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Abstract
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in the objective function and travel time are derived. The actual run-curves are generated in
the real-time stage using approximate dynamic programming. For the first time, a framework
provides trains with the ability to fast response to dynamic travel time requirement using
complex physical models.
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A Framework for Real-time Near-optimal Train Run-curve
Computation with Dynamic Travel Time and Speed Limits
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Abstract— This paper studies the problem to generate the
most energy efficient run-curves subject to given travel time
requirements. The target is to provide a train with the ability
to quickly adjust its run curve according to different travel time
requirements and speed limits along the track before departing
a terminal. Using a train model considering train length,
varying track gradient and speed limit profile, the optimal
run-curve problem is formulated into a bi-criteria optimization
problem that minimizes weighted energy consumption and
weighted travel time. By selecting appropriate weight values, the
optimization problem would generate a run-curve with near-
optimal energy consumption. We propose a two stage procedure
framework, which includes an off-line stage and a real-time
stage. A series of geometric relation between weight in the
objective function and travel time are derived. The actual run-
curves are generated in the real-time stage using approximate
dynamic programming. For the first time, a framework provides
trains with the ability to fast response to dynamic travel time
requirement using complex physical models.

I. INTRODUCTION

Energy efficiency becomes important due to the increasing
fuel cost and aware of environment effects. In electrified
railroads, energy efficiency improvements are been practiced
by designing more energy efficient locomotives, using higher
voltage for electricity transmission, installing regenerative
brakes, and installing on-board and sideways batteries. With
upgraded infrastructure and hardware, the potential energy
efficiency is improved by reducing the unnecessary energy
waste. Run-curve optimization plays a key role in this
process as a significant amount of energy waste is related
to the unoptimized train operation. Run-curves represent the
relationship of positions and target speeds in order to run
between stations, and are also referred to as speed profiles.
Run-curves are made in advance based on scheduled travel
time, and train drivers and Automatic Train Operation (ATO)
run trains along them. However, target travel time may
be changed from a schedule depending on real-time train
operation, and different speed limits may be applied because
of weather condition and preceding trains. It is desired that
a run-curve to a next station can be calculated for on-board
processors in a relatively short amount of time, in which a
train stops at a station.

Due to the importance of energy-efficient run curves, there
are a number of previous research results. The methods to
calculate the optimal run curve fall into two categories: ana-
lytical solutions and numerical optimization. Physical models
for the traction, resistance and brake forces on trains often
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play a fundamental role on selecting optimization methods
for run-curve computation. When relatively simple physical
models are sufficient for specific applications, analytical
solutions can be obtained and leads to fast computation of
optimal run-curves [3], [14], [5], [16]. Relatively simple track
profiles and physical models are sufficient when trips are
long and geographic condition can be represented in well-
structured expression. They also help on reducing the com-
plexity of the problem by converting the run-curve optimiza-
tion into coasting point optimization problem. Analytical
solution has the advantages of fast computation and giving
guidance to driving strategies. The simple track profile might
be valid for long distance travel. Thus, even optimal strategy
can be derived based on these models [9], [8]. However,
when the trip is relatively short so that more complex track
profile and physical models should be considered, analytical
solution can not be obtained [15].

Numerical optimization becomes a natural approach when
more complex physical models are used. Meanwhile, more
powerful on-board processors are required for computation.
Genetic Algorithm (GA) is a popular method as it is capabil-
ity to handle multiple inputs and nonlinear physical models.
Significant improvement on using GA has been reported in
[2], [1]. However, as a meta-heuristic algorithm, GA can not
give optimality condition for the solution by itself. As the
number of possible coasting points increases, the computa-
tional time increase dramatically. A long computation time
like 12 hours is required for optimal solutions [15].

