
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Benders Approach to the Minimum Chordal Completion
Problem

Bergman, D.; Raghunathan, A.U.

TR2015-056 May 2015

Abstract
This paper introduces an integer programming approach to the minimum chordal completion
problem. This combinatorial optimization problem, although simple to pose, presents con-
siderable computational difficulties and has been tackled mostly by heuristics. In this paper,
an integer programming approach based on Benders decomposition is presented. Computa-
tional results show that the improvement in solution times over a simple branch-and-bound
algorithm is substantial. The results also indicate that the value of the solutions obtained
by a state-of-the-art heuristic can be in some cases significantly far away from the previously
unknown optimal solutions obtained via the Benders approach.

2015 International Conference on Integration of Artificial Intelligence and Operations
Research (CPAIOR)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2015
201 Broadway, Cambridge, Massachusetts 02139

A Benders Approach to the Minimum Chordal

Completion Problem

David Bergman1 and Arvind U. Raghunathan2

1 University of Connecticut, 1 University Place, Stamford, CT
david.bergman@business.uconn.edu

2 Mitsubishi Electric Research Labs, 201 Broadway, Cambridge, MA
raghunathan@merl.com

Abstract. This paper introduces an integer programming approach to
the minimum chordal completion problem. This combinatorial optimiza-
tion problem, although simple to pose, presents considerable computa-
tional difficulties and has been tackled mostly by heuristics. In this pa-
per, an integer programming approach based on Benders decomposition
is presented. Computational results show that the improvement in so-
lution times over a simple branch-and-bound algorithm is substantial.
The results also indicate that the value of the solutions obtained by a
state-of-the-art heuristic can be in some cases significantly far away from
the previously unknown optimal solutions obtained via the Benders ap-
proach.

1 Introduction

Given graph G, the minimum chordal completion problem (MCCP) asks for a
minimum cardinality set of edges whose addition to G results in a chordal graph
(a graph for which every cycle consisting of four or more vertices contains a
chord - an edge connected vertices that do not appear consecutively in the cycle).
The problem is also known as the minimum fill-in problem and the minimum
triangulation problem.

Chordal completions find applications in a variety of fields. These include
sparse matrix computation and semidefinite programming [31,18,23,27], database
management [1,34], computer vision [12], many others (the interested reader may
refer to a survey on the topic [19]). In addition to these applications, chordal
completions are related to the tree-width problem [6], the minimum interval com-
pletion problem [25], and are a special case of graph sandwich problems [17].

Although the problem has applications in a variety of domains, computa-
tional approaches in the literature have been very limited, with the focus being
on developing heuristics. The MCCP (in its decision version which ask whether
or not a chordal completion containing fewer than k edges exists) was listed as
one of the open problems in Garey and Johnson’s classical book on computa-
tional complexity [15] and later proven NP-complete [36].

Surprisingly, the optimization community has largely overlooked computa-
tional approaches to the problem. Some algorithms are published which solve

the MCCP exactly on particular classes of graphs [12,9,24,11,33,7]. For general
graphs algorithms exists as well, although computational results have not been
reported. The first fixed parameter tractable algorithm [22] was proven to have
time complexity O

(

2O(k) + k2nm
)

(where n is the number of vertices in the
graph and m is the number of edges in the graph). Algorithms have since inves-
tigated [8] and recently the running time has been reduced to sub-exponential
parameterized time complexity [13].

As opposed to exact algorithms, the literature is vast on algorithms designed
to find minimal chordal completions (the interested reader can again refer to a
survey written on the topic [19]). The objective of these algorithms are twofold.
First, they seek to create chordal completion in the least possible computational
time. Second, they search for chordal completions using as few edges as possible.
A surprisingly simple algorithm based on ordering the vertices of the graph by
their degree and running a vertex elimination game [16] runs in polynomial time
[20] (O(n2m)) and produces very good solutions in terms of the number of edges
added, compared to other heuristics [26,3,4,5,29].

This paper presents an integer programming approach to the MCCP based
on Benders decomposition [2], and in particular on logic-based Benders decom-
position [21]. The problem is modeled using only a quadratic (with respect to
the number of vertices in the graph) number of variables (one per edge not in the
graph), and cuts are added iteratively when they become violated. The problem
is decomposed into a master problem and a subproblem. In the master problem,
a solution is found which adds some subset of the complement edge set to the
graph subject to Benders cuts that have been previously identified. This graph
then defines a subproblem which returns either that the graph is chordal (and
hence a minimum chordal completion) or finds chordal cuts that must be sat-
isfied by any chordal completion of the graph. In the latter case, the cuts are
added to the master problem, and any solution found by the master problem in
subsequent iterations will never violate these cuts.

The remainder of the paper is organized as follows. In Section 2 graph nota-
tion is introduced which will be used throughout the paper. Section 3 formally
introduces the MCCP. Section 4 introduces the Benders decomposition approach
to the MCCP with Section 5 explaining in detail the solution to the subproblem
and Section 6 describing the Bender’ cuts and proving that they are valid. Sec-
tion 7 details the exact algorithm and heuristic algorithms used for comparison
in the computational experiments presented in Section 8. The paper concludes
in Section 9.

2 Graph Notation

Let S be any set.
(

S

2

)

denotes the family of two-element subsets of S.
Let G = (V,E) be a graph. For the remainder of the paper it is assumed that

G is connected, undirected, has no self-loops or multi-edges.
Each edge e ∈ E ⊆

(

V
2

)

is a two-element subset of V . We denote by Ec the

complement edge set of G: Ec =
(

V
2

)

\E.

The neighborhood N(v) of a vertex v ∈ V is the set of vertices which share an
edge with (are adjacent to) v: N(v) = {v′ : (v, v′) ∈ E}. The closed neighborhood
N [v] is the neighborhood of v together with v: N [v] = N(v) ∪ {v}.

