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A Gradient-based Approach for Optimal Plant Controller Co-Design

Yuh-Shyang Wang and Yebin Wang

Abstract— This paper proposes a gradient-based iterative
algorithm for optimal co-design of a linear physical plant and a
controller. The proposed algorithm does not rely on the common
linear parameterization assumption, and thus is applicable to
a broader class of problems. The convergence of the algorithm
and the verification procedure for a local minimum are given.
Numerical examples show that our algorithm is comparable to
other complicated algorithms in terms of the performance, but
can deal with a more general class of problems.

I. INTRODUCTION

The process of designing a control system can be roughly
divided into two tasks: plant design and controller synthesis.
In conventional design process, these two tasks are carried
out in a sequential manner, that is, design the plant first and
then synthesize the controller for the designed plant model.
This separation simplifies the design process at the expense
of performance degradation. In fact, the co-design of the
plant and the controller can improve the overall system per-
formance and robustness compared to the sequential design
procedure. The idea of co-design has been applied to a wide
range of areas, including aerospace crafts [1], smart buildings
[2], and electric motors [3].

A common way to approach the plant controller co-design
problem is solving the optimal control problem and the
optimal plant parameter selection problem alternately and
iteratively. Although the iterative design procedure does sim-
plify the original co-design problem, tremendous difficulty
remains due to the non-convex nature of the optimal plant
parameter selection problem. The non-convexity is present
even if the plant is linearly dependent on its parameters.
Several methods have been proposed to address the non-
convex constraints. For instance, work [2], [4] convexify the
non-convex problem by adding an extra system-equivalence
constraint. Work [5] tries to relax the system-equivalence
constraint by establishing a set of convex constraints with
the hope to better approximate the original non-convex
constraints. The convexification usually leads to a standard
semi-definite programming (SDP) problem.

There are two primary limitations for these methods. First,
the additional constraint usually leads to a reduced feasible
set, and conservative design. Specifically, the plant parameter
can converge to an optimal point in a convex subset, but
not necessary a stationary point in the original set. Second,
the aforementioned convexification-based approaches only
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work for some specific cases. For example, the SDP method
in [5] assumes that the system matrices are affine in the
plant parameters, which results in limited applicability. For
instance, when transforming a linear second order mass-
spring-damper system into a state space form, the system
matrices depend on the plant parameter in a nonlinear way.
The SDP method will not be applicable in this case unless
re-parametrization.

In order to address the above-mentioned two issues, we
propose a gradient-based algorithm which is more general
and less conservative. The algorithm can handle nonlinear
parametrization, and is applicable for both state and output
feedback, continuous-time and discrete-time systems. Nu-
merical examples suggest that our algorithm is less con-
servative than the system-equivalence-based method, and is
comparable to the SDP method on the specialized problem.

The rest of this paper is organized as follows. In Section II,
we formulate the optimal plant controller co-design problem
as an extension of the optimal control problem. An iterative
algorithm is proposed in Section III to approach the co-
design problem. In Section IV, we analyze the convergence
property of our algorithm, and extend the algorithm to
structured controller tuning problems. Numerical examples
are provided in Section V to illustrate the effectiveness of
our method. Finally, Section VI ends with conclusion and
offers some future research directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce the common formulation
for H2 optimal control problem, and formulate the plant
controller co-design problem. Then, we present the iterative
design procedure where the co-design problem is decom-
posed into an optimal control problem and a plant parameter
selection problem, solved alternately.

A. H2 Optimal Control Formulation
Consider a generalized continuous time linear time-

invariant (LTI) system

ẋ = Ax+B1w +B2u

z = C1x+D12u

y = C2x+D21w (1)

where x ∈ Rnx is the state vector, w ∈ Rnw the external
disturbance, u ∈ Rnu the control action, z ∈ Rnz the
regulated output, and y ∈ Rny the measurement. The
system (1) can also be written in a compact form as

P =

 A B1 B2

C1 0 D12

C2 D21 0

 =

[
P11 P12

P21 P22

]



where Pij = Ci(sI−A)−1Bj +Dij . Let Twz be the closed-
loop transfer function from w to z. The goal of H2 optimal
control is to find a dynamic output feedback control law
u = Ky such that the H2 norm of Twz is minimized.
Mathematically, the problem can be written as

minimize
K

||Twz(K)||H2

subject to K stabilizes P (2)

in which Twz(K) = P11 + P12K(I − P22K)−1P21. The
problem (2) can be solved analytically, and the solution can
be found in standard textbooks such as [6].

