trajectories included in those of (2), othertise
U ; guaranteed robust feasibility of the MPC optimal control

—

1=

st zi41 = Az; + Bu; + Bow (10b) Problem (10). Thus, here we use a constrained RLS (cRLS)

u; €U, (10c)

H>zo + Hug < K @od) K(k+1)=P(k)M(k)(al + M" (k)P(k)M(k))~" (122)

zo = z(k), (10e) Ik+1)= argmin”y(k +1) — MT (k)92

eP

whereU = [ug, ...,uy_1]7, N € Z, is the prediction hori- +[0(k) = 912 k) (12b)
zon, I’ and L are the terminal and stage cost, respectively, 1
and appliesu(k) = u§, whereU* = [uf,...,u%_,]7 is the P(k+1) :E(I — K(k+1)M*(k))P(k) (12c)
optimal solution of (10). By the properties of the RCI set, fo Rk + 1) =aR(k) + M (k)M (k) (12d)

any initial statez(0) € C*, (10) is recursively feasible and

hence the closed loop satisfies the constraints for allZ,, where P(k) ¢ RUAP)X(H4P) js the covariance matrix,

for all admissible disturbances and parameter values. R(k) € RU+P)X(E+P) s the information matrix, and <
Thus, the MPC policy based on (10) robustly enforces < 1 is the forgetting factor.

constraints on the dpLDI system (1), and hence by Result 1,

it solves the soft landing control problem. However, thé8. Robust MPC with Active Learning

tra_nsient performance in term_s of_ene_zrgy,_ time, jerk, thee, We propose a two-steps RDC-MPC, which consists of an
trajectory tq ach|eve soft landing, is significantly affetty input design step and a control step with robust constraint
the uncertainty in the system parameters. Thus, here we ajffjarantees such that it only solves convex problems.
at developing a control stratéegy with Zt)he following feagure For the input design step the minimum eigenvalue of the
Problem 1: Given{A;, B }i_,, {wi};_, and B, for (7), change in the information matrix along the input design
deS|gn a robust du‘al control MPC (.RDC—MPC) for SOfthorizonT, Amin (Rt — Ro) is adopted as a as the measure
landing of (7) that:(i) guaranteesr(l?') n C_ » and hence of the excitation provided by an input sequence. As we will
(k) € X, u(k) € U, forall k € Z, (ii) excites the system gy, |ater. with this choice we can obtain a convex relaxatio

to improve learning of) € P (ui:) trades off excitation and that allows to design a RDC-MPC that only solves convex
control objectives based on the reliability of the eStimateproblems We formulate the problem for the input design
prediction model. Furthermor¢jv) given a convexJ¢, the '

step as
RDC-MPC should only solve convex problems. O
max )\min(RT — Ro) (133)
I1l. RoBusTDUAL CONTROL MPC Uexc (k)

Next, we propose a two-steps RDC-MPC for uncertain 8:t- @i+1 = AxZi + Bitiexci + Buwk (13b)
systems modeled as dpLDI systems which combines the Rit1 = Mi(%i, Uoxei) M (2, Uexes) + aR;  (13c)
objectives of control and excitation for parameter estiomat H®20 + H®Upye o < K (13d)

Definition 2: ([8]) An input profile is persistently exciting * woeer s

Ry = R(k), (13e)

if for every k € Zg, there existsY € Z, andpy € R,

such that parameter information matrf, (the inverse of where the information matrixz; is computed fromz; and

the covariance matrix) satisfig®, .y — Ry = pol. i, ANAUexe(k) = [Uexe.1, Uexe,2,* » Uexex]” IS the input

. sequence designed to excite the system.

A. Constrained RLS _ . For the control step, similarly to [4]-[7], we add to the
For system (7), we form a linear regression model for thgipc cost function a term that favors the system excitation.

. . T .
unknown coefficients vecta? = [0 7"]" given by Here, the additional term penalizes the deviation of the
‘ control input sequence from the input sequence designed to

ok+1)+elk+1) = Z[e]i(AiI(k) + Byu(k)) (11) excite the system in a way that retains convexity

» =1 InUin Je (14a)
+ 2 liBuwi + ek o+ 1) = MIER)D(k + 1) 4 ek +1), Bk — MT (b = DIENIT — Unre(8) [3(14b)

=t S.t. Tiy1 = Apx; + Bru; + By, Vlj\;_ol (14C)
where M(k) = [Ax(k) + Byu(k),...,Awe(k) + w ey YN (14d)
Beu(k), Byws, . .., Bywy)T is the regressor matrixy(k + 100 ’ izfo -
1) = z(k+1)+e(k+1), ande(k + 1) is measurement noise Hwo + H up < K7, (14e)

that is introduced for estimator design. xo = x(k), (141)



wheref(-) is a positive, non-decreasing function of the nornfilgorithm 2 Relaxation of (17) using Rank Minimization

of the estimation error. When the prediction model repressen@nd Bisection
well the system dynamics, the relative importance of thei: {U*,U*,p*} =

control objective increases, while when the prediction elod
does not represent well the system dynamics, more emphasis
is placed on following the excitation input, which facitis
learning. The complete two-steps RDC-MPC framework is
described in Algorithm 1.