Another important numerical optimization method for
solving run-curve optimization problem is Dynamic Pro-
gramming (DP). Similar to GA, DP is capable to handle
complex physical models. At the same time, DP has the
advantage of generating guaranteed optimal solution with
predictable computational time. The weakness for DP is the
attempt to reduce discretization error can lead to significant
increase of computational effort. In the previous studies, [6]
sets the state space using velocity and time, and generate
solution in 22 seconds. [13] also uses velocity and time to
set up state space and focuses on the design of vehicles
instead of fast run-curve optimization. [10], [7], [11] use
velocity and position to set up state space, but the significant
increasing requirements computational time still limits the
application of these methods. The optimal solution requires
huge amount of computational time. This would limit its
usage with on-board computer and the changing trip time
requirement from the dispatchers before the departure of
trains. As it is mentioned in [11], dynamic programming
is slow for real time implementation.



In this paper, we propose a framework based on dynamic
programming and calculate the optimal run-curve within
a very short time, which makes it suitable for real-time
implementation with an on-board processor. The framework
is based on solving a bi-criteria, with weighted energy
consumption and weighted travel time, optimization problem
using dynamic programming. By introducing an off-line
stage, the transition matrix and a monotonic relation between
weight and travel time are pre-computed. For a problem with
only dynamic travel time requirements, the weight for the
optimization problem is obtained by directly interpolating
the monotonic relation between weight and travel time. For
problem with both dynamic travel time requirements and
speed limits, the transition matrix is partially updated and
the weight searched with in a bounds based on a series of
geometric relation derived. The scenarios considered in this
paper assume that travel time requirements and additional
speed limits are finalized before the departure of a train.
Thus, responding quickly to updated travel time requirements
and speed limits enhances a railroad operator’s capability
to adjust to timetable changes and track condition changes.
Meanwhile, a fast optimal run-curve optimization method
can also help reduce computational efforts in a large network
simulation model.

To the best of our knowledge, this is the first time a fast
algorithm is realized on obtaining optimal or near optimal
run-curves with respect to dynamic travel time requirement
when complex physical models and track profiles are con-
sidered. Related patent materials to this paper can be found
in [17], [18].

In the remainder of this paper, section II introduces the
physical models and assumption for this paper. Section III
describes the framework and dynamic programming used. A
set of computational experiments and results are shown in
section IV. Finally, section V gives a short conclusion.

II. PROBLEM DESCRIPTION

A. Problem Description

The problem we consider is a single trip problem as shown
in Figure 1. A train travels from terminal A, the origin
terminal, to terminal B, the destination terminal. The travel
time requirement follows a designated timetable or order
from control center. The train is equipped with regenerative
brake and on-board battery for regenerative energy storage.
The track between the two terminals has different gradient at
different location. We assume the track gradient profile does
not change during the trip.There are two scenario considered
in this paper on speed limits. The first scenario is that speed
limits do not change. The second scenario is that new speed
limit is added at the departure time. The train has four
possible actions: acceleration, constant speed, coasting, and
braking. The notation used to describe the problem is as
following:
• T is the designated travel time requirement,
• L is the total length of the track from origin terminal

to destination terminal,

Fig. 1. Single Trip Traveling

• t is the time during the trip with t = 0 for departure
time and t = T for arrival time,

• E(t) is the energy consumption for the train from
departure to time t,

• x(t) is the position information for train at time t,
• u(t) is the action the train takes at time t,
• v(t) is the velocity of the train at time t,
• f(x(t), u(t), v(t)) is a function for energy consumption

rate at time t based on x(t), u(t), and v(t),
• g(x(t), u(t), v(t)) is a function for the train’s accel-

eration calculation at time t based on train’s posi-
tion, action and velocity information x(t), u(t), and
v(t),utilized

• V max(x(t)) is the maximum allowable speed along the
track given the position of train x(t).