Let V ′ ⊆ V . The graph induced by V ′, G[V ′] = (V ′, E(V ′)) is the graph on

vertex set V ′ with edge set E(V ′) = E ∩
(

V ′

2

)

. Given F ⊆ Ec, a completion of
G, denoted by G+F , is the addition of the sets in F to E: G+F = (V,E ∪F).

A cycle C in G = (V,E) is an ordered list of distinct vertices of G, C =
(v1, . . . , vk), for which

⋃

i=1,...,k−1{vi, vi+1} ∪ {vk, v1} ⊆ E. We denote by V (C)
the set of vertices that appear in the cycle, and E(C) the edges connected to
consecutive vertices in the cycle (E(C) :=

⋃

i=1,...,k−1{vi, vi+1} ∪ {vk, v1}). The
interior of C, int(C), is the family of two-element subsets of the vertices in the

cycle that do not coincide with the edges of the cycle: i.e., int(C) =
(

V (C)
2

)

\E(C).
A cycle containing k vertices is called a k-cycle.

A cycle C for which the graph G[V (C)] contains only those edges in the cycle
is a chordless cycle. A graph is said to be chordal (or chordless) if the maximum
size of any chordless cycle is three. A chordless cycle with k vertices is called a
k-chordless cycle.

3 Problem Description

Let G = (V,E) be a graph. A chordal completion of G is any subset of edges
F ⊆ Ec for which G+ F is chordal. A minimal chordal completion is a chordal
completion F for which F ′ is not a chordal completion for any proper subset
F ′ ⊂ F . A minimum chordal completion is a chordal completion of minimum
cardinality. The minimum chordal completion problem (MCCP) is the problem
of identifying such a subset of the complement edge set.

We refer to Ec as both the complement edge set and the set of candidate fill
edges, since we think of filling G with edges in order to create chordless graphs.
We will use both terms interchangeably.

Example 1. Consider the graph in Figure 1 (a). This graph has two chordless
cycles, C1 = (1, 2, 3, 4) and C2 = (2, 3, 4, 5). Figure 1 (b) shows a minimal chordal
completion, which adds edges {1, 3} and {3, 5}. Removing either of these edges
will result in a graph that is not chordal. Figure 1 (c) shows a smaller, minimum
chordal completion consisting only of edge {2, 4}.

4 Integer programming approach

Benders decomposition is a general scheme proven to be useful for a variety of
problems. Benders decomposition calls for the communication of Benders cuts
between two models in order to communicate inferences.

In the scheme proposed in this paper, the decomposition is broken into an
integer programming (IP) phase which identifies completions of G (the master

1

2

3

4

5

(a)

1

2

3

4

5

(b)

1

2

3

4

5

(c)

Fig. 1: (a) A graph. (b) A minimal chordal completion of the graph. (c) A mini-
mum chordal completion of the graph.

problem) and a combinatorial optimization problem (the subproblem) of identi-
fying cutting planes that will restrict the completions found by the subsequent
IPs. Each time a completion is assigned and found to be inconsistent (i.e., lead-
ing to a graph which is not chordal), an inequality is produced at the end of the
subproblem phase which will prohibit the IP from ever leading to this solution
again. This passing of information is done iteratively until the subproblem no
longer finds a Benders cut and certifies that the completion found by the mas-
ter problem is not only feasible (a chordal completion), but a minimum such
completion.

The master problem is the following:

min
∑

f∈Ec

zf

subject to [accumulated Benders cuts]

zf ∈ {0, 1}, f ∈ Ec

(MP)

leading initially to the solution z0 for which, ∀f ∈ Ec, z0f = 0, Benders cuts are
yet to be generated.

For a solution z′ with elements in {0, 1} for each f ∈ Ec, let F (z′) = {f :
z′f = 1}. Each time a master problem is solved, the solution zk encodes a graph

G(zk) = (V,E∪F (zk)). The subproblem has the goal of either determining that
G(zk) is chordal, or producing some certificate of infeasibility which is translated
into a linear inequality, restricting the master problem from ever producing this
solution again (called Benders cuts). In the case of the MCCP, this certificate
will be a k-cycle C with k ≥ 4 (or a set of such cycles).

In a general iteration, the master problem will contain all of the elements in
(MP), in addition to Benders cuts which are accumulated from earlier iterations.

The pseudocode for the algorithm is presented in Algorithm 1. We start with
z0 as defined above. This specifies that G(z0) = G. Given solution zk, the algo-
rithm tests whether or not the graph G(zk) is chordal. If it is, the solution relates

Algorithm 1 Benders decomposition for the MCCP in graph G = (V,E)

1: k ← 0
2: let z0 be the optimal solution to (MP), with no Benders cuts // ∀f ∈ Ec, z0f = 0

3: while G(zk) is not chordal do
4: k ← k + 1
5: Let Ck be a set of chordless cycles in G(zk−1)
6: for all C ∈ Ck do

7: generate Benders cuts B(C) and add them to (MP)
8: zk ← optimal solution to (MP) with all accumulated Benders cuts
9: return F (zk)

to an optimal solution and F (zk) is returned. If not, the algorithm increases the
iteration count by one, identifies a set of chordless cycles Ck in G(zk), generates
a set of Benders cuts B(C) for each C ∈ Ck, and adds these cuts to the master
problem. The master problem is then re-solved, to find a possible solution.

Several elements of Algorithm 1 need to be specified. Namely, line 3 which
determines whether or not a given graph is chordal, line 5 which finds a set
of chordless cycles in a graph which is not chordal, and line 7 which generates
Benders cuts based on the cycles. In general, a relaxation is also added to the
master problem in order guide the initial solution. One can view the first round
of Benders cuts as such a relaxation since, as explained below, the first round of
cuts is based entirely on the original graph. The following sections specify these
particulars.

5 Finding Chordless Cycles

Determining whether a graph is chordal or not can be accomplished in linear
time in the size of the graph [30]. This can be shown to be equivalent to finding
a perfect elimination order of a graph, and even finding all perfect elimination
orders has been investigated [10].