Algorithm 1 Two-steps RDC-MPC
1: repeat
2:  Receivez(k).
3:  Update the parameter estimaiéf) by (12).
4:  Compute the excitation input sequeriég..(k) € RY
by (13).
5. Solve the RDC-MPC problem (14).
6:  Apply u(k) = u*(0) to the system.
7: until (st op)

arg min —p,

U.Up
s.t. Rq—pl =0,
[Rqli; = Tr(Qy;U)
+f£U+Cz‘ja Vf;‘il
{5 g
AU — b <0,

2: calculate upper and lower bounds foy,

[Xij = Tr(QuU*UT) + fEU" + cij, ¥, 524,
Pmax < P,
Pmin < Amin()()-

3: while (pmax - pmin)/pmax > 51 do

If J. is convex, (14) is a convex problem. However, (13) ,.

pf < 0.5(pmin + Pmax), WO I, he0

is still non-convex, which is addressed next. 5. repeat
IV. CONVEX RELAXATION OF INPUT DESIGN PROBLEM 6: {us,u*} =
In order to obtain an RDC-MPC algorithm that only solves argmin Tr(W My () (18)
convex problems, we solve (13) by a sequence of convex u.u
relaxations. The information matrix at steps st Rg—pil =0,

i—1
Ri=a'Ry+» o/ M; ;M .
j=0
From (15), each component &; = Ry — Ry is a quadratic
function of U, [Ryli,; = U" Qi;U + f5U +c¢;;. Furthermore,
for X positive semidefinite

/\min(X) = P* =

(15)

(16a)
(16b)

max p

st. X—pl>=0

which is a convex problem. Thus, we obtain the following. g:

Theorem 1:Problem (13) is equivalent to

min — p (17a)

U,U,p

st. Ry—pl =0 (17b)
[Rd]i,j = TI"(Q”U) + 5(] + ¢ij Vf-gil (17C)

v U

V_ LYT 1] <0 (17d)
rank(V) = 1 (17e)
AU —b<0 (7

where (17f) models constraints (13b), (13d).

Proof (sketch): (SketchjankV) = 1 if and only if
there exists a vectot/, such thatU = UUZ. In turn,
U =UUT implies that[Ry]; ; = Tr(Qi;U) + fLU + ¢;j =
T‘I’(QiljUUT)“l‘ng'i‘Cij:UTQZ'jU‘i‘f,L;Z;U‘f’CZ‘j. d

[Rd]i,j = TI‘(QWU) + fg;U + ¢ij,
w_[0 U]
o [6 ¥z
AU -b<0
W)« (VR 4 g5(VM) )~ where
) _ ﬁ* U*
v [ ]
andh < h+1
until oo(VR=1) < 5300 (VE=1); or (18) is infea-

sible; or h = hyax.
9: if O'Q(V(h_l)) < 901 (V(h_l)) then

10: Pmin < py (rank-1 solution has been found);

1.  else

12: Pmax < py (rank-1 solution has not been found).
13:  end if

14: end while

Instead, here we exploit an inner-outer decomposition and
a convex relaxation of the inner problem, which is described
in Algorithm 2, whered;,d02 € Ry, and hpax € Z4
are parameters that determine the accuracy of the results,
and o;(V) denotes the-th singular value ofi. After the
initialization phase (Step$, 2), Algorithm 2 solves for a

Problem (17) is convex except for the rank-1 confixed value ofp = ps a convex relaxation of the rank-
straint (17e). While there exists algorithms and tools fol problem, being an iterative rank minimization problem
enforcing (17e) directly, see, e.g., [12], the computatlon where, at every iteration, the weighted nuclear norn¥'as
burden increases prohibitively with the problem dimensionminimized (Stegs), and the weight is updated (St&p The



outer problem updates the value @f(Step4) by bisection 30F

. — Soft landing cone
based on the results of the inner problem (Stepsl2). RCI set g
: : ; : 25¢
A detailed discussion of the properties and convergence ——MPC-RPL
of the inner problem can be found in [13]. Due to the bisec- 20! ——RDC-MPC

tion search, Algorithm 2 converges to the optimal solution
of (17) with precision due t@;, J2, and to the maximum
iterationsh,,.x. FOr guaranteeing persistence of excitation,
Algorithm 2 can terminate when a Rank-1 solution to (18)
is found andpmin > 0. Stopping Algorithm 2 before that
may compromise persistence of excitation, but constraint
enforcement is still guaranteed by (14). Next, the propsrti
of RDC-MPC algorithm are summarized.

Proposition 1: Algorithm 1, where (13) is solved by Al- _
gorithm 2,z(0) € C>, and J¢ is convex, solves Problem 1 =
in the sense thatf{i) u(k) € U, z(k) € C>* and hence
x(k) € &, for all & € Zo4, (ii), the control input excites
the system(iii) the trade off between control and excitation
is based on the reliability of the estimated prediction nhode
(iv) only convex problems are solved.

