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Abstract

Condition monitoring for batteries involves tracking changes in physical parameters and oper-
ational states such as state of health (SOH) and state of charge (SOC), and is fundamentally
important for building high-performance and safety-critical battery systems. A model-based
condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis
of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1)
a fast upper-triangular and diagonal recursive least squares algorithm for parameter identi-
fication of the battery model, 2) a smooth variable structure filter for the SOC estimation,
and 3) a recursive total least squares algorithm for estimating the maximum capacity, which
indicates the SOH. The proposed solution enjoys advantages including high accuracy, low
computational cost, and simple implementation, and therefore is suitable for deployment and
use in real-time embedded battery management systems (BMSs). Simulations and experi-
ments validate effectiveness of the proposed strategy.
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Abstract

Condition monitoring for batteries involves tracking chas in physical parameters and opera-
tional states such as state of health (SOH) and state of&€l(@@C), and is fundamentally impor-
tant for building high-performance and safety-criticattbey systems. A model-based condition
monitoring strategy is developed in this paper for Lithiton-batteries on the basis of an electrical
circuit model incorporating hysteresis effect. It systéoadly integrates 1) a fast upper-triangular
and diagonal recursive least squares algorithm for paemndgntification of the battery model,
2) a smooth variable structure filter for the SOC estimataong 3) a recursive total least squares
algorithm for estimating the maximum capacity, which irades the SOH. The proposed solution
enjoys advantages including high accuracy, low computatioost, and simple implementation,
and therefore is suitable for deployment and use in read-Bmbedded battery management sys-
tems (BMSs). Simulations and experiments validate effeogss of the proposed strategy.

Keywords: Lithium-ion battery monitoring, fast upper-triangulardagiagonal recursive least
squares, maximum capacity estimation, recursive totat lEguares, smooth variable structure
filter, state of charge, state of health

1. Introduction

Lithium-ion (Li-ion) batteries have gained widespread usapplications ranging from con-
sumer electronics devices to power tools and to electriecclesh(EVs) due to their high energy
and power densities and long cycle life [1]. However, effexbattery monitoring and control,
equivalently battery management systems (BMSs), remai@sarkable challenge and necessity,
having spurred a wealth of research on their core algoritf2jnsA key mission of a BMS is to
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monitor the state of charge (SOC) [3, Sec. 3.2], state ofth€&OH), and battery parameters
including impedance and capacity [4]. A precise understandf these variables is crucial for a
series of BMS tasks, e.g., charging, discharging, cellrizatey, and fault prognosis and diagnos-
tics, to improve operational performance, safety, religband lifespan of batteries. However, it
cannot be obtained by direct measurement and instead, teeéeésbuilt upon estimation. Such
estimation algorithms are expected to have low complexity lligh computational efficiency, a
prerequisite for their online implementation on resourgestrained platforms such as embedded
BMSs.

Research efforts on online battery parameter estimative lea to two families of methods:
Kalman filter (KF)-based and regression-based. A varietiled, including the linear KF [5],
extended KF (EKF) [3], and sigma point KF (SPKF) [6] have basad to estimate battery pa-
rameters and states simultaneously. Compared to the Kddlsadution, the least squares method
and its variant are more computationally competitive withcompromising much accuracy, thus
holding significant potential for battery model identificat. See [7—11] and references therein
for details. Recently, an upper-triangular and diagon@)tactorization-based RLS estimation
method with an EF [12] was proposed to solve the digital capmplementation problem of the
RLS. In additional to fast speed, this method has improvederical stability with preservation
of a positive covariance.

The SOC estimation has been a subject of intensive resesnath leads to a variety of esti-
mation algorithms. The easiest-to-implement ones incladtage translation and Coulomb count-
ing [13]. However, multiple issues render them unreliabgecially the sensitivity to initial SOC
estimate and accumulative integration errors. The contiput intelligence (Cl)-based methods,
e.g., artificial neural network (ANN) [14], fuzzy logic [15&nd support vector machine [16], con-
duct the SOC estimation through data-driven learning ofmibiglinear relationship between the
SOC and measured quantities such as battery voltage, tandnemperature. The learning pro-
cess is nonetheless adverse to real-time execution due kagh computational burden. Applying
state filters and observers to electrochemical or elettriceuit models, model-based methods
have been attracting considerable attention as an eféecteans to improve the SOC estimation
accuracy. The EKF has been widely used for SOC estimation18]7 and its upgraded variant,
the iterated EKF (IEKF), is used in [19] for simultaneous S& model parameter estimation.
In [6, 20], the hysteresis effect inherent in batteries [Bldccounted for with the development
of approaches based on a dual EKF and a dual sigma-point KKkH)SIRespectively. However,
the IEKF, dual EKF and SPKF increases the accuracy at thenegpa higher computational ef-
fort. One major alternative thus is the more computatigredficient observer-based approaches,
e.g., linear observer [10], sliding mode observer [9, 1bhlmear geometric adaptive observer
[22], and partial differential equation (PDE) observer][2& further advantage they have is the
availability of convergence analysis for the estimatioroedynamics. Meanwhile, some work
attempts to combine the advantages of the aforementionéitibd®e an example of which is the
SOC estimation using neural networks and EKF in [24].