The objective function of the problem can be stated as:
Minimize:

E(T ) =

ˆ T

0

f(x(t), u(t), v(t))dt (1)

Subject To:
dx(t)

dt
= v(t) (2)

dv(t)

dt
= g(x(t), u(t), v(t)) (3)

v(t) ≤ V max(x(t)) (4)

x(T ) = L (5)

u(t) ∈ {1, 2, 3, 4}, t ∈ [0, T ], (6)

v(t) ≥ 0, t ∈ [0, T ] (7)

L ≥ x(t) ≥ 0, t ∈ [0, T ]. (8)

In the formulation above, (1) is the objective function
whose value is the total energy consumption of the entire trip.
Constraints (2) and (3) are the dynamic relations between
train’s position, velocity, and acceleration. Constraint (4) is
the speed limit constraint for the run curve. The trip distance
constraint is stated in constraint (5). (6) describes the possible
action set for the system, where u(t) = 1 means acceleration,
u(t) = 2 means constant speed, u(t) = 3 means coasting,
and u(t) = 4 means brake. (7) and (8) are bound constraints
for the train’s velocity and position state variables.

The run curve optimization problem’s track information
considered in this paper is shown in Figure 2. The speed
limit is related to the position of train and has a piece-wise
constant shape. The gradient along the track is also related
to the position of train and is piece-wise constant.



Fig. 2. An Example Speed Limit Profile

B. Physical Models

As it is reported in the literature, dynamic programming
is capable to perform under various types of physical mod-
els. Our physical model used in this paper for testing the
framework is introduced here.

The train with length L′ and weight M has the acceleration
αtot = g(x(t), u(t), v(t)) that is caused by a namely force
F tot. The acceleration αmot and Fmot comes from four
different sources during the trip:

• The traction force Fmot comes from train motor, which
leads to an acceleration component αmot = Fmot

M .
• The resistance force F brk comes from breaks, which

leads to an acceleration component αbrk = F brk

M .
• The air resistance force F air comes from air, which

leads to an acceleration component αair = Fair

M .
• The traction or resistance force F grd comes from

gradient of the track, which leads to an acceleration
component αgrd = F grd

M . The gradient force F grd is
calculated by summing all forces along the entire train,
such that F grd =

´ 0
−L′ g

grd(x(t)+s)ds. In the equation
to calculate F grd, where ggrd(x(t) + s) represents the
unit gradient force at time t at position s on the train,
and F grd is assumed equivalently on the head of the
train.

The total forces on the train is the summation of the four
sources, represented as F tot = Fmot+F brk+F air+F grd.
Correspondingly, the total acceleration on the train is also
the summation of the four sources represented as αtot =
αmot + αbrk + αair + αgrd.

Since a trip between two terminals involves energy con-
sumption and energy regenerating, the energy consumption
for an operation plan is calculated by considering both energy
consumption and regeneration, as shown in equation (9). In
(9), e1 and e2 are two parameters stating the motor and brake
energy efficiency.

E(t) =

ˆ t

0

[
Mαmot(t)v(t)

e1
−Mαbrk(t)v(t)e2]dt (9)

C. Operational Constraints and Assumptions

The operational regulations and constraints are mostly
related to the geographic and track conditions, for example
track curvature, tunnel, track design specification. All these
restrictions have their impact to the system in form of
train speed limits along the track. Thus, the regulations and
constraints, in the most simple way, can be described as a
velocity limit function of the track position. When a train is
subject to multiple speed limits due to the train length, we
use the minimum speed limit as the speed limit for the train.

Some additional assumptions on the physical models in
this paper are:
• Locomotive’s traction forces is constant to different

speed of trains.
• All the regenerative energy is collected with a constant

efficiency level.
• The initial velocity of the train, before the train’s

departure from origin terminal, is 0.
• The final velocity of the train, after the train’s arrival at

destination terminal, is 0.