Papers have been published which seek to identify all chordless cycles in a
graph too [32,35], but the running time of these algorithms are exponential in
the size of the graph. For the purpose of this paper, it is not necessary to list all
chordless cycles; in any iteration of Algorithm 1, it is only necessary to find at
least one chordless cycle, if one exists.

A simple strategy can be employed, based on searching through triples of
vertices, that can be used to find a set of chordal cycles (or stopped prematurely
to find a single chordal cycle) if one exists. This is presented in Algorithm 2.

The algorithm starts with no cycles in C. For every ordered triple of vertices
i, j, k for which i, j, k is an induced path (i.e., j is adjacent to both i and k, but i
and k are not adjacent), the algorithm checks whether i and k are connected in
the graph G [(V \N [j]) ∪ {i, k}] induced by all vertices in G besides the closed
neighborhood of j (include i and k). If so, the algorithm adds the set of vertices

{i, j, k} together with the shortest path between i and k in G [(V \N [j]) ∪ {i, k}]
to C.

Theorem 1. Algorithm 2 returns a set C for which every C ∈ C is a chordless
cycle in G, and is empty at the end of the execution of the algorithm if and only
if G is chordal.

Proof. Suppose C 6= ∅. Let C be any cycle in C and i, j, k the ordered triple of
vertices that produced C. C is a cycle because i is adjacent to j, j is adjacent to
k, and i, k are connected in G through the path P = (i, v1, . . . , vℓ, k) (determined
during the algorithm) that connects i and k, does not contain j, and is connected
in the subgraph G [V \N [j] ∪ {i, k}] of G.

Furthermore, C must be a chordless cycle. By the construction of C, j is
only adjacent to i and k (with {i, k} /∈ P), so that j does not participate in
any chord of C. In addition, since P is the shortest path in G [V \N [j] ∪ {i, k}],
there cannot be any edge {va, vb}, for a ≤ b − 2 (otherwise P would not be a
shortest path) in the subgraph. Therefore, C is a chordless cycle in G.

What remains to be shown is that C is empty if and only if G is chordal.
From the previous arguments, if C is non-empty, then every set C ∈ C is a cycle
in G. Therefore in this case G is not chordal.

Finally, suppose G is not chordal. Let C = (v1, . . . , vℓ) be a smallest length
chordless cycle in G (ℓ ≥ 4). Consider when the algorithm examines i = v1, j =
v2, k = v3. C is a chordless cycle, therefore v2 is only adjacent to v1 and v3 in G.
Therefore, the path P = (v1, vℓ, . . . , v3) is in G [V \N [j] ∪ {i, k}]. Furthermore,
this must be the shortest path in this subgraph, because otherwise C would
not be a smallest length chordless cycle. Therefore, C is in C at the end of the
execution of Algorithm 2, as desired, completing the proof. ⊓⊔

Algorithm 2 Find a set of chordless cycles C in G = (V,E) (or return C = ∅ if
G is chordal)

1: C ← ∅
2: for all i, j, k ∈ V // all ordered triples of vertices do

3: if {i, j}, {j, k} ∈ E and {i, k} /∈ E then

4: if i, k are connected in G [V \N [j] ∪ {i, k}] then
5: P ← shortest path from i to k in G [V \N [j] ∪ {i, k}]
6: C ← C ∪ (P ∪ {j})
7: return C

6 Benders Cuts

In this section a class of Benders cuts is presented, each generated by a chordless
cycle in a graph. The main idea behind the Benders cuts developed here is that if
a graph G contains a k-chordless cycle C then at least k− 3 of the edges interior
to the cycle must be in any chordal completion of the graph.

Example 2. Consider the graph is Figure 2 (a). The graph is a cycle C =
{1, 2, 3, 4, 5} which is not chordal. Any chordal completion requires at least two
edges. One such completion is depicted in Figure 2 (b). Note only specific sub-
sets of size two can be added to the graph to result in a chordal completion.
Consider for example the graph depicted in Figure 2 (c), where the edges {1, 3}
and {2, 4} are added to the graph although the graph is not chordal.

1 2

3

4

5

(a)

1 2

3

4

5

(b)

1 2

3

4

5

(c)

Fig. 2: (a) A graph. (b) A chordal completion with two fill edges. (c) A completion
with two edges that is not chordal.

Lemma 1. Let G be a graph containing a chordless cycle C of length k ≥ 4.
Then at least k − 3 edges in int(C) are in any chordal completion of G.

Proof. We proceed by induction on k. For k = 4, if fewer that 4− 3 edges in the
interior of the chordless cycle are added to G the graph will still contain this
chordless cycle and hence not be chordal.

For the base case, let k = 5 and C = (1, 2, 3, 4, 5). Suppose we add fewer
than 5− 3 = 2 edges to the interior of C. Adding zero edges to the interior of C
leaves G not chordal. Suppose we add only one edge to the interior of C. Since
the cycle is symmetric with respect to the edges interior to the cycle, suppose
{1, 3} is added. This leaves chordless cycle (1, 3, 4, 5).

Fix k > 5. Suppose that ∀ℓ, 4 ≤ ℓ ≤ k− 1, if a chordless cycle C′ with length
ℓ appears in G then at least ℓ− 3 edges in the interior of C′ must appear in any
chordless completion of G.

Let C be a chordless cycle in G of length k. Let the vertices in C be the first
k integers: C = (1, 2, . . . , k). There must be at least one edge in the interior of
C that appears in any chordless completion of G. Since C is symmetric with
respect to the vertices, let suppose that {1, p} is added to G.

If p = 3, then C′ = (1, 3, 4, . . . , k) is a chordless cycle of length k− 1. By the
inductive hypothesis, any chordal completion requires at least (k−1)−3 = k−4
edges in the interior of C′ (which are also interior to C). Therefore any chordal
completion of G requires at least 1 + k − 4 = k − 3 edges in the interior of C.

If p = k − 1, the vertices can be renamed in opposite order, resulting in the
same case as p = 3.