The SOH measures the battery aging and wear, which corrdspaapacity fade and power
fade [20]. Accordingly, battery maximum capacity [17, 2&hd impedance components (e.g.
impedance [26], internal resistance [27], diffusion resise [28] and a diffusion capacitance
[29]) are the commonly used parameters to quantify the S@mheSstraightforward ways to infer
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SOH, e.g., evaluating the maximum capacity via a full disghaest with a small current [25]
or measuring the impedance [26], are not suitable for igsd-estimation. This is because the
maximum capacity declines gradually due to the aging andadegion, and fluctuates according
to temperature. A knowledge of its accurate value is indispble for SOC estimation (espe-
cially in the standalone case), health prognosis and othigely management tasks. The online
SOH estimation has been tackled by Cl-based methods, axi, [80, 31], adaptive recurrent
NN [32], and structured neural network (SNN) [33], and meoi@sed methods, such as the dual
EKF [6, 17, 20, 34] and the dual sliding mode observer [35]di#idnally, analytical approaches,
including the two-point (TP) of SOCs method [11] and recteddtal least squares (RTLS) [36],
have been developed and exploited to estimate the maximpacitabased on Coulomb counting.

This paper proposes a comprehensive strategy for onlingito@m monitoring of Li-ion bat-
teries. Its design is based on a battery model that captotbdie electrical circuit characteristics
and the hysteresis. The monitoring solution consists @ehnterrelated algorithms for battery
parameter, SOC, and SOH estimation, respectively. Spaityfia fast UD recursive least squares
(FUDRLS) method is built to identify the battery model paetars. Based on the fully identi-
fied model, a smooth variable structure filter (SVSF) is desipto perform the SOC estimation.
Finally, the battery’s maximum capacity is determined byagIRigh quotient-based RTLS algo-
rithm taking the estimated SOCs and measured current assinpie proposed algorithms are
integrated to run in parallel but at multiple time scales ¢biave the best use of computational
resources. A short time scale is used in FUDRLS and SVSF tbvd#athe fast time-varying
electrical parameters and SOC, and the RTLS algorithm isuggd at a longer time scale for
tracking the slowly time-varying capacity. The proposedtsgy is endowed with high computa-
tional efficiency and accuracy, and thus is suitable for-tiea¢ embedded BMS applications. The
proposed method is validated by both simulation and expariad studies.

2. The Real-time Battery M odel

The battery model should be carefully chosen to ensure tugthity state and parameter esti-
mation. In particular, a balance between the fidelity andmerity of the battery model should be
made for the real-time condition monitoring in embedded BMSectrical circuit battery models
are arguably the most suitable for embedded applicatioasaltheir low complexity and the abil-
ity of characterizing the current-voltage dynamics of &aticells [37]. A real-time electric circuit
model with the hysteresis will be considered throughoutgdyeer. The voltage hysteresis effect
between the charge and discharge curve widely exists inrLbatteries, especially the popular
LiFePQy-type [21]. The SOC estimation accuracy will deterioratéhig battery model fails to
account for this phenomenon. The model considered heresexlban a first-order RC electrical
circuit with hysteresis, as shown in Fig. 1, which featurethisimplicity and effectiveness [38].

As shown in Fig. 1, the open-circuit voltage (OCV), denotsd¥g, includes two parts. The
first part,Vs(SOQ), represents the average equilibrium OCV as a function oSth€. Since the
Vs is bijective, the SOC can be inferred frovh The second paM is the hysteresis voltage to
capture the hysteresis behavior of the OCV curves. The Rsliitimodels the current-voltage
characteristics and the transient response of the batedky Rarticularly, the series resistance,
Rs, is used to describe the charge/discharge energy loss oethe¢he charge transfer resistance,

3



Rc, and double layer capacitancg;, are used to characterize the charge transfer and short-ter
diffusion voltageVy, of the cell;Vs represents the terminal voltage of the cell.

Fig. 2 shows two measured OCV curves and their averdge; Vocd, andVoc a, respectively.
Particularly,Vocc andVyc g are obtained by slowly charging and discharging the bateeryt rep-
resent major upper and lower hysteresis loops, respegctiw treat the average voltayg.a as
V5(SOQ. The instantaneous open circuit voltage is bounded by the major hysteresis loops. By
subtractingvy (k) from Voc, theVs(SOQ can be extracted.