B. Optimal Plant Controller Co-design

We now consider a plant model as follows

P (θ) =

 A(θ) B1(θ) B2(θ)
C1(θ) 0 D12(θ)
C2(θ) D21(θ) 0

 . (3)

The plant (3) is parameterized by a vector θ ∈ Rnθ that
can be designed. We assume that all state space matrices
in (3) are differentiable with respect to θ, and θ belongs to a
convex compact set Θ. In particular, we emphasize the fact
that the state space matrices in (3) can be any differentiable
nonlinear function of θ. Without losing much generality, we
assume Θ = {θ|θmin ≤ θ ≤ θmax}. We also assume that the
pair [A(θ), B2(θ)] is stabilizable and the pair [A(θ), C2(θ)]
is detectable for all θ ∈ Θ.

The co-design objective is to determine an output feedback
control law u = Ky and the plant parameter θ simulta-
neously such that the H2 norm of the closed-loop transfer
function Twz is minimized. Specifically, the optimal co-
design problem can be formulated as

minimize
θ,K

||Twz(θ,K)||H2

subject to θ ∈ Θ, K stabilizes P (θ). (4)

Although problem (4) looks similar to (2), it is substantially
more difficult to solve. Even when the state space matrices
in (3) are affine in θ and the controller is state feedback,
finding a stabilizing pair (K, θ) is known to be NP-hard [7].

We now give a common engineering example that can be
formulated in the form of (4).

Example 1: Consider a second order mass-spring-damper
system

Msẍs +Dsẋs +Ksxs = Bu

y = Cxs (5)

During the system design process, not only the con-
trol law u = Ky but also the physical plant parameters
(Ms, Ds,Ks) can be chosen within some range in order
to meet the performance specification. One simple case is
defining the system parameter vector θ by the collection
of all entries of the matrices (Ms, Ds,Ks), that is, θ =
[{Ms}ij , {Ds}ij , {Ks}ij ] ∈ Θ. This corresponds to the
case that all the entries of (Ms, Ds,Ks) are independently

tunable. Equation (5) can be written in state space form by
introducing a new state vector x = [x>s ẋ>s ]> as

ẋ =

[
0 I

−M−1
s Ks −M−1

s Ds

]
x+

[
0

M−1
s B

]
u

= A(θ)x+B2(θ)u (6)
y =

[
C 0

]
x

= C2x.

Equation (6) shows that the plant model is parameterized by
the system parameter θ. Note that due to the inverse operation
M−1
s in (6), the matrices A(θ) and B2(θ) usually depend

on the parameter θ in a nonlinear way. The co-design of the
mass-spring-damper system and the controller can then be
formulated in the form of (4).

C. Iterative Design Procedure

A heuristic to deal with (4) is solving the optimal control
problem and the optimal parameter selection problem alter-
nately and iteratively. Specifically, we solve (2) for a fixed
plant parameter θ to get a controller K, and then fix K and
solve the plant parameter selection problem as

minimize
θ

||Twz(θ,K)||H2

subject to θ ∈ Θ, K stabilizes P (θ). (7)

We solve (2) and (7) repetitively until the iteration converges.
As mentioned in Section I, (7) is non-convex even when

the system matrices are θ-affine. The common strategy in
both [4] and [5] is adding some conservative constraints
to make the modified problem convex. Then a sub-optimal
solution can be obtained by standard convex optimization
technique. This strategy however suffers two primary limita-
tions: conservative design, and limited range of applicability.

Our key observation is that there is no need to solve
either (7) or its analogs exactly at each iteration. Instead, we
propose to update a new plant parameter θnew as long as it
results in significant performance improvement. With this in
mind, we develop a plant parameter update algorithm based
on gradient computation to resolve the above-mentioned
two limitations. Note that the gradient-based algorithm is
applicable to a more general class of problem, as long
as the system matrices are differentiable with respect to
the plant parameter. Other methods using Hessian or its
approximations, for instance Newton or Gaussian-Newton,
can also be applied to update the plant parameter.