Let 4 ≤ p ≤ k − 2. This chord cuts C and creates two, separate chordless
cycles: C1 = (1, 2, . . . , p) and C2 = (1, p, p+ 1, . . . , k). By the inductive hypoth-
esis, any chordless completion will require at least p− 3 edges in the interior of
C1 and at least k− p+2− 3 = k− p− 1 edges in the interior of C2 (all of which
are also in the interior of C). Therefore, any chordal completion requires at least
(1) + (p− 3) + (k − p− 1) = k − 3 edges in the interior of C, as desired. ⊓⊔

A valid Benders cut (or simply Benders cut) for a solution zk is any inequality
az ≥ b that satisfies the following two properties:

(B.1) zk must violate the constraint: azk < b
(B.2) Any solution z′ to the master problem which generates a graph G(z′)

which is chordal should satisfy the constraint: az′ ≥ b

Given a solution zk in Algorithm 1 which yields graph G(zk) which is not
chordal, after identifying a chordless cycle C (or set of chordless cycles) in line 5,
the goal is to find a linear inequality which can be added to the master problem
which prohibits zk from appearing again and is satisfied by every solution z′

which corresponds to a chordal completion F (zk). The simplest such cut, which
is readily applicable in Benders schemes, is the following:

∑

f :zk
f
=1

(1 − zf) +
∑

f :zk
f
=0

(zf) ≥ 1 (1)

This simple cut forbids only the given solution zk

Example 3. Take for example z0 with z0f = 0 for all f ∈ Ec for the graph in
Figure 2. There are many possible Benders cuts associated with this solution.
These include, for example:

z{1,3} + z{1,4} + z{2,4} + z{2,5} + z{3,5} ≥ 1 (2)

(2) is the standard Benders cut (1).

The application of Benders decomposition necessitates the generation of
problem specific valid Benders cuts so that the inequalities are tighter and elim-
inate additional infeasibility, for otherwise too many iterations are realized. The
remainder of this section is devoted to proving that the following inequality, for
a chordless cycle C identified in Algorithm 1, is a valid Benders cut:

∑

f ∈ int(C)

zf ≥ (|V (C)| − 3) ·

∑

f ∈ E(C)∩Ec

zf − |E(C) ∩ Ec|+ 1

 (3)

Example 4. Let G be the graph in Figure 2. Suppose the solution zk to the
master problem is zk{1,3} = zk{1,4} = zk{2,4} = zk{2,5} = zk{3,5} = 0. (3) becomes

z{1,3} + z{1,4} + z{2,4} + z{2,5} + z{3,5} ≥ 2 · 1 = 2

This is a valid Benders cut. The solution violates this constraint and in any
chordal completion at least two of the edges in the interior of the cycle must be
present.

Example 5. Take again the graph G in Figure 2. Suppose the solution zk to the
master problem is zk{1,3} = 1 and zk{1,4} = zk{2,4} = zk{2,5} = zk{3,5} = 0. Let

C = (v1, v3, v4, v5), which is a chordless cycle in the graph G(zk). In this case,

V (C) = {1, 3, 4, 5}
E(C) = {{1, 3} , {3, 4} , {4, 5} , {1, 5}}
int(C) = {{1, 4} , {3, 5}}
E(C) ∩ Ec = {{1, 3}}

(3) now becomes

z{1,4} + z{3,5} ≥ (4− 3) ·
(

z{1,3} − 1 + 1
)

= z{1,3}

This inequality will force at least one of z{1,4} or z{3,5} to be equal to one
if z{1,3} = 1 in any subsequent master problem solution. This inequality is a

valid Benders cut because (B.1) is satisfied (plugging in zk into the converse
of the inequality yields 0 < 1) and (B.2) is satisfied (if a completion of G
contains edge {1, 3}, it must contain either edge {1, 4} or {3, 5}, for otherwise
cycle C = (1, 3, 4, 5) will be a chordless cycle in G).

Theorem 2. Suppose C is a chordless cycle, identified in line 5, in the graph
G(zk) derived from solution zk obtained by solving the master problem in itera-
tion k of Algorithm 1. (3) is a valid Benders cut.

Proof. Let C be such a cycle.

(B.1): Because C is a chordless cycle, there cannot be any edges in the interior
of C in G(zk) so that the left-hand side of (3) becomes

∑

f ∈ int(C) z
k
f = 0.

Therefore it suffices to show that the right-hand side of (3) is strictly greater
than 0. C is a chordless cycle, so |V (C)| ≥ 4 and (|V (C)| − 3) > 0. In addition,
each edge in E(C) ∩ Ec must be in C, for otherwise C would not be a cycle in
G(zk), so that for the variables in this set zkf = 1. Therefore,

∑

f ∈ E(C)∩Ec

zkf − |E(C) ∩ Ec|+ 1 = 1,

and the right-hand side of (3) evaluates to (|V (C)| − 3) which is greater than 0.

(B.2): Let z′ be any solution that generates a graph G(z′) that is chordal.
First note that (3) is satisfied by any solution (not just feasible ones) if for any
f ∈ E(C) ∩ Ec, z′f = 0. This is because the left-hand side of the inequality is
always greater than or equal to 0, and if z′f = 0 for some such z′, the right-
hand side of the inequality will be less than or equal to 0. Therefore consider
only those z′ for which the right hand side is greater than or equal to 1 i.e.
∀f ∈ E(C) ∩Ec, z′f = 1.

For such z′, the second of the two terms multiplied on the right-hand side of
(3) evaluates to 0 at z′. It therefore suffices to show that

∑

f ∈ int(C)

z′f ≥ |V (C)| − 3.

Because ∀f ∈ E(C)∩Ec, z′f = 1, G(z′) contains every edge in E(C). C is a cycle
in G(z′). Therefore, by Lemma 1, at least |V (C)| − 3 edges in the interior of C
are in any chordal completion of G(z′). ⊓⊔

7 Minimum/minimal chordal completion algorithms

As discussed in Section 1, there is a vast literature on minimal chordal comple-
tions while the literature investigated computational approaches to the MCCP
is surprisingly thin. In order to evaluate, computationally, Algorithm 1, it is nec-
essary to compare with another MCCP algorithm. In the experimental results
section, Section 8, the Benders approach is compared with a simple variant of an
algorithm for the MCCP that has exponential running time [8]. This algorithm
is explained below, along with a state-of-the-art heuristic.