We will use the following voltage hysteresis model [39]:

B p(11ie — 0S) Mamax + Sigrtis)Vh, ®

wherep is the hysteresis parameter representing the convergate;g the Coulomb efficiency
(assumingn = 1), ig the instantaneous current applied to the batterthe self-discharge mul-
tiplier for hysteresis expressiofp the self-discharge rate, anfimax the maximum hysteresis
voltage. The model (1) describes the dependency of theregstesoltagd/, on the current, self-
discharge, and hysteresis boundaries. The parampeterchosen to minimize the voltage error
between thd/,c — SOCcurves from simulation and experiments, respectively.eNbatp and
Vhmax may depend on the SOC and the battery temperature [21, 39].

A discrete-time battery model, including the electricatait model and the hysteresis model,
can be written as follows

L 0 _gm_T; 0 iB(k)
X(k+1)= [0 y O] XK+ [Re(1oy) 0 {v }
0 0 H 0  (H-1)signig)| b "max
y(k) = VB(k) = Voc(SOQK)) —Vy(k) — Rsig(k) + Va(k),

V(SO0 = agexp(—a;SOQ) + a + agSOC— a,SOC + asSOC,

ox< O

(2)

whereX(k+1) = [SOQk+1) Vg(k+1) Vh(k+ 1)}T is the statey(k) is the measured output,
k is the time indexCnax denotes the maximum capacity of the battdgyis the sampling period,
y= exp(‘TTS) with T = R.Cy, H(ig) = exp(—p|ig| Ts), anda; for 0 < j < 5 are the coefficients
used to parameterize tMg.-SOC curve. A concise form of the dynamics (2) is given by

X(k+1) = f(X(k),ig(k)),
y(k) = h(X(k),ig(k)),

wheref andh are vectors of smooth functions with appropriate dimersidboefficientsa; for

0 < j <5 can be extracted by pulsed current tests [37] or constamgehand discharge current
test using a small current to minimally excite transienpoese of the battery cell [40]. Although

the temperature dependency is ignored in this paper byitette battery under the ambient tem-
perature, the proposed strategy might be extended to iactethe thermal effects.



3. The Proposed Strategy

The proposed condition monitoring strategy, shown in Figeadisists of three parts:

1) an FUDRLS-based parameter estimator,
2) an SVSF-based SOC estimator, and
3) an RTLS-based SOH (i.e., capacity) estimator.

The strategy operates at different time scales, where tH2REl$ and SVSF runs at a fast speed
to estimate the fast time-varying parameters and the SQCthenRTLS runs slower to track the
slowly time-varying capacity parameter. In this way wiletkomputational resources be used
economically with guaranteed estimation performance.

3.1. Parameter Estimation by the FUDRLS

Since battery parameters (e.g, impedance) change with@& &mperature, and current
rates, etc., online parameter estimation is required.i®uswvork [41] formulated the impedance
estimation as a least squares (LS) problem and proposedtB&ES algorithm to identify three
impedance parameterR;, R, andCy. In this paper, we overcome the difficulty due to the time-
varying dynamics and establish that both the impedancelantysteresis parameter estimation
can be approximately formulated as an LS problem, and thei&DRLS can be readily em-
ployed to estimate the hysteresis parameigfax.

We first present procedures for impedance estimation fopteteness, then show how similar
idea can be used to estimate the hysteresis parameter. ifatesthe impedance, we ignore the
hysteresis voltage dynamics, and assiMgpe= b1SOC+ bg. The battery model (2) is reduced to

ey | =[] oo

©
Ve(k) =C {S\Z&ﬂ +Dig(K) + bo,

where

B o) e oo

Taking z-transformation of (3), we have [42]

B X3+ X4z 1+ X522
: —C(zb—A)B+D= ,
ig(2) (zb=A) "B+ 1+x1Z27 1+ %0272

(4)

whereVg(z) = Va(z) — by, 12 € R2*2 is an identity matrix, and

X1=y— 17 X2=Y, X3= _R57

—b1 T
X =& +Rely—1) +R(y+1),
max
b1 T.
X5 =Re(1=Y) +¥(z— —Ro).
max
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The difference equation corresponding to (4) is given by
Va(K) = —x1V(k— 1) — xoV(Kk— 2) + x3ig(K) +Xaig(K— 1) + Xsig(k— 2) + bo(1+ X1 +X2). (5)
Considering B x1 + X2 = 0, (5) can be reformulated into the following regressiomfor
Ve (k) —Va(k—1) = @' (k)©, 6)
where® = [x2,x3,X4,%s] T, and
®' (k) = [Va(k—1) —Va(k—2) is(k) is(k—1) ig(k—2)].