III. METHODOLOGY

A. The Framework for The Core Problem

We solve this run-curve optimization problem by setting
up a bi-criteria optimization problem:

Minimize:
µE(T ) + (1− µ)T (10)

Subject To: (2), (3), (4), (5), (6), (7), and (8).
This bi-criteria optimization problem is very similar to

the original run-optimization problem. The differences are
the objective function, and the condition that T becomes a
variable in the bi-criteria optimization problem instead of
given fixed value in the original problem. This bi-criteria
optimization problem has been studied by a couple of previ-
ous researchers. In [4], the bi-criteria optimization problem is
studied and solved using GA for selecting travel time that can
save more energy. In [1], optimal strategies are studied also
using GA for optimal driving strategies. As Pareto frontiers
are profiled for this bi-criteria optimization, one important
feature has not been well utilized in previous results: When
a µ′ value is set, a solution to the problem gives a pair
of travel time T ′ and corresponding energy consumption
E(T ′), where E(T ′) is the minimum energy consumption
if the travel time is designated to be T ′. Thus, the run-curve
optimization problem with given travel time requirement can
be solved via solving a bi-criteria optimization problem with
appropriate µ values. By doing this, the original problem is
set into a framework that solves a two level optimization
problems: the lower level is the bi-criteria optimization
problem, the upper level is an optimal µ value problem.
A simple proof that supports the validity procedure is as
following:
Lemma 1: The optimal solution, which has energy consump-
tion E(T ), and travel time T , and run-curve profile, for a
specific µ value in the bi-criteria optimization problem with
objective function (10) and constraints (2), (3), (4), (5), (6),



Fig. 3. Delaunay Triangulation with Acceleration Actions

(7), and (8) is also the optimal solution for the original run-
curve optimization problem with objective function of (1)
and constraints (2), (3), (4), (5), (6), (7), and (8) when the
designated trip travel time requirement is T .
Proof: Assume a µ value named µ1, and the optimal
solution T1, E1(T1), and the run-curve profile in terms
of (x1(t), u1(t), v1(t)). If this solution is not optimal for
the original run-curve optimization problem, then there ex-
ists one set of solution in terms of (x2(t), u2(t), v2(t))
that leads to energy consumption E2(T1) < E1(T1) with
travel time T1. Since the two optimization problem shares
the same constraints, (x2(t), u2(t), v2(t)) can lead to an
objective function value µ1E2(T1) + (1 − µ1)T1 that is
better than µ1E1(T1) + (1 − µ1)T1 using run-curve profile
(x1(t), u1(t), v1(t)), which violates the assumption at the
beginning of the proof. Thus, the lemma is proved.

B. Solving Single Bi-criteria Optimization Problem

We follow the approximate dynamic programming frame-
work in [12] to solve the single bi-criteria optimization
problem. This dynamic program approach for the bi-criteria
optimization problem discretizes the velocity and distance
state space, which leads to much smaller memory con-
sumption when compared with the dynamic programming
discretizing over time by [6].

We apply Delaunay Triangulation on the state space of
velocity and location. In Figure 3, the continuous state space
is state space is discretized into triangles. The transition of
states under action of acceleration is also illustrated in the
figure. For a state s, if it is not grid point in the discretized
state space, its value is barycentrically approximated using
the nearest grid points’ values. The backward dynamic
programming can solve this problem using the following
recursive function:

V (sn) = min
u

[R(sn, u) +
∑

s′
n+1
∈S

P (s′n+1|sn, u)V (s′n+1)]

(11)
In (11) , V (sn) is the optimal value of been in state sn

at location n. R(sn, u) is the reward of action u at state sn.

Fig. 4. T − µ Chart

P (s′n+1|sn, u) is the probability that system will at s′n+1

after applying action u at state sn.