Exact Algorithm Developing any exact algorithm designed to solve the MCCP
is non-trivial. Even formulating the problem with an IP model, a standard ap-
proach to solving combinatorial optimization problems, is difficult.

The fastest (in terms of time performance guarantee) algorithm for solv-
ing the MCCP [13], to the best knowledge of the authors, has time complexity

O
(

2O(
√
k log (k)+k2nm)

)

, although it is not implemented nor have computational

experiments on the algorithm been reported. The algorithm branches on chord-
less cycles of length four, and then on moplexes, keeping track of certain indi-
cators which allow pruning. The interested reader can refer to the paper in the
references for an explanation of the algorithm.

In place of implementing this complex algorithm, a simpler version is pre-
sented in Algorithm 3, which will be used for computational comparison. This
algorithm searches on the complement edge set. It starts with a single search
tree node s. Search tree nodes have two sets associated with them: I(s) is the
set of complement edges included in this search node, and O(s) are the set of
edges to be excluded. For any search tree node, if it is chordal, the upper bound
is updated and the set I(s) becomes the incumbent solution. If it isn’t, two new
nodes are created, only if they can lead to better solutions (it is required that
|I(s)| ≤ zub − 2 because at least one more additional edge has to be included
and so it can only lead to a better solution if the number of edges is at least
two less than the size of the incumbent solution). Then, a cycle is identified in
G′ = (V,E∪I(s)) and for some edge in the interior of this cycle but not in O(s),
a search node is created which includes the edge and a search node is created
which excludes this edge. The search concludes when there are no more nodes to
explore. This algorithm can have a warm start where any heuristic can be ran
prior to the algorithm for a starting incumbent solution F . The computational
experiments in Section 8 assumes a depth-first search ordering.

Heuristic Algorithms This section describes a heuristic that will be used for
comparison with the Benders approach, to see the gap that results from running
only a minimal chordal completion algorithm.

Algorithm 3 Branch-and-bound algorithm for the MCCP in graph G = (V,E)

1: F ← Ec

2: zub ← |F |
3: create search node s with I(s) = O(s) = ∅
4: Q← {s}
5: while Q 6= ∅ do
6: let s be some node in Q
7: Q← Q\{s}
8: if G′ = (V,E ∪ I(s)) is chordal then
9: F ← I(s)
10: zub ← |F |
11: else

12: if |I(s)| ≤ zub − 2 then

13: find chordless cycle C of length greater than 3 in G′

14: let e be any edge in int(C)\O(s)
15: if e exists then
16: create search node s′ with I(s′) = I(s) ∪ {e}, O(s′) = O(s)
17: create search node s′′ with I(s′′) = I(S),O(s′′) = O(s) ∪ {e}
18: Q← Q ∪ {s′, s′′}
19: return F

A classical algorithm that can be used to find small minimal chordal com-
pletions of graphs is the elimination graph model: In this algorithm, the vertices
are sorted by some permutation σ. The vertices are then relabeled according to
σ. Then, for i = 1, . . . , n, edges are added to G in order to make the neighbors of
i in {1, . . . , i− 1} adjacent. The chordal completions of G exactly coincide with
the graphs that results from this process [14].

Finding the ordering that results in the smallest set of additional edges ex-
actly corresponds to solving the MCCP. Finding this ordering is NP-hard, and
many heuristics have been developed, most popular and highly implemented be-
ing the minimum degree ordering [16] which in general finds very good, nearly
optimal solutions. This algorithm will henceforth be referred to as MDOC (for
minimum degree ordering completion).

8 Computational Results

This section reports computational results on the Benders approach to the
MCCP. All algorithms are implemented in C++ and ran on a 3.20 GHz In-
tel(R) Core(TM) i7-3930K CPU processor with 32 GB RAM. The IP solver
used is Gurobi version 5.63. All settings were set to default, except that the
solver was restricted to solving on one processor by setting Threads to 1.

The algorithms are tested on random graphs generated according to the
Erdős-Réyni model. The graphs generated have n vertices and density d, with
n ranging from 15 to 35, in increments of 5, and d ranging from 0.1 to 0.9, in
increments of 0.1. 10 graphs are generated per configuration.

For the remainder of this section, the means reported are geometric means
with shift 1.

Comparison with Simple branch-and-bound Algorithm Figure 3 depicts
the time to solve the graphs generated with n = 15 vertices, displaying the
geometric mean, shifted by 1, of the complete solution time for four different al-
gorithms. BandB(no warm start) represents the simple branch-and-bound al-
gorithm in Algorithm 3. BandB(no warm start) is the same algorithm, but
initialized with a heuristic solution for bounding purposes, provided by MDOC.
Benders(single cycle) represents Algorithm 1, where only one cycle is gener-
ated each time the subproblem is solved (Algorithm 2 is stopped once the first
chordless cycle is identified), and Benders(multi cycle) is the same algorithm
but with Algorithm 2 ran until completion.

 0.001

 0.01

 0.1

 1

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

ec
on

ds
)

Density

Time to Solve (geometric mean)

BandB(no warm start)
BandB(with warm start)

Benders(single cycle)
Benders(multi cycle)

Fig. 3: Time to solve graphs with n = 15 vertices

As can be seen in Figure 3, the Benders approach outperforms the sim-
ple branch-and-bound algorithm except on those instances that are solved very
quickly. Within 10,000,000 search nodes not all instances with n = 20 and above
are solved by the simple branch-and-bound algorithm and so the plot is only
generated for n = 15.