Since the map from parameteRg, R;,Cy andb; to © is a diffeomorphism, one can uniquely
determine the estimates of parameyR:,Cq, by from the estimated®.

Remark 1. The approach proposed above leads to a regression modehfzedance estimation.
It does not require additional high-pass filtering [8], theaving on computational cost and ad-
ditional effort to develop a high-pass filter. Moreover, itigs better accuracy than the methods
assuming a constanty[7, 9, 12], especially wheny{ is highly nonlinear with respect to the
SOC. In addition, the form given {6) only uses four parameters while the work [10, 11] utilizes
five parameters.

Remark 2. Because matrices,B,C,D are time invariant, the z-transformation technique is ap-
plicable to derive(6). Alternatively, one can perform derivation in the time damae., directly
work on the difference equati@h), and establisl{6).

The derivation of (6) is performed on the basis of the secmoigr battery model (3) and
parameterizinyoc asbp+ b1 SOC Specifically, linear parameterizations of ¥g is critical to the
derivation, and the second-order battery model (6) is meoesimplify the presentation. Linear
parameterizations dfyc is valid in a neighborhood o5OCwhile the hysteresis voltagé max
reaches steady state, but is invalid during the transievjt.diVe propose to address this limitation
by imposing a less restrictive assumption: linear paranzetigons of theVs-SOC curve, which
is always valid locally. This allows us to perform parametientification based on the following
dynamics

X(k) +

10 0 &= 0 -
X(k+1) = [o y 0 Re(1— ) 0 ] 5(k) |
[

0 0 H 0 (H—1)signig)| LVhma
y(k) =bo+ blsOC—Vd(k) — RsiB(k) —I—Vh(k).

Note that notatiorg, b; are abused here.

Since the state matrices are current-dependent or tinygagathe model (7) does not admit
z—transformation. It is not straightforward to rewrite (7jara linear regression form. We how-
ever show that an approximate linear regression form of tbdeih(7) can be derived, and thus
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parameter identification can be readily carried out. Natheg the main difficulty in establishing
the linear regression form arises from the time-varyihglynamics, which is fortunately inde-
pendent of th&/y andSOGdynamics. This decoupling feature allows us to obtain gar@pmate
linear regression form.

We essentially try to obtain an approximate linear paranestion ofy. We consider the
following system

¢(k+1) =HZ(k)+ (H—Dsignig), &£(0) = &o.

Consideringvh(K) = & (K)Vhmax for o = Vh(0) /Vhmax We obtain linear parameterizationsygk)
as follows
y(K) = bo + b1 SOGK) —Vu(K) — Reig(K) + & (K)Vhmax, (8)

whereVihmax IS unknown. We introduce a time-varying open-loop filter stiraateé

A

E(k+1) =HE(K) + (H—D)sign(ig), &(0)=0.

SinceH < 1, the aforementioned time-varying open-loop filter praziian exponentially conver-
gent estimate of (k), i.e., f(k) converges td (k) ask — o for any boundedy. Combining (9)
and the fact thaf(k) — & (k) ask — o, we have the approximate linear parameterizationglof
as follows A

y(K) = bo 4+ b1SOGK) —Vy(K) — Rsig(K) + & (K)Vhmax, 9)

from which, together with dynamics &OCVy, the approximate linear regression of (7) can be
established. Compared to (6), the approximate linear ssgre has an extra parame¥gmax in
O, and an extra signdl(k) in ®(k).

Given (6), the parameter vect@rcan be estimated by a multitude of algorithms, for instance
the conventional Bierman’s UD method [12], Gentleman’s WBH43], etc. The Gentleman’s
UDRLS is attractive to embedded applications due to itsljghienplementation and the resultant
fast computational speed. The RLS-based methods can bevetpby using the forgetting factor
[7]. The estimation algorithm with a small forgetting factoay track time-varying parameters
fairly well at the expense of increased susceptibility te tioise; while the forgetting factor is
large, the tracking ability will be poor but robust to noisesgeneral, the RLS technique utilizes
an exponential forgetting (EF) whose forgetting rate isstant [7], [12]. The main drawback of
the EF method is called wind-up, and it comes when a data vesctt persistently exciting [44]
as well as non-optimal tracking ability and noise influenae tb the constant forgetting rate [44].