III. CO-DESIGN ALGORITHM

A. System Parameter Update

We begin with a given plant parameter θ and a fixed
stabilizing controller K. Our goal is to find a θnew such
that the closed-loop system performance has a sufficient
improvement. Denote the objective function as f(θ) =
||Twz(θ,K)||2H2

for all θ. The plant parameter update is given
by the rule

θnew = PΘ(θ + αp) (8)



where α is a positive scalar representing the step length, p
the search direction, and PΘ(.) the projection operator on the
set Θ. In particular, we use the steepest descent direction p =
−∇f(θ) based on the gradient of the cost function. Unlike
the usual line search methods for nonlinear optimization, we
only perform the update (8) once, and then turn back to
solve the optimal control problem (2) with the updated plant
parameter θnew.

We now discuss how to find an appropriate step length α
with sufficient improvement. A common way to choose the
step length α is by the Wolfe conditions [8] given by

f(θnew) ≤ f(θ) + c1α∇f(θ)>p (9)
∇f(θnew)>p ≥ c2∇f(θ)>p (10)

for some 0 < c1 < c2 < 1. Equation (9) ensures that the
search gives an improvement when p is a descent direction.
Note that (9) will be satisfied for any small α, in which case
the improvement may be limited. Therefore, the curvature
condition (10) is added to ensure that the chosen step
length is not too conservative. In practice, we can use the
backtracking technique to dispense the condition (10) [8].
The idea is to set α to a large value initially, and decrease the
value until (9) is satisfied. When Θ = {θ|θmin ≤ θ ≤ θmax}
and p 6= 0, there exists a finite ᾱ such that PΘ(θ + αp) =
PΘ(θ + ᾱp) for all α ≥ ᾱ. The backtracking technique can
start with this initial value. The complete system parameter
update algorithm with backtracking is presented as follows.

Algorithm 1: System Parameter Update

Given θ, K, f(θ) = ||Twz(θ,K)||2H2
;

Compute the gradient ∇f(θ) and set p = −∇f(θ) ;
if p = 0 then

θnew = θ ;

else
Compute ᾱ and set α = ᾱ ;
Choose ρ ∈ (0, 1), c1 ∈ (0, 1) ;
Set θnew = PΘ(θ + αp) ;
while f(θnew) > f(θ) + c1α∇f(θ)>p do

α = ρα ;
θnew = PΘ(θ + αp) ;

B. Gradient Computation

We now present an efficient way to compute the gradient
∇f(θ) in Algorithm 1. We begin with a state space repre-
sentation of the H2 optimal controller

K =

[
AK BK
CK DK

]
. (11)

The closed loop transfer function Twz can be written in state
space form as

Twz(θ,K) =

[
A(θ,K) B(θ,K)
C(θ,K) D(θ,K)

]
(12)

where

A(θ,K) =

[
A(θ) +B2(θ)DKC2(θ) B2(θ)CK

BKC2(θ) AK

]
B(θ,K) =

[
B1(θ) +B2(θ)DKD21(θ)

BKD21(θ)

]
C(θ,K) =

[
C1(θ) +D12(θ)DKC2(θ) D12(θ)CK

]
D(θ,K) = D12(θ)DKD21(θ).

As K stabilizes P (θ), Twz is always a stable transfer func-
tion and A in (12) is Hurwitz. Denote θi the i-th component
of θ and θ̂i the unit vector in the direction of θi. The gradient
can be computed as

∇f(θ) =

nθ∑
i=1

∂ < Twz, Twz >

∂θi
θ̂i

=

nθ∑
i=1

2 < Twz,
∂Twz
∂θi

> θ̂i. (13)

where < ., . > is the inner product defined on the H2 space.
The partial derivative in (13) can be calculated by

∂Twz
∂θi

=
∂C(sI −A)−1B +D

∂θi

=
∂C
∂θi

(sI −A)−1B + C(sI −A)−1 ∂B
∂θi

+
∂D
∂θi

+ C(sI −A)−1 ∂A
∂θi

(sI −A)−1B

(14)

where the last term in (14) is derived by considering the
following identity [9]

∂Y −1

∂x
= −Y −1 ∂Y

∂x
Y −1. (15)

Note that each component in (14) can be computed from
the state space realization of Twz by simple state space
manipulation. For instance, the state space representation for
the last term of (14) is given by

C(sI −A)−1 ∂A
∂θi

(sI −A)−1B =

 A ∂A
∂θi

0

0 A B
C 0 0

 . (16)

We now exemplify how to compute the gradient with a
second order mass-spring-damper system.