C. A Two-stage Procedure for Run-curve Optimization with
Dynamic Travel Time

As it is shown in section III-B, we can solve the bi-
criteria optimization problem time and time again while
searching for appropriate µ value iteratively. The two most
time consuming computation operations, which are transition
matrix computation and µ value searching process, in the ap-
proximate dynamic programming procedure are not required
to be processed for dynamic travel time requirements. We set
up a framework of a two-stage procedure that is composite of
an off-line stage and a real-time stage. The off-line stage can
be executed any time when track profile and train information
are available. The real-time stage is executed after the train
receives a trip travel time requirement before departure. By
transferring computation loads that do not require trip travel
time requirement to off-line stage, the real-time stage can
react quickly to different trip travel time requirements.

1) The Off-line Stage: In the off-line stage, the transition
matrix is computed, and a set of bi-criteria optimization
problems are solved with a number of µ values. As it is
shown in Figure 4, there is a monotonic relation between T
values and µ values, as µ value changes between 0 and 1.
This can be proved as following:

Lemma 2: In the optimal solution of the bi-criteria
optimization problem with objective function (10) and con-
straints (2), (3), (4), (5), (6), (7), and (8), T values have a
monotonic relation with µ values. That is, if µ1 ≤ µ2, then
T1 ≤ T2, ∀µ ∈ (0, 1).
Proof: If counter situation exists, we assume a pair of µ
values, namely µ1and µ2 such that the lemma is violated.
Without lose of generality we assume: µ1 ≤ µ2 and the
corresponding T1 and T2 in the solutions of bi-criteria
optimization problems have the relation of: T1 > T2. Let
E(T1), T1, and (x1(t), u1(t), v1(t)) be the optimal solution
for the bi-criteria optimization problem when µ = µ1, and
E(T2), T2 and (x2(t), u2(t), v2(t)) be the optimal solution
for the bi-criteria optimization problem when µ = µ2.
Thus, according to the optimality of the solution, we have
µ1E(T1) + (1 − µ1)T1 ≤ µ1E(T2) + (1 − µ1)T2, which
is equivalent to T1 − T2 ≤ µ1[E(T2)−E(T1)]

1−µ1
. According to



the assumption of the proof, we have T1 > T2. Considering
lemma 1, we have E(T1) ≤ E(T2). Meanwhile, from the
definition of µ such that 0 ≤ µ ≤ 1. Thus, we have
T1 − T2 ≤ 0, which conflict with the assumption. Thus,
the lemma is proved.

Based on lemma 2, we are able to estimate µ values
for designated travel time requirement T by interpolating
from existing solutions of µ values and corresponding T
requirements. Thus, in the off-line stage, two operations are
performed:
• Compute and save the transition matrix for solving

the bi-criteria optimization problem using approximate
dynamic programming.

• Sample a number of µ values and solve the correspond-
ing bi-criteria optimization problems for T values that
could profile the T − µ chart with sufficient accuracy.

2) The Real-time Stage: The real-time stage takes place
when a train is about to depart a terminal and the travel time
requirement is finalized. Up to this point, the travel time
requirement can not be changed and a run-curve is required
for train operation. Based on the saved data from off-line
stage, the transition matrix and a set of (T, µ) values are
available. The on-board processor will perform two tasks:
• Interpolate from existing (T, µ) sample values for an

appropriate µ′ value for the designated travel time
requirement T ′.

• Solve the bi-criteria optimization problem with µ′ using
approximate dynamic programming.

Both of the two tasks in the real-time stage require much
less computational efforts comparing with solving a normal
dynamic programming approach from scratch. At the same
time, the memory utilization is dramatically reduced, when
compared with the dynamic programming using velocity and
time as state space dimensions. Further, the framework gives
electrified railroad the ability to fast react to different travel
time requirements due to timetable fluctuations.

Since the newly obtained (T ′, µ′) values should represent
the trip travel time requirement in real world better than the
sampled pair of (T, µ) values, the newly obtained (T ′, µ′)
values should be added to the sample sets of (T, µ) to help
improves the accuracy for µ value interpolation for future
trips.