The FUDRLS algorithm combines the Gentleman’s UDRLS wittaaable forgetting factor
to estimate®. Methods with variable forgetting (VF) adaptively change forgetting rate. The
main VF mechanism is: the algorithm takes a smaller fonggttactor at the presence of large
prediction errors, and a larger forgetting factor, otheawiln this paper, the forgetting factbris
adjusted as follows

V]_(k)
Ak+lD)=1——5, Anin<A <A
( + ) Noo_gv min = = /imaxs (10)

vi(k+1) = &va(K) + (1 — &) (k),
whered, is a weighting factor to be taken close tovi;is time-average expressionses{k) and
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v1(0) is set to beo?; the parameteo? is the mean value of the prediction error variance obtained
from the method implemented in the FUDRLS with constantdttigg factor (e.g.A = 0.98),
assuming that the expected noise variance is much smadiaro@‘( No represents the memory
length (e.g.,Ng = 50 corresponding to mean forgetting factor 098&); Amax (€.g9., 0999) and
Amin (e.9., 095) denote maximum and minimum forgetting factors, respelgt An intuitive
interpretation of (10) is that the forgetting factdris adjusted according to the square of the
time-averaged estimation of the autocorrelation of pasterrore(k).

In the FUDRLS, the regression matrdx" (k) is combined withv(k) = Vi(k) — Vg(k— 1) to
produce an augmented matrix:

O3 (k) = [@T(k) Vv(k)].

The detailed FUDRLS algorithm is given in Table 1, whérdenotes an initial covariance value
(e.g., 10). For real-time implementation, the computationFofind the triangularization can be
pipelined.

In practical BMS applications, the parameter identificatadgorithm can be implemented in
system-on-a-chip [45]. Due to the advent of the VLSI tecbgg the features of parallel process-
ing and pipelining implementation will be attractive to impe the computation speed and reduce
the size of ICs [46]. The FUDRLS will be beneficial to the deyghent of real BMS ICs in this
sense.

3.2. SOC Estimation by the SVSF

With parameters estimated by the FUDRLS algorithm, the S¥&Hbe employed to estimate
the battery SOC based on the model (2). Originally propas¢4ii] and built on integration of the
variable structure theory and the sliding mode notion, M8ISis a predictor-corrector method for
state and parameter estimation. A schematic diagram oMI&&-$ased state estimation is shown
in Fig. 4, where the solid line is the system state trajectdhe estimated state trajectory is forced
towards the system state trajectory until it enters a neighdind of the actual state trajectory,
referred to as the existence subspace. The existence sehispan invariant set because once
the estimated state enters, it remains within the regioredrby a switching gain. The SVSF
demonstrates good robustness to modeling uncertaintees@ises, given that uncertainties are
upper-bounded. It has been applied to estimate batterynedeas and the SOC in [48], with only
simulation results available.

3.2.1. The SVSF
The dynamics of the SVSF are given by

X1k = X is(K)),

. . (11)

Vit 1k = Csv sk 1)k
where X, 1 is the predicted statey is the state estimate at tine i, 1 is the predicted
measurement, arCky sris the linearized measurement matrix given by

oh(X,ig)

CsvskE= E

— diag[% -1 1] .
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Defining the innovation as A
€ k+1jk = Yk+1 — CovsPXky 1k
the SVSF gain is calculated as follows

Ksvsma1 = Cayse | ki 1k| + VI kkl) o sate, i1, W), (12)

wheree, i is a posteriori measurement erréitjs the smoothing boundary layer widthss (0,1)

is the SVSF convergence rate;is the Schur product. To ensure the numerical stability, the
components o€sy sepshould not take singular values. This can be accomplishersiog a simple

if statement with a very small threshold (i.e.; 19) or calculating the pseudoinver@g\}SFwith

a small damping parameter (e.g., 10°8) as the following

Covyse= CdvsH{CsvsiCly s+ wlg) . (13)

The corrected (or posteriori) state estimates are comm@mséallows

X1k 1 = X1k + Ksv spiera-

3.3. SOH Estimation by the RTLS

As the maximum capacity is a key factor for the battery’s tieahis paper considers the
following quantity as a measure of the SOH

SOH(n) = Cmax : (14)
Cmaxnew
wheren is the maximum capacity estimation algorithm update indexCrmaxnewiS the maximum
capacity of a new battery cell. Such an SOH represents thacitgpdegradation of the cell.
Also, it is clear that an accura@,ax is prerequisite for Coulomb-counting-based SOC estimatio
algorithms to provide a good estimation of the SOC.
In[11, 49], the maximum capacity is simply calculated asofwk

Tzki nig(k)
S“~k=k; 3600 (15)

Cmax= 56qk,) — SOk’

wherek; andk, are time indices. Rearrangement of (15) gives the followimaar regression form

Z= Cmaxua
whereu = SOQky) — SOQk;) and
_+<k  Nis(k)
z="Ts2 2, 3600

Under certain conditions onandu, an unbiased estimation Gf,ax can be achieved by solving
an LS problem. The total least squares (TLS) problem wasgsexbto alleviate the limitation of
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the LS formulation by performing orthogonal regression|[50

The TLS problem is generally solved by using singular valeeadnposition (SVD) algo-
rithms [50] which incur high computational complexity, atiis are not suitable for embedded
applications [51]. In this paper, a fast RTLS algorithm iplégd for maximum capacity estima-
tion. The estimated maximum capacity will be consequengldufor the SOH estimation using
(14). The proposed RTLS algorithm is based on the constidRag/leigh quotient, which can run
in real time and enjoys fast convergence [52]. ComparedddlttS, the proposed RTLS algo-
rithm entails much lower computational load, and the edimnaaccuracy is comparable to the
TLS algorithm.