Example 2: Consider the system (6). When H2 optimal
controller is used, DK = 0. The state space representation
for Twz can be simplified into[

A B
C D

]
=

 A(θ) B2(θ)CK B1

BKC2 AK BKD21

C1 D12CK 0

 .
Note that A is the only term that depends on θ, so the partial
derivative ∂Twz

∂θi
is just (16), in which case we only need

to compute ∂A
∂θi

. This can be carried out by computing the
partial derivative for A and B2 in (6) directly. For example,
we have

∂B2(θ)

∂θi
=

[
0

M−1
s

∂Ms

∂θi
M−1
s B

]



where the identity (15) is applied to M−1
s . The partial

derivative for A can be computed in a similar way.
The last thing to do is computing the inner product in (13).

From (14) and the fact that A is Hurwitz, we know that
∂Twz
∂θi

is stable. Assume that D = 0, the inner product can be
computed in the state space form by forming a Lyapunov-
like equation, similar to the state space method to compute
the H2 norm in [6]. Specifically, let

∂Twz
∂θi

=

[
Ai Bi
Ci 0

]
.

The inner product can be computed by

< Twz,
∂Twz
∂θi

>= trace(CLC>i )

where L is the solution of the equation

AL+ LA>i + BB>i = 0. (17)

Equation (17) can be solved algebraically by the technique of
vectorization. When the plant and controller are discrete time
systems, instead of (17), we solve a discrete time Lyapunov-
like equation given by

ALA>i − L+ BB>i = 0.

C. Iterative Co-design Algorithm

We now complete the iterative co-design algorithm by
combining optimal control problem and the parameter update
algorithm. From now on, we use θ(k) to represent the vector
of the system parameter in the k-th iteration, and K(k) the
optimal controller for the system P (θ(k)). For a given pair
(θ(k),K(k)), we can use Algorithm 1 to compute θ(k+1) =
θnew for a fixed K(k). Denote the objective function as
f(θ,K) = ||Twz(θ,K)||2H2

. We assume the initial parameter
θ(0) is given and the initial cost f(θ(0),K(0)) is finite. The
stopping criteria is based on the relative improvement ratio
[f(θ(k),K(k))−f(θ(k+1),K(k+1))]/f(θ(0),K(0)). For other
purpose, the stopping criteria can also be based on other
measure such as ||θ(k)− θ(k+1)||. The proposed iterative co-
design method is summarized in Algorithm 2.

Algorithm 2: Co-design Algorithm

Choose a threshold ε ∈ (0, 1) ;
Initialize θ(0) = θ0, K(0) the optimal controller for
P (θ(0)) ;
Set r = 1, k = 0 ;
while r > ε do

Calculate θ(k+1) from (θ(k),K(k)) by Algorithm 1 ;
Compute the optimal controller K(k+1) for
P (θ(k+1)) by (2);

Compute r = f(θ(k),K(k))−f(θ(k+1),K(k+1))
f(θ(0),K(0))

;
Set k = k + 1 ;

IV. ANALYSIS AND EXTENSION

In this section, we analyze the property of Algorithm 2.
In particular, we show some convergence results for the
algorithm. We then outline the procedure to check whether
a stationary point is a local minimum. Finally, we explain
how to use this algorithm to tune a structured controller.

A. Convergence Analysis

The following lemma states that the cost function is
monotonically decreasing at each step in Algorithm 2.

Lemma 1: We have

0 ≤ f(θ(k+1),K(k+1)) ≤ f(θ(k+1),K(k)) ≤ f(θ(k),K(k))
(18)

for all non-negative integer k.
Proof: There are totally three inequalities in (18). The

first inequality comes from the fact that the objective (norm)
is lower bounded by 0. The second inequality holds since
K(k+1) is the optimal controller for P (θ(k+1)). The third
inequality comes from the condition (9) on plant parameter
update.

Next, we show that the cost sequence {f(θ(k),K(k))}∞k=0

converges.
Lemma 2: The sequence {f(θ(k),K(k))}∞k=0 converges to

a value f∗.
Proof: From Lemma 1, {f(θ(k),K(k))}∞k=0 is a mono-

tonically decreasing sequence lower bounded by 0. Thus this
sequence converges to some value f∗.

If the initial cost f(θ(0),K(0)) is nonzero, then Lemma 2
implies that the sequence of relative improvement ra-
tio {[f(θ(k),K(k))− f(θ(k+1),K(k+1))]/f(θ(0),K(0))}∞k=0

converges to 0. We can then infer that Algorithm 2 terminate
in a finite number of steps for any ε > 0.