Proof: (Sketch)(l) is guaranteed by usinggou' and We deVelOp a soft |anding RDC-MPC and compare it with
the recursive feasibility of (14) follows from (12) enfongg an MPC with RCI set with passive learning (MPC-RPL),
{(Ar, By)} € cof (As, B)Y,, W € cofw}P_,. (ii) 1-€. the controller does not attempt to shape the input to
and (iii) follow by using (13) and (14b) for designing increase the information on the system. The control stage
the excitation input sequence and accounting for it in th€ost function isL(z,u) = 27 Qx + u” Ru + Au” RaAu,
optimal control problem weighted by, which is a non- Where Au(k) = u(k) — u(k — 1) and the learning horizon
decreasing function of the observed prediction error.lina ¥ and the prediction horizowv are equal Y = N = 5.

(iv) follows from Algorithm 1 solving (12) at Step, (13) at We simulate the system in closed-loop with the RDC-MPC
Step3, and (14) at Step. Due to the definition oP, (12) is a based on Algorithm 1, and MPC-RPL from the same initial
convex constrained quadratic program. By Algorithm 2, (13§onditions, which has been chosen randomly in a subset
is solved by a sequence of convex LMIs. By the assumptio®f the RCI set, far from the stopping range. In average

on J¢ and (14b), (14) is a convex optimization problem. Algorithm 2 solves6 LMIs per iteration, each taking in
average).15s.

) ) ) ) Due to Result 1, both RDC-MPC and MPC-RPL stop
We consider a large transportation vehicle moving on g yehicle in the desired range, as shown in Figure 2. As
straight line that_has to StOF’ Bge = {d _R 1=03=d=<  ghown by Figure 3, the RDC-MPC obtains a more significant
0.3} m. The vehicle dynamics are described by reduction in the system uncertainty, as measured by the trac

[y
]

=
o
T

Velocity (m/s)

o

-150 -100 -50 0 50
Position (m)
Fig. 2. Soft landing cone, RCI set, RDC-MPC and MPC-RPL ttaees

V. A CASE STUDY ON TRANSPORTATIONSYSTEMS

dit) = wo(t), (19a) of the parameter estimation error covariance matrix, than
. k., copg 1 MPC-RPL because it continues to excite the system. This
ot) = %X(t) T Ev(tL (19b)  results in the estimate converging close to their true \&lue
1 1 as shown in Figure 4. As shown in Figure 5, RDC-MPC
x(t) = __aX(t) + EU(L‘), (19¢)  commands control inputs which provide higher excitation,

without affecting constraint satisfaction or significgnsiac-

whered[m], v[m/s], andy are position, velocity, and traction rificing the closed-loop performance.

actuator state, respectivety[kg] is the vehicle mass[m] is
the wheel radius, ané,[Nm] is the traction actuator gain.  Next, we briefly show how RDC-MPC improves perfor-
The rolling resistance and the bearing friction coefficdientmance over the soft landing control method in [10] that does
arecy, c1, respectively. Model (19) is discretized wifh =  not learn the system parameters. For a slightly differest co
0.75s, with a constant stat§k) = coug/m for all k € Zyy.  function calibration, we compare an MPC witlkerfect model
The upper states and inputs are constraimked, [—200, 1], (MPC-PM), which represents the desired behavior, an MPC
v € [-5,30], x € [-1,1], u € [-1,1]. with uncertain mode(MPC-UM), where both MPC-PM and

We consider (19) that is affected by uncertainties in maddPC-UM are based on [10], and the RDC-MPC where
and actuator time constant; € [(1 — d,,) m, (1 + d,,)m] the prediction model is learned during execution. Figure 6
andr, € [(1 — 0,4) Ta, (1 + 0-4) 7], Wwhered,, = 0.25 and shows a case where due to the error in the prediction model,
0-« = 0.05 define the relative uncertainties. We model thMPC-UM operates close to the minimum velocity, which
system as a dpLDI (2) with vertex systenid;, B;}!_,, is significantly different from MPC-PM. Instead RDC-MPC
¢ =4, andp = 0, and we compute the corresponding mRClearns the model parameters and produces a trajectory close
set and the related admissible state-input pairs. to that of MPC-PM.
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: E 200/
—MPC-RPL =
—RDC-MPC S 0/
[%2]
o — L L L )
a 2000 20 40 60 80
10° ] B
€ 20r
~ = —MPC-RPL
e 210}
=1 g — RDC-MPC
o 0 ! . )
10% ] 20 20 40 60 80
3 1
£
g et
<
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105 20 40 60 80 8 ™ 20 40 60 80
Time step Time step
Fig. 3. Time histories of the trace of the predicted errorac@mnce matrix Fig. 5. Time histories of position, velocity, and input
30r
0.4 0.4 — Soft landing cone
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