A complete description on the algorithm, namely ADP-1,
for generate optimal run-curve is described as following:

1) Off-line stage:
a) Set up a factored MDP problem, where the state

space is discretized on the dimension of velocity
and distance and the transition matrix is com-
puted;

b) A set of sample µ values in [0, 1] are generated
such that there are more samples for µ near value
1;

c) Corresponding travel time T are computed by
solving the factored MDP using dynamic pro-
gramming;

d) (T, µ) values are stored in system memory;

2) Real-time stage:
a) When a new travel time T ′ is received, a µ′ value

is interpolated from existing (T, µ) values that are
pre-computed;

b) If |h(µ′)−T ′| ≤ ε, where ε is the tolerance on tar-
get travel time requirement and h(µ′) represents
the travel time obtained by interpolating existing
(T, µ) values in the previous step, accept the run-
curve generated with weight value µ′, save µ′ and
corresponding travel time in system memory and
stop, otherwise continue;

c) A bi-secting searching process is executed using
(h(µ′), µ′), and (T̃ , µ̃) as initial values, where
(T̃ , µ̃) is a sample pair from system memory that
has least |T̃ − T ′| value and (T̃ − T ′)(h(µ′) −
T ′) < 0;

d) The searching process updates µ′ and µ̃ until
travel time requirement is satisfied.

D. A Two-stage Procedure for Optimal Run-curve with Dy-
namic Travel Time and Speed Limits

With dynamic travel time and speed limits before trains’
departure, the optimal run-curve can still be obtained in
a two-stage framework with off-line stage the same as in
section III-C.1. However, the transition matrix and state
values are changed due to the additional speed limits. At the
same time, the T − µ relation obtained from pre-computing
is also affected by the changes on speed limits, which makes
it invalid for the direct interpolation in the real-time stage.

1) Update Transition Matrix: When speed limit is un-
changed, the transition matrix obtained in the off-line stage
can be re-used in the real-time stage. As additional speed
limits are added to specific positions along the track, the
transition matrix and state values used in the dynamic pro-
gramming approach are also changed. To generate optimal
run-curves using dynamic programming, the transition matrix
needs to be updated due to the change on state space. As
shown in Figure 5, a portion of the state space is directly
eliminated by new speed limits as shown in the shaded
area. A neighborhood area of the eliminated state space is
affected as their capability to transit from or to the eliminated
part of state space has changed. The neighborhood area
can be identified using the physical model. By seting the
action as acceleration, we can identify one boundary of the
neighborhood with the new speed limit at location L5. As
it is shown in Figure 6, we can also get other boundaries
of the neighborhood by setting the acttion as deceleration
using speed limits at location L1 and L2. Thus, only a limited
portion of the state space needs to be updated on their values
and transition probabilities in the transition matrix. After the
the updating process, the transition matrix would be able to
generate run-curves under new speed limits.

2) Search for µ value: A function h(µ) is introduced to
represent T−µ relation under original speed limits, such that
h(µ) = T is the corresponding travel time by solving the bi-
criteria optimization problem. As h(µ) does not represent the
T − µ relation under updated speed limits due to additional



Fig. 5. Additional Speed Limits and Impacts on State Space

Fig. 6. Transition Matrix Updating

speed limits. Function h̃(µ) to represent the T − µ relation
under updated speed limits, then there are followings Lemma
hold:
Lemma 3: For a specific µ value, the travel time obtained
from solving the optimization problem with additional speed
limits is larger than travel time with original speed limits, in
other words, h̃(µ) ≥ h(µ), 0 ≤ µ ≤ 1.
Proof: The proof of this Lemma is intuitive. If the speed
limits added to the original speed limits is inactive for solving
single core problem, then h̃(µ) = h(µ). This situation
happens when the new speed limits are redundant to the
original speed limits, or the new speed limits is not violated
when given travel time requirement is large enough, such
that using same µ value under original speed limits would
generate the same solution with the additional speed limits.
In other words, ∃µ4, 0 ≤ µ4 ≤ 1, such that h̃(µ) − h(µ) =
0,∀µ ≥ µ4. If the speed limits added to the original speed
limits is active for solving single core problem, then we
have h̃(µ) ≥ h(µ) as new constraints are added and feasible
region for the updated problem is a subset of the feasible
region for the problem with original speed limits.