The sequence of the gradient have the following property.
Lemma 3:

∑∞
k=0 α

(k)||∇f(θ(k))||2 <∞
Proof: Since p(k) = −∇f(θ(k)), we can rearrange (9)

and get

c1α
(k)||∇f(θ(k))||2 ≤ f(θ(k),K(k))− f(θ(k+1),K(k))

≤ f(θ(k),K(k))− f(θ(k+1),K(k+1)). (19)

Summing over all positive integer k, the right-hand-side
of (19) is equal to f(θ(0),K(0)) − f∗, which is finite. As
c1 is nonzero, we have

∑∞
k=0 α

(k)||∇f(θ(k))||2 <∞.
Lastly, we consider the sequence of the plant parameter

{θ(k)}∞k=0.
Lemma 4:

∑∞
k=0 ||θ(k+1) − θ(k)||2 <∞

Proof: We have

||θ(k+1) − θ(k)||2 = ||PΘ(θ(k) + α(k)p(k))− θ(k)||2

≤ ||θ(k) + α(k)p(k) − θ(k)||2

= ||α(k)∇f(θ(k))||2 (20)

where the inequality holds since PΘ is a projection on the
set Θ = {θ|θmin ≤ θ ≤ θmax}. As the upper bound for all
α(k) is finite, we can prove this lemma by summing over all
k on both sides of (20) and applying Lemma 3.



B. Second Order Condition

In this subsection, we assume the existence of a stationary
point (θ∗,K∗) such that ∇f(θ∗) = 0 for a fixed K∗, where
K∗ is the optimal controller for P (θ∗). We now outline the
procedure to check whether the stationary point is a local
minimum.

To check whether (θ(∗),K(∗)) is a co-design local min-
imum, we need to treat the state space matrices of K∗ as
parameters as well. Specifically, we define the augmented
parameter vector θ̄ = [θ {AK}ij{BK}ij{CK}ij{DK}ij ].
Then, we compute the Hessian of the cost function
∇2
θ̄
f(θ∗,K∗). If the stationary point θ∗ is on the boundary of

the set Θ, we compute the bordered Hessian matrix for con-
strained optimization instead. If the Hessian or the bordered
Hessian is a positive definite matrix, then this stationary point
is a local minimum. The procedure of computing the Hessian
is similar to the gradient computation in Section III-B.

C. Structured Controller Tuning

The parameter update algorithm can also be applied to
structured controller tuning problems by treating the entries
of (AK , BK , CK , DK) in (12) as plant parameters. Addi-
tionally, we can impose structured constraints on the state
space matrices, including sparsity constraints or lower and
upper bounds.

Consider the static output feedback control problem. This
corresponds to the case that AK = 0, BK = 0, and CK = 0.
It is known that finding a stabilizing static output feedback
controller for a fixed plant is NP-hard [10]. Assuming that
the static output feedback control problem has a stabilizing
solution, we can apply our algorithm to tune the stabilizing
controller and improve the system performance by treating
the entries of DK as the plant parameter.

For a proportional-integral (PI) controller, we have AK =
0. For a completely decentralized controller, we impose the
appropriate sparsity patterns on (AK , BK , CK , DK). The
tuning process is similar to that for the static output feedback.

V. NUMERICAL EXAMPLES

Two numerical examples are performed to illustrate the
effectiveness of our algorithm. The first one is a load-
positioning system [11]. We show that our algorithm have
comparable performance to the one in [5], which is devel-
oped specifically for state feedback with affine plant pa-
rameterization. The second experiment is a real engineering
problem about chip mounter plant controller co-design.

A. Load-Positioning System

The dynamics of the load-positioning system are given
in [11] and recited as

ẍL = (u− dLẋL)(
1

mL
+

1

mB
) +

kB
mB

xB +
dB
mB

ẋB

ẍB = (dLẋL − u)
1

mB
− kB
mB

xB −
dB
mB

ẋB

(21)

where xL is the relative displacement of the load with
respect to the platform, xB the displacement of the platform,

and dB , dL,mB ,mL, kB are system parameters that can be
designed. The co-design objective is to improve the track
performance during load positioning tasks. Let yd be the
desired constant output. We define x1 = xL−yd, x2 = ẋL+
ẋB , x3 = xB , x4 = ẋB , and introduce the state vector x =
[x1, x2, x3, x4]>. To make fair comparison, we take dL = 10
and define the system parameter θ = [ 1

mL
, 1
mB

, kBmB ,
dB
mB

]>.
The range of θ is given by the set Θ = {θ|θmin ≤
θ ≤ θmax} with θmin = [0.3333, 0.04, 0.4, 0.004]> and
θmax = [1, 0.0667, 1.3333, 0.0667]>. Choosing the same
cost function as the one in [5], system (21) can be written
in the form of (3) as