Even more elucidating of the difference in computational time is the number
of instances that are solved within 30 seconds, depicted in Figure 4. For the same
algorithms as above, this plot shows that within 30 seconds each of the instances
with n = 20 are solved by Benders(multi cycle) (the maximum time on this
set of instances for this technique is 1.13 seconds with mean of 0.053 seconds).
In the alternative methods, there are many instances which remain unsolved in
this time horizon, and several remaining unsolved even after 1800 seconds.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 In

st
an

ce
s

S
ol

ve
d

Density

Number of Instances Solved in 30 seconds (20 vertices)

BandB(no warm start)
BandB(with warm start)

Benders(single cycle)
Benders(multi cycle)

Fig. 4: Number of solved instances

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 F

ill
 E

dg
es

 A
dd

ed

Density

Number of Fill Edges (geometric mean)

MDOC(20 vertices)
Benders(20 vertices)

MDOC(25 vertices)
Benders(25 vertices)

MDOC(30 vertices)
Benders(30 vertices)

MDOC(35 vertices)
Benders(35 vertices)

Fig. 5: Size of chordal completions

Improvement over MDOC The heuristic, MDOC, works surprisingly well
in practice and hence is heavily implemented in practice. In this section the
difference between the solution provided by MDOC and the Benders approach
(Benders(multi cycle)) are provided in order to evaluate the importance of
searching for optimal solution, compared with a standard, simple, and powerful
heuristic.

In general, as reported in the literature, the solutions outputted by MDOC
are of high quality. Figure 5 shows the comparison between the optimal solutions
found by the Benders approach with the solutions obtained by MCOD for n =
20, 25, 30, 35. As can be seen in this figure, the gap between the heuristic solution
and the optimal solution is not too substantial, however the gap grows as the
graphs increase in size.

To better see the differences in the chordal completions, consider Figure 6,
where plots are generated for this data, for n = 20, 25, 30, 35, individually. In
addition to the mean, the minimum and maximum difference per configuration
is depicted. This plot more readily shows that as n grows the gap between the
heuristic solution and the optimal solution grows.

This of course comes at the expense of extra computation time. The time
necessary to run the heuristic is a fraction of a second, compared to the time
to run the Benders algorithm, reported in Table 1, although solutions are pro-
vided with optimality guarantees. This table reports the numerical values de-
picted in Figure 6 along with the times to solve the MCCP using the Ben-
ders approach described in this paper. n and d are the number of vertices
and density in the random graphs tested (10 instances per row in the table).
MinFillDiff, MeanFillDiff, and MaxFillDiff report the minimum, mean, and
maximum difference in the number of edges in the chordal completions calcu-
lated using MDOC and the Benders approach, respectively. MinBendersTime,
MeanBendersTime, and MaxBendersTime report the minimum, mean, and max-
imum time to solve the instances using the Benders approach, respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 F

ill
 E

dg
es

 A
dd

ed

Density

Difference in Number of Fill Edges (geometric mean)

Min(20 vertices)
GeoMean(20 vertices)

Max(20 vertices)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 F

ill
 E

dg
es

 A
dd

ed

Density

Difference in Number of Fill Edges (geometric mean)

Min(25 vertices)
GeoMean(25 vertices)

Max(25 vertices)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 F

ill
 E

dg
es

 A
dd

ed

Density

Difference in Number of Fill Edges (geometric mean)

Min(30 vertices)
GeoMean(30 vertices)

Max(30 vertices)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 F

ill
 E

dg
es

 A
dd

ed

Density

Difference in Number of Fill Edges (geometric mean)

Min(35 vertices)
GeoMean(35 vertices)

Max(35 vertices)

Fig. 6: Difference in number of fill edges added, n = 20, 25, 30, 35

n d MinFillDiff MeanFillDiff MaxFillDiff MinBendersTime MeanBendersTime MaxBendersTime

20 0.1 0 0.07 1 0.00 0.00 0.01

0.2 0 0.47 3 0.02 0.04 0.13

0.3 0 0.47 3 0.02 0.04 0.07
0.4 0 0.15 1 0.02 0.15 1.13

0.5 0 0.37 3 0.03 0.11 0.37

0.6 0 0.64 3 0.02 0.05 0.10

0.7 0 0.53 2 0.03 0.05 0.10

0.8 0 0.07 1 0.02 0.03 0.04
0.9 0 0.15 1 0.01 0.01 0.02

25 0.1 0 0.00 0 0.01 0.02 0.04
0.2 0 0.35 4 0.03 0.87 24.04

0.3 0 0.96 6 0.08 1.00 5.28

0.4 0 1.61 11 0.17 1.05 2.72

0.5 0 0.57 4 0.10 0.42 1.83

0.6 0 0.83 6 0.05 0.11 0.33
0.7 0 0.53 5 0.08 0.17 0.66

0.8 0 0.37 2 0.04 0.06 0.12

0.9 0 0.28 2 0.02 0.03 0.04

30 0.1 0 1.31 4 0.02 0.87 5.36

0.2 0 1.03 4 0.28 8.05 181.68

0.3 0 2.09 7 2.85 15.44 371.47

0.4 0 2.73 15 0.23 6.39 38.70
0.5 0 2.98 8 0.24 4.91 194.28

0.6 0 1.02 13 0.24 0.91 2.17

0.7 0 1.88 5 0.13 0.82 2.60

0.8 0 0.20 2 0.08 0.23 0.75

0.9 0 0.15 1 0.03 0.05 0.09

35 0.1 0 0.53 2 0.04 2.90 70.83

0.2 0 2.32 9 1.31 86.49 1822.97
0.3 2 5.54 15 2.92 635.38 11782.80

0.4 0 3.93 16 4.51 91.90 2394.53

0.5 0 1.94 10 0.75 17.24 624.04

0.6 1 3.01 13 3.73 15.03 100.23

0.7 0 1.76 7 0.52 5.39 19.57

0.8 0 0.64 5 0.24 0.57 1.15
0.9 0 0.23 1 0.07 0.10 0.19

Table 1: Difference in number of edges resulting from chordal completions using
Benders versus MDOC ; Benders time