To facilitate the presentation of the proposed algorithinis firstly assumed that the noisy
output and input are given by

z(n) — Az = Cpax(u(n) — Au), (16)
—— ———
Zn) G(n)

whereu(n) andz(n) are the true input and output, respectively;andZ, are the noisy input and
output, respectively; the output err@e is assumed zero-mean Gaussian with known variance of
o2; the SOC estimation errdyu is assumed zero-mean Gaussian with known varianog of he
autocorrelation matrix of the noisy input is defined as:

Ru(n) = E[G(m)d" (n)] = Ru(n) + o,

whereR(n) = E[u(n)uT (n)]. Define the augmented dattn) = [0i(n),Z(n)]T. The autocorrelation
matrix of x(n) can be expressed as

Rc= EX(n)X' (n))

I
o
—
—~~
>
=
@)
—~
=]
N

whereb(n) = E[G(n)Z" (n)] andc(n) = E[Z(n)Z" (n)]. Whenn is sufficiently large, the stochastic
quantitiesR(n), b(n), andc(n) can be expressed as follows [52]

wherep is the forgetting factor.
The maximum capacity estimation on the basis of (16) is peréa by minimizing the follow-
ing constrained Rayleigh quotient

_ d'"R@ _ RCZa— 2bCrax+C

I(Crnax) = - 17
(Cmax) = 7Bq Chax+ B an

where the eigenvectay= [Cmax, —1]7, andD = diag(1, B) is a diagonal matrix with = g2/02.
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If the eigenvector vectoy” which minimizesJ(Cmayx) corresponds to the smallest eigenvalue of
R, theng* is the unbiased TLS solution [53].

To avoid solving the constrained Rayleigh quotient minaian problem at each step, the
Cmaxis assumed to be updated as follows

Crmax(N) = Cmax(N— 1) +a(n)d(n), (18)
wherea (n) is chosen to minimize (17) in the directionafn}, i.e.,

3I(Cnax(n—1)+a(n)l(n)) ca?(n)+ca(n)+cs
ga(n) T dam) &)

where

¢3 = 20(1) [b(N)CA (N — 1) — (BR() + C(1))Crnax(n — 1) + Bb(n)].

Then,a(n) can be obtained by solving the following quadratic equatimmed by the numerator
term of (19):
c1a?(n) +coa(n) +c3 = 0. (20)

The quadratic equation (20) has two roots, from which thetsm of o (n) can be obtained as
follows
—Cp+1/C5—4cics

a(n) = 5, : (21)

4. Strategy Validation

Simulation and experiments are carried out to validate tbpgsed condition monitoring strat-
egy for a Li-ion battery cell subject to various pulsed cotreperations. Comparisons with exist-
ing DEKF [20] methods demonstrate advantages of the prajsisategy in terms of estimation
accuracy quantified by root mean square error (RMSE) and agtatipnal cost quantified by run-
ning time. Simulation and experiments are performed in MABI® on a computer with 2.2GHz
Intel® Core™Duo 2 CPU T6600 and 64-bit OS.

4.1. Simulation Study: Non-Aging Case

For the non-aging case, simulation study assumes the patteatel (2) with constant param-
eters and that the battery model is subject to a current enafilich is proportional to the speed
profile in the standard Urban Dynamometer Driving ScheddBdS). In an urban driving envi-
ronment, a vehicle switches frequently between acceteratieceleration and steady state. This
would lead to battery discharging profiles containing sigfit frequencies, thus bringing about
improved identifiability and observability of the batterydel [19].
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Table 2 lists the values of model parameters, which are baseal polymer Li-ion battery
cell [37] but with the maximum capacity scaled up to 10 Ah. Timngal actual and estimated
states are set, respectively, as follows:

[SOQ0),V4(0),Va(0)]T = [0.95,0,0],
[SOQ0),V4(0),V(0)]T = [0.8,0,0".