0 1 0 0
0 −10(θ1 + θ2) θ3 θ4

0 0 0 1
0 10θ2 −θ3 −θ4



−1
0
0
0




0
θ1 + θ2

0
−θ2


[√

1000 0 0 0
0 0 0 0

]
0

[
0√
0.1

]
I4 0 0


We choose ρ = 1

2 and c1 = 10−4 in Algorithm 1,
while these values do not affect the performance of our
algorithm much. The threshold value ε in Algorithm 2 is
chosen to be 10−4 and 10−8 for two different trials. The
proposed algorithm is compared to the system-equivalence-
based and the SDP methods in [2], [5]. We summarize the
optimal point, total cost, and number of iterations of each
method in Table I. It can be seen that the performance of our
gradient algorithm is comparable to the SDP method, and is
much better than the system-equivalence-based algorithm. In
addition, our algorithm converges faster than the SDP one. In
particular, when ε = 10−4, the algorithm converges in only
2 steps within a second. Finally, it should be noted that the
SDP method is developed specifically for state feedback with
affine plant parameterization, while our gradient algorithm
can handle a much broader class of problems.

TABLE I
COMPARISON BETWEEN DIFFERENT ALGORITHMS

Original S.E.-based SDP ε = 10−4 ε = 10−8

θ1 0.5 0.6667 1 1 1
θ2 0.05 0.0667 0.0667 0.0667 0.0667
θ3 0.75 0.75 0.4393 0.4 0.4
θ4 0.025 0.025 0.0369 0.004 0.009
Cost 215.3952 193.1239 169.5836 169.5756 169.5733
Iter. - - 24 2 8

B. Chip Mounter Machine

The proposed algorithm is applied to solve a chip mounter
co-design problem as shown in Fig. 1. The control objective
is to move the head and beam of the mounter to track a
reference trajectory while keeping the vibration of the base
small. Thus, we define the objective function as a quadratic
function weighting tracking error, base vibration, and control
effort. The system dynamics are given in the form of (5),
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Fig. 4. Base vibration when performing step tracking.

which can be further rewritten in state space form as (6).
The mass, damping ratio, coefficient of friction, and the
stiffness of the system are free to adjust within ±25% from
its nominal value. As in (6), the state space matrices A(θ)
and B2(θ) depend on the plant parameter in a nonlinear way.
Details of the system model are proprietary information and
thus omitted.

Figures 2-4 show the comparison results before and after
co-design. It can be seen from Fig. 2 that the tracking per-
formance after co-design improves remarkably. The settling
time is shortened to almost half of the original one. In

addition, as indicated in Fig. 3, the control effort to achieve
the desired tracking performance is reduced as well. The
maximum overshoot of the base vibration is however slightly
increase after the co-design. This is understood as the natural
outcome of the trade-off between tracking performance and
base vibration suppression. Basically, the system tends to
increase the base mass and stiffness when base vibration
suppression is emphasized.

The degree of performance improvement and the parame-
ter selection results highly depend on the relative penalty
on tracking error, base vibration, and control effort. This
means the cost function shall be carefully chosen so that the
co-design yields meaningful results. Roughly speaking, we
can treat plant parameter selection as passive control design.
When the active control is expensive, we depend more on
passive control design. So the plant parameter selection will
have a significant effect on system performance. On the
other hand, if active control is cheap, then there is not much
difference before and after co-design.

VI. CONCLUSION

In this paper, we proposed a plant controller co-design
algorithm for a general linear time invariant systems. The
algorithm has a wide range of applications, including state
and output feedback control designs, continuous time and
discrete time systems, and with linear or nonlinear plant
parameterizations. We shown some convergence properties
of the algorithm, and outlined a test to check whether
a stationary point is a local optimum. In addition to the
generality of our algorithm, simulation also verified that our
algorithm results in comparable system performance to the
SDP-based method.
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