A new function is defined as T = h(µ) + T1 − T0 to

Fig. 7. Searching µ Value with Updated Speed Limits

represent a curve that is vertically moved by T1 − T0 from
T − µ relation without additional speed limits. We define
µ1 = h−1(T2−T1+T0). From the definition of T = h(µ)+
T1 − T0 while considering T1 ≥ T0 and monotonicity of
h(µ), we would know µ1 ≤ µ3.

As shown in Figure 7, T = h(µ) + T1 − T0, T = h̃(µ),
and T = h(µ) can form a geometric relation to bound µ2

using 0, µ1 and µ3. µ1 can be used as a first bisecting value
for the searching process for µ2 value.

A complete description on the algorithm for generating
optimal run-curve, namely ADP-2, is described as following:

1) Off-line stage is the same as the off-line stage in
section III-C.2. The T − µ relation is stated as a
function T = h(µ);

2) Real-time stage:

a) When a new travel time T2 and updated speed
limits are received, the transition matrix is up-
dated for partial state space that would affect the
run-curve generation;

b) The fastest run-curve is generated with the up-
dated transition matrix, and the travel time is T1;

c) Solve the bi-criteria optimization problem using
µ1, if h̃(µ1) < T2, use µ1 = h−1(T2 − T1 +
T0) and µ3 = h−1(T2) as initial guess for the
searching process for µ2; if h̃(µ1) > T2, use 0
and µ1 = h−1(T2 − T1 + T0) as initial guess for
the searching process for µ2; if h̃(µ1) = T2 for
acceptable tolerance, µ2 = µ1, stop.

d) Update µ2 value until travel time approaches T2
within allowed tolerance.

3) Real-time Stage Acceleration: To further improve the
reaction speed of the train to changing travel time and speed
limit, a simple modification can be made to the algorithm
in section III-D.2. In the real-time stage, after a fastest run-
curve is obtained in stage 2(b), the run-curve is executed as
the searching for µ2 process continues. Every time a new µ2

value is obtained and corresponding run-curve is obtained,
the train start to use the newly generated run-curve.



Baseline Algorithm ADP-1
Target Travel Time(s) T(s) Energy Cost CPU Time(s) T(s) Energy Cost CPU Time(s)

140 139.0 6.6756 12.4012 140.5 6.2369 1.0882
150 150.3 5.2462 13.6216 150.1 5.2723 1.0996
160 160.3 4.6496 16.5924 160.2 4.6562 1.1274
170 170.4 4.1689 13.8496 169.7 4.2126 1.1623
180 180.4 3.8291 20.0637 180.3 3.8290 1.2223
190 190.2 3.5515 14.0247 189.9 3.5684 1.2395
200 201.0 3.2839 16.5389 199.0 3.3169 1.2833
210 210.4 3.0762 19.4430 210.0 3.0838 1.37274
220 220.2 2.9110 21.0457 220.2 2.9110 1.3659

TABLE I
EXPERIMENTS ON DYNAMIC TRAVEL TIME

Travel Time(s) Additional Speed Limit Baseline Algorithm ADP-2
([m, m], km/hr) T(s) Energy Cost CPU Time(s) T(s) Energy Cost CPU Time 1(s) CPU Time 2(s)