The initial maximum capacityémax of the estimators is set to be 6 Ah. The valueNgfand &;
are defined as 50 and 0.995, respectively, for the FUDRLS thghproposed VFAqmnin = 0.95
and Amax = 0.995). In the SVSF, the value gfandW¥ are set to be 0.1 and 1. Input current
is corrupted by zero-mean Gaussian noise with variarnce- (0.01)%. In the RTLS, the SOC
estimation accuracy of the SVSF is assumed 1% @g= 0.01), and thus an overalf? is 2 x
(0.01)? since two estimated SOC points are required [36]. Hefice,(0.001)?/(0.01)2. Also,
the forgetting factolu = 0.98. The DEKF [20], which includes an EKF for SOC estimation
and another EKF for estimatings, Rc, Cq, andCnayx, is implemented to make comparison. In
the DEKF design, the initial state covariance, processencisariance matrix, and measurement
noise covariance matrix, are defined as @iaty 1], diag0.09,0.09,0.09 and 0.25, respectively;
and those of the EKF for parameter estimation are specifielbgd 0-13,1072,5x 102,104,
diagi10°,1074,107°,10 ] and 0.25, respectively. The parameters of the proposedithigs
and the DEKF are selected by trial-and-error in an effort ioimize the estimation error.

Both the FUDRLS and the SVSF run at a sampling pefigg 1 second, while the RTLS runs
at a longer period; = 200 seconds. The DEKF however has only one sampling pefigg: 1
second. Simulation results are shown in Fig. 5. Particyl&ig. 5(a) plots the UDDS current
profile; Fig. 5(b) gives the corresponding voltage respasfsihe battery cell; Figs. 5(c)-5(e)
compare the impedance estimation results; Fig. 5(f) shbeiestimated SOC and the true SOC
computed from the Coulomb counting; and Fig. 5(g) comparesstimate€yax. One can see
that the proposed algorithms lead to at least comparahlaasin accuracy as the DEKF does.
Table2 3-4 compare the proposed algorithms and the DEKFysnformance metrics: RMSE
as a measure of estimation accuracy and simulation time asasure of computational load.
Simulation shows that the proposed strategy outperform®tEKF in the sense of comparable
estimation accuracy but lower computational cost.

4.2. Simulation Study: Aging Case

Proceeding further, we make a more compelling simulatiadysto verify that the proposed
condition monitoring algorithm detects effectively theedgell condition. From Table 2, capacity
fade and internal resistance deterioration are considesedajor indicators in the aging battery
cell, where the tru€nax decreases from 15Ah to 12Ah aRd increase linearly over time. Fig. 6
summarizes simulation results. Particularly, Fig. 6(aggithe pulsed current cycle applied on the
battery model; Fig. 6(b) shows the cell voltage; Fig. 6(anpares the tru&s with its estimates;
and Fig. 6(d) compares the true maximum capacity with iisnedes. Simulation results indicate
that the proposed method and the DEKF can traciRjend the time-varying maximum capacity
with similar accuracy.
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4.3. Experimental Studies

The proposed condition monitoring algorithm is furtheridated against experimental data,
which were collected from a LiMyO,/hard-carbon battery in the Advanced Technology R&D
Center, Mitsubishi Electric Corporation. The experimeaswonducted, under the ambient tem-
perature 21.§ using a rechargeable battery test equipment produced jiglFilielecom Net-
works. The tuning parameters of the proposed condition taong algorithm are given in Table 5.
In the DEKF design, the initial state covariance, processencovariance matrix, and measure-
ment noise covariance matrix, used in the EKF for SOC esiimatre defined as diéh 1,1],
diag0.16,0.16,0.16] and 0.25, respectively; and those used in the EKF for paemestima-
tion are specified as diftp—14,10~4,107°,1079], diag4 x 107%°,10-7,10719 10~} and 0.25,
respectively. The true SOC trajectory is obtained usingGbalomb counting method. The pa-
rameters of the OCV-SOC function of the battery cell areaeted [40]. The estimated staDééO)
and maximum capacit§max are initialized to bg0.4,0,0]" and 5 Ah, respectively; the true states
X(0) = [0.31,0,0]" andCmax = 4.732Ah. In order to set the test battery cell with the desired ihitia
SOC, the battery cell was first fully charged and rest for omérhThen the cell is discharged us-
ing a small current (e.g., 0.2 A) to the desired initial SOQ@eaThe true maximum capacity was
extracted offline from full discharge test with a small catrée.g., 0.2 A) at ambient temperature
before testing the battery.