Instance |V | |E| BendersTime BendersValue MDOCValue

1-FullIns 3 30 100 5.85 80 80

1-FullIns 4 93 593 - 623* 839

2-FullIns 3 52 201 - 206* 273

2-Insertions 3 37 72 - 68* 103

3-FullIns 3 80 346 - 379* 661
3-Insertions 3 56 110 - 102* 198

4-Insertions 3 79 156 - 148* 331

david 87 406 1.99 64 66

mug100 1 100 166 0.56 64 91

mug100 25 100 166 0.66 64 93
mug88 1 88 146 0.37 56 82

mug88 25 88 146 0.52 56 84

myciel3 11 20 0 10 10

myciel4 23 71 0.04 46 46

myciel5 47 236 35.71 196 197
myciel6 95 755 - 713* 753

queen10 10 100 1470 - 2045* 2671

queen5 5 25 160 262.57 93 94

queen6 6 36 290 - 218* 244

queen7 7 49 460 - 402* 444

queen8 12 96 1368 - 1863* 2401
queen8 8 64 728 - 772* 970

queen9 9 81 1056 - 1301* 1664

Table 2: Chordal completion sizes on benchmark graphs ; * indicates that the
value is a bound due to the Benders approach timing out in one hour.

Benchmark Graphs Table 2 reports results on benchmark graphs, appearing
frequently in the literature in papers which test graph coloring algorithms and
other problems as well [28]. The algorithm was tested only on those instances
with 100 or fewer vertices that are connected.

The results indicate that there can be a significant gap between what the
state-of-the-art minimal chordal completion algorithm returns and the optimal
value of the MCCP. The table reports Instance (the name of the instance)
the number of vertices and edges in the graph, followed by BendersTime (the
amount of time, in seconds, to solve the instance), BendersValue (the optimal
solution if the instance was solved within an hour and lower bound otherwise
and indicated by an asterisk), and finally MDOCValue (the size of the chordal
completion obtained by MDOC). Of particular note are the mug instances for
which the gap between the heuristic solution value and the optimal value can be
very substantial.

9 Conclusion

In conclusion, this paper introduces a Benders approach to the minimum chordal
completion problem. Computational results indicate that the approach is promis-
ing as the algorithm significantly outperforms a simple branch-and-bound algo-
rithm for the problem. In addition the paper reports that the gap between the
value obtained using a state-of-the-art heuristic and the formally unknown op-
timal solutions to random graphs and benchmark instances can be significant.

References

1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirabil-
ity of acyclic database schemes. J. ACM 30(3), 479–513 (Jul 1983),
http://doi.acm.org/10.1145/2402.322389

2. Benders, J.: Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik 4(1), 238–252 (1962),
http://dx.doi.org/10.1007/BF01386316

3. Berry, A., Bordat, J.P., Heggernes, P., Simonet, G., Villanger,
Y.: A wide-range algorithm for minimal triangulation from an ar-
bitrary ordering. Journal of Algorithms 58(1), 33 – 66 (2006),
http://www.sciencedirect.com/science/article/pii/S0196677404001142

4. Berry, A., Heggernes, P., Simonet, G.: The minimum degree heuris-
tic and the minimal triangulation process. In: Bodlaender, H. (ed.)
Graph-Theoretic Concepts in Computer Science, Lecture Notes in Com-
puter Science, vol. 2880, pp. 58–70. Springer Berlin Heidelberg (2003),
http://dx.doi.org/10.1007/978-3-540-39890-5_6

5. Blair, J.R., Heggernes, P., Telle, J.A.: A practical algorithm for making filled
graphs minimal. Theoretical Computer Science 250(12), 125 – 141 (2001),
http://www.sciencedirect.com/science/article/pii/S0304397599001267

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23
(1993)

7. Bodlaender, H.L., Kloks, T., Kratsch, D., Mueller, H.: Treewidth and minimum
fill-in on d-trapezoid graphs (1998)

8. Bodlaender, H., Heggernes, P., Villanger, Y.: Faster parameterized al-
gorithms for minimum fill-in. In: Hong, S.H., Nagamochi, H., Fuku-
naga, T. (eds.) Algorithms and Computation, Lecture Notes in Com-
puter Science, vol. 5369, pp. 282–293. Springer Berlin Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-92182-0_27

9. Broersma, H., Dahlhaus, E., Kloks, T.: Algorithms for the treewidth and mini-
mum fill-in of hhd-free graphs. In: Mhring, R. (ed.) Graph-Theoretic Concepts in
Computer Science, Lecture Notes in Computer Science, vol. 1335, pp. 109–117.
Springer Berlin Heidelberg (1997), http://dx.doi.org/10.1007/BFb0024492

10. Chandran, L.S., Ibarra, L., Ruskey, F., Sawada, J.: Generating and characterizing
the perfect elimination orderings of a chordal graph. Theor. Comput. Sci. 307(2),
303–317 (Oct 2003), http://dx.doi.org/10.1016/S0304-3975(03)00221-4

11. Chang, M.S.: Algorithms for maximum matching and minimum fill-in on
chordal bipartite graphs. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano,
S., Suri, S. (eds.) Algorithms and Computation, Lecture Notes in Com-
puter Science, vol. 1178, pp. 146–155. Springer Berlin Heidelberg (1996),
http://dx.doi.org/10.1007/BFb0009490

12. Chung, F., Mumford, D.: Chordal completions of planar graphs.
Journal of Combinatorial Theory, Series B 62(1), 96 – 106 (1994),
http://www.sciencedirect.com/science/article/pii/S0095895684710562

13. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for min-
imum fill-in. In: Proceedings of the Twenty-third Annual ACM-SIAM Sym-
posium on Discrete Algorithms. pp. 1737–1746. SODA ’12, SIAM (2012),
http://dl.acm.org/citation.cfm?id=2095116.2095254

14. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval
graphs. Pacific Journal of Mathematics 15(3), 835–855 (1965),
http://projecteuclid.org/euclid.pjm/1102995572

http://doi.acm.org/10.1145/2402.322389
http://dx.doi.org/10.1007/BF01386316
http://www.sciencedirect.com/science/article/pii/S0196677404001142
http://dx.doi.org/10.1007/978-3-540-39890-5_6
http://www.sciencedirect.com/science/article/pii/S0304397599001267
http://dx.doi.org/10.1007/978-3-540-92182-0_27
http://dx.doi.org/10.1007/BFb0024492
http://dx.doi.org/10.1016/S0304-3975(03)00221-4
http://dx.doi.org/10.1007/BFb0009490
http://www.sciencedirect.com/science/article/pii/S0095895684710562
http://dl.acm.org/citation.cfm?id=2095116.2095254
http://projecteuclid.org/euclid.pjm/1102995572

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

16. George, A., Liu, W.H.: The evolution of the minimum degree ordering algorithm.
SIAM Rev. 31(1), 1–19 (Mar 1989), http://dx.doi.org/10.1137/1031001

17. Golumbic, M., Kaplan, H., Shamir, R.: Graph sandwich
problems. Journal of Algorithms 19(3), 449 – 473 (1995),
http://www.sciencedirect.com/science/article/pii/S0196677485710474

18. Grone, R., Johnson, C.R., S, E.M., Wolkowicz, H.: Posi-
tive definite completions of partial hermitian matrices. Lin-
ear Algebra and its Applications 58(0), 109 – 124 (1984),
http://www.sciencedirect.com/science/article/pii/0024379584902076

19. Heggernes, P.: Minimal triangulations of graphs: A sur-
vey. Discrete Mathematics 306(3), 297 – 317 (2006),
http://www.sciencedirect.com/science/article/pii/S0012365X05006060 ,
minimal Separation and Minimal Triangulation

20. Heggernes, P., Eisenstat, S.C., Kumfert, G., Pothen, A.: The computational com-
plexity of the minimum degree algorithm (2001)

21. Hooker, J., Ottosson, G.: Logic-based benders decomposition. Mathematical Pro-
gramming 96(1), 33–60 (2003), http://dx.doi.org/10.1007/s10107-003-0375-9

22. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal and interval graphs: Minimum fill-in and physical mapping
(extended abstract). SIAM J. Comput 28, 780–791 (1994)

23. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting spar-
sity in linear and nonlinear matrix inequalities via positive semidefi-
nite matrix completion. Mathematical Programming 129(1), 33–68 (2011),
http://dx.doi.org/10.1007/s10107-010-0402-6

24. Kloks, T., Kratsch, D., Wong, C.: Minimum fill-in on circle and
circular-arc graphs. Journal of Algorithms 28(2), 272 – 289 (1998),
http://www.sciencedirect.com/science/article/pii/S0196677498909361

25. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

26. Mezzini, M., Moscarini, M.: Simple algorithms for minimal triangu-
lation of a graph and backward selection of a decomposable markov
network. Theoretical Computer Science 411(79), 958 – 966 (2010),
http://www.sciencedirect.com/science/article/pii/S030439750900735X

27. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting
sparsity in semidefinite programming via matrix completion ii: implementa-
tion and numerical results. Mathematical Programming 95(2), 303–327 (2003),
http://dx.doi.org/10.1007/s10107-002-0351-9

28. Nguyen, T.H., Bui, T.: Graph coloring benchmark instances.
http://www.cs.hbg.psu.edu/txn131/graphcoloring.html, accessed: 2014-07-14

29. Peyton, B.W.: Minimal orderings revisited. SIAM J. Matrix Anal. Appl. 23(1),
271–294 (Jan 2001), http://dx.doi.org/10.1137/S089547989936443X

30. Rose, D., Tarjan, R., Lueker, G.: Algorithmic aspects of vertex elim-
ination on graphs. SIAM Journal on Computing 5(2), 266–283 (1976),
http://dx.doi.org/10.1137/0205021

31. Rose, D.J.: A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations. In: Graph
Theory and Computing, pp. 183 – 217. Academic Press (1972),
http://www.sciencedirect.com/science/article/pii/B9781483231877500180

http://dx.doi.org/10.1137/1031001
http://www.sciencedirect.com/science/article/pii/S0196677485710474
http://www.sciencedirect.com/science/article/pii/0024379584902076
http://www.sciencedirect.com/science/article/pii/S0012365X05006060
http://dx.doi.org/10.1007/s10107-003-0375-9
http://dx.doi.org/10.1007/s10107-010-0402-6
http://www.sciencedirect.com/science/article/pii/S0196677498909361
http://www.sciencedirect.com/science/article/pii/S030439750900735X
http://dx.doi.org/10.1007/s10107-002-0351-9
http://www.cs.hbg.psu.edu/txn131/graphcoloring.html
http://dx.doi.org/10.1137/S089547989936443X
http://dx.doi.org/10.1137/0205021
http://www.sciencedirect.com/science/article/pii/B9781483231877500180

32. Sokhn, N., Baltensperger, R., Bersier, L.F., Hennebert, J., Ultes-Nitsche, U.:
Identification of chordless cycles in ecological networks. In: Glass, K., Col-
baugh, R., Ormerod, P., Tsao, J. (eds.) Complex Sciences, Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, vol. 126, pp. 316–324. Springer International Publishing (2013),
http://dx.doi.org/10.1007/978-3-319-03473-7_28

33. Spinrad, J., Brandstdt, A., Stewart, L.: Bipartite permutation
graphs. Discrete Applied Mathematics 18(3), 279 – 292 (1987),
http://www.sciencedirect.com/science/article/pii/S0166218X87800033

34. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively re-
duce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (Jul 1984),
http://dx.doi.org/10.1137/0213035

35. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and
chordless paths. CoRR abs/1404.7610 (2014), http://arxiv.org/abs/1404.7610

36. Yannakakis, M.: Computing the minimum fill-in is np-complete. SIAM Journal on
Algebraic Discrete Methods 2(1), 77–79 (1981)

http://dx.doi.org/10.1007/978-3-319-03473-7_28
http://www.sciencedirect.com/science/article/pii/S0166218X87800033
http://dx.doi.org/10.1137/0213035
http://arxiv.org/abs/1404.7610

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2015-056.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