180 [600, 800], 30 180.7 4.9396 21.3960 179.6 5.6199 1.8740 7.3003
180 [100, 200], 30 179.8 4.2094 17.8791 179.8 4.4232 1.4778 9.7978
180 [1600, 1700], 30 180.1 4.1582 17.3009 180.6 4.5238 1.5658 9.0595
210 [600, 800], 30 210.2 3.5745 20.7266 209.5 4.0371 1.7378 8.6795
210 [100, 200], 30 211.0 3.2243 19.4663 204.6 3.5730 1.4461 23.0340
210 [1600, 1700], 30 210.4 3.1026 17.7500 209.5 3.1934 1.6063 7.1235
240 [600, 800], 30 240.4 2.8594 20.4761 239.9 3.1703 1.7948 9.2486
240 [100, 200], 30 239.4 2.7074 18.1596 239.5 2.8082 1.4418 3.9594
240 [1600, 1700], 30 241.7 2.6133 24.9216 227.6 2.8422 1.6303 18.9569

TABLE II
EXPERIMENTS ON DYNAMIC TRAVEL TIME AND ADDITIONAL SPEED LIMITS

IV. EXPERIMENTS AND RESULTS ANALYSIS

A set of computational experiments are executed for
testing the acceleration of this framework on a windows 7
PC with Intel i7 2.8GHz processor and 4 GB RAM using
Matlab 7.11.0. The optimality of solutions for solving single
factored MDP using approximate dynamic programming has
been shown in [12]. We will show the computational speed
reduction with this framework. We use the track and train
profile in [12].

The first set of experiments is on generating optimal
run-curve when there are only changes on travel time. As
shown in Table I, the first column is the target travel time
requirements ranging from 140 seconds to 220 seconds. The
baseline algorithm used in this paper is an approximate
dynamic programming algorithm from [12]. The results of
the baseline algorithm are in columns 2 to 4. Column 2 is
the travel time for the run-curve obtained by the algorithm.
Energy cost column stores the energy for the run-curve
obtained by the algorithm. CPU time is the computational
time for generating the run-curve solutions. The results for
the two stage algorithm for optimal run-curve with dynamic
travel time are in columns 5 to 7. As shown in the table,
ADP-1 can reduce the computation time to less than 2
seconds, which are average 92.4% reduction on computation
time.

The second set of experiments is on testing ADP-2 under
changing travel time and changing speed limits. The addi-
tional speed limit of 30km/h is added near beginning of the
track from 100 to 200 meters, or in the middle of the track
from 600 to 800 meters, or near the end the track from 1600

to 1700 meters. The travel time requirements are 180, 210
and 240 seconds. In Table II, the first two columns are travel
time requirements and additional speed limits information.
Column 4 to 6 are baseline algorithm’s results on travel
time, energy cost and CPU time needed for the run-curves
obtained. According to the structure of ADP-2, there are two
computation time that is of interest. The first one, denoted as
”CPU Time 1” in column 8 of Table II, is the time needed
before a train reacts to updated travel time and additional
speed limits information. The second one, denoted as ”CPU
Time 2” in column 8 of Table II, is the computation time
for ADP-2 finally converges after a number of searching
iterations. In real implementation, trains only need to wait
for the time listed in column “CPU time 1” before an initial
run curves is generated for the updated speed limit profile.
While trains are accelerating after departing a station, ADP-
2 will keep updating run-curve until convergence to a final
run-curve. The final convergence time “CPU Time 2” may
vary due to different discretization schema and numerical
convergence criteria. As we can see from column “CPU time
1” the table, ADP-2 reduces the reaction time for trains to
less than 2 seconds. At the same time, we also observe an
average extra cost of energy of 8.6%.

V. CONCLUSION AND FUTURE WORK

A framework for computing optimal run-curves with dy-
namic travel time is proposed in this paper. By introducing
a two stage procedure, significant amount of computation
load are completed off-line while real-time stage is adaptive
to changing travel time requirement and speed limits. The
computational results show significant CPU time reduction is



achieved when using the framework proposed in this paper.
Hence, it achieves near optimal run-curve generation in a
short enough time for on-board processors such as ATO. As
a future research direction, changing train weight and length
should also be considered in optimal run-curve generation
procedure.
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