At first, the FUDRLS is executed for 30 seconds to estimatarpaters, and then the SVSF
starts estimating the SOC. Both the FUDRLS and the SVSF Ieveatme sampling peridd =1
second, while the RTLS has a distinctive sampling pefiiog- 20 seconds. On the other hand,
the DEKF runs at the sampling peridd = 1 second. Estimation results are shown in Fig. 7.
Particularly, Fig. 7(a) shows the high pulse current cygle<(10C) applied on the battery; Fig.
7(b) gives the measured cell voltage; Figs. 7(c)-7(e) shmnrmpedance estimation results; Fig.
7(f) compares the estimated SOCs; and Fig. 7(g) comparégtheestimates. One can observe:
the proposed algorithms yield accurate SOC estimationtifiermaximum capacity estimation,
the proposed algorithms converge to the true value, albeitEKF does not; and the DEKF
provides more consistent estimation of impedance parasiien the proposed algorithms. Table
6 summarizes simulation time and estimation accuracy df bohdition monitoring algorithms.
Experimental results validate that the proposed algostiean provide reliable SOC and SOH
estimation at fairly low computational cost, and thus casuitable for real-time embedded BMSs
for various applications.

5. Conclusions

Motivated to address the challenges arsing in the deployar@huse of Li-ion batteries, this
paper has proposed a novel model-based condition morgtstrategy for real-time impedance,
SOC, and maximum capacity/SOH estimation. A set of inteeddpnt algorithms have been
constructed and validated by both simulation and experialstudies. Owing to its low complex-
ity, easy implementation, and high accuracy, the proposadegy will be particularly suitable
for real-time embedded BMSs strongly demanded in apptinatsuch as EVs and PHEVS. In
addition, the proposed strategy can be extended to buildisnog solutions to SOP and SOF es-
timation, battery prognosis and fault diagnosis. In therfetwork, the thermal and aging effects
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will be incorporated, and adaptive condition monitorindl Wwe investigated. Another future ef-
fort will be to develop capacity estimation approaches sbla colored noises, which will find
important application in EVs and PHEVSs.
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1: algorithm initialization: sek = 0, © = 0y, andPy = dls = UODOUOT where

1 0 0 0 6 1 00 00O
01 00 6 0 1 0 0 O
U=1|0 0 1 0 6|, Dp=d6|0 0 1 0 0.
0 0 0 1 6 0 0010
0 00 0 -1 0 00 0O
2: repeat
3 k+k+1
4:  read new dat¥lz(k) andig(k)
5. computef =UJ ®,(K)
6: initializer(0) =A
7. forh=1to5do
8: compute the parameters Gentleman’s transformation
r(h) =r(h— 1)+ Do(h)f?(h)
D(h) = Do(h)r (h—1)/(Ar(h))
a(h)y=—f(h)
B(h) = Do(h)f(h)/r(h)
K(h)=B(h)
9:  end for
10: for j=2to5do
11: compute the Gentleman’s transformation
12: fori=1toj—1do
13: compute the Gentleman'’s transformation
K(i) =K(i)+B()U i)
14: end for
15:  end for

16:  update parameter estim&@eandUg, Do

6=[U(1,5),U(2,5),U(3,5),U(4,5)]"
Up=U, Dg=D

17:  map® to Rs,Ry,Cy, b1

18:  check whether estimated parameters are within the finederange of values
19:  update the internal parameters

20: until parameter estimation task ends

Table 1: The FUDRLS algorithm.
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Table 2: Simulated battery model parameters

Cmax | 10Ah | C4 | 4000F | Rs | 0.060hm| Ry | 0.020hm
Vimax | 0.01V | p | 2.47e-4| a9 | -0.852 | a; | 63.867
a 3.692| a3 | 0.559 | a4 0.51 as 0.508

Table 3: Simulation comparison of RMSE for impedance ediona

DEKF

FUDRLS

Rs (ohm)

7.4814e-4

2.9532e-4

Re (ohm)

8.7396e-4

3.7908e-4

Cq (F)

359.85

178.06

Table 4: Simulation comparison of RMSE and simulation time

FUDRLS | SVSF | RTLS DEKF
Estimation Impedance SOC | Capacity| Impedanceg SOC | Capacity
Accuracy (RMSE) | In Table 3| 0.0243| 2.0989 | In Table 3 | 0.0269| 2.4685
Simulation Time (s)) 0.8933 | 5.6676| 0.0034 13.0559
Table 5: Tuning parameters of the proposed algorithms
Amm 0.95 Amax 0.995 NO 50
o | 0995 vy 0.1 W 1
v | 0.01] o7 |2(0.02?]| g? | (0.01)%
u 0.98 | Ts 1 T 20
Table 6: Experimental comparison of RMSE and simulatioretim
FUDRLS | SVSF | RTLS DEKF
Estimation Impedance SOC | Capacity| Impedance SOC | Capacity
Accuracy (RMSE) N/A 0.0171| 0.1617 N/A 0.0220| 0.2065
Simulation Time (s) 0.1474 | 0.9070| 0.0061 2.0795
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estimates; (e€4 estimates; (f) SOC and its estimates; anddg)x and its estimates.
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