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Abstract

Utilizing priors about the shape of retinal surface is important for accurate reconstruction.
We present a detailed analysis of geometrical shape priors in the 3D reconstruction of retina.
We first approximate the retinal surface either as a sphere inspired by the actual shape of the
eyeball, or as a plane inspired by the 2D mosaicing approaches. Based on this approximation,
we perform an initial camera localization with a 2D-to- 3D registration procedure. Then,
parameters of the surface and the camera poses are refined through a nonlinear least squares
optimization using different shape priors. The resulting 3D model and camera poses can be
used for intuitively visualizing the retinal images with a model-guided browsing interface.
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ABSTRACT

Utilizing priors about the shape of retinal surface is important
for accurate reconstruction. We present a detailed analysis of
geometrical shape priors in the 3D reconstruction of retina.
We first approximate the retinal surface either as a sphere in-
spired by the actual shape of the eyeball, or as a plane inspired
by the 2D mosaicing approaches. Based on this approxima-
tion, we perform an initial camera localization with a 2D-to-
3D registration procedure. Then, parameters of the surface
and the camera poses are refined through a nonlinear least
squares optimization using different shape priors. The result-
ing 3D model and camera poses can be used for intuitively
visualizing the retinal images with a model-guided browsing
interface.

Index Terms— retinal images, 3D reconstruction, visual-
ization

1. INTRODUCTION

The need for computerized analysis of retinal images has been
increasing with the wide clinical use of fundus photography.
Diagnosis process involves the acquisition of multiple images
taken from different viewpoints. These images are investi-
gated one by one by doctors for final diagnostic decision. Fur-
thermore, comparing two sets of images from different visits
of the same patient might be vital to see the effect of treatment
and/or to investigate the spread of the disease.

Existing studies about retinal image registration mainly
deal with the issue of 2D registration to align a sequence of
images to a reference frame. In [1, 2], this registration is fol-
lowed by image mosaicing. Although mosaicing provides an
enlarged view of retinal fundus, it involves a 2D approxima-
tion of the 3D transformation between images, which is less

EAC, JKC, MFC and DE are supported by grants RO1 EY19474, R21
EY22387 from NIH and unrestricted departmental funding from Research to
Prevent Blindness.

realistic. Moreover, a 3D retinal surface visualization would
be easy and handy with the current advances in image visual-
ization.

Although retinal image processing is a well studied field,
there are a few studies about 3D reconstruction of retinal fun-
dus [3, 4, 5, 6, 7, 8]. Liu et al. [3] estimate the epipolar ge-
ometry and projection matrices after a self calibration. Choe
et al. [4] apply a plane+parallax algorithm to register images,
which is followed by a mutual information-based disparity
search stage. Both [3] and [4] work on stereo pairs, which
have large overlapping areas. The method by Martinez-Perez
et al. [5] involves an offline calibration stage and provides
3D reconstruction of the retinal vessels. Chanwimaluang et
al. [6] present a retinal surface reconstruction technique using
an affine camera model, since they work on retinal images
with small field of view. Lin et al. [7] perform a 2D-to-2D
registration followed by a multi-stage bundle adjustment.

Retinal surface reconstruction differs from traditional
stereo reconstruction since fundus is observed through eye
lens which produces distortion in the images. Aforemen-
tioned studies lack the consideration of this distortion effect.
Deguchi et al. [8] assume a spherical shape for the eyeball.
They model the mapping of this surface through the eye lens
as a quadratic surface where camera localization is performed
through registration of correspondences on this quadratic sur-
face. Their method is based on two-stage optimization of the
reprojection error. First they minimize the error with respect
to the camera poses by keeping the surface equation fixed.
This yields a good initialization for the camera poses to be
used at the next step. Second, they minimize the error with
respect to the surface equation and camera poses.

Utilizing priors about the shape of retinal surface is useful
for accurate reconstruction. In this paper, we present a thor-
ough analysis of 3D retinal surface reconstruction algorithms
using different shape priors. Our goal is to reconstruct the real
image of the retina surface transformed through the eye lens,
which is modeled as a quadratic surface [8]. Since the ex-



act shape of this quadratic surface is originally unknown, our
method first approximates this surface either (i) as a sphere
inspired by the actual shape of the eyeball, or (ii) as a plane
inspired by the 2D mosaicing approaches. Based on this ap-
proximation, we construct a 3D model from the initial im-
age and grow our model by localizing each image with a
2D-to-3D registration process. Second, the parameters of the
quadratic surface equation and the camera poses are refined
with a bundle adjustment (BA) procedure where the estima-
tions from the first step are used as initialization. In order to
assess the accuracy of the quadratic surface assumption, we
also perform the second stage with other shape assumptions
and compare the results. Finally, we present a model-guided
browsing interface that helps navigate through multiple reti-
nal images by using the reconstructed 3D model as the guide.
Thus, the contributions of this paper are two fold: an in-depth
analysis of shape priors in 3D retinal surface reconstruction
and a novel model-guided interface that provides navigation
of retinal images.

2. OUR METHOD

We define the world coordinate system as the coordinate sys-
tem of the real image of retina transformed through the eye
lens. Our goal is to reconstruct the retinal surface in the
world coordinate system, which is modeled as a quadratic sur-
face [8]. Our method consists of two steps. Starting from an
initial shape assumption (sphere or plane) we first perform
camera localization. We then refine the camera poses and
the parameters of the quadratic surface using a nonlinear least
squares optimization. In order to provide a comparative anal-
ysis of shape priors, the refinement stage is also carried out
with planar and spherical shape assumptions.

2.1. Initial 3D Model Creation

Let p¥ = (%k, Yk, 2k) " denote the kth 3D point in the world
coordinate system. Assuming a spherical or planar shape of
the retinal surface, we have the following constraints on the
3D points, respectively:

r? (1
)

TR+ 2 =
Brxk + Poyr + Bazr + 1

Here r is the radius of the sphere centered at origin, and
51, B2, B3 are the plane parameters.

Let us denote the pose of the ith frame as T; € SE(3),
where SE(3) is the Euclidean group representing 3D rigid
body motions. T'; consists of a rotation matrix R; and a trans-
lation vector t;. Then a 3D point pj; in the world coordinate
system is transformed to the camera coordinate system of the
tth frame as

p; = Rip}’ +t;. 3)

The 3D point pi, = (z%,y.,21)7 is projected to a pixel
qi = (ul,v1)T on the image plane according to the pinhole
camera model as

u, = fal/zi+cs 4)
fui) 2 + ¢y, (5)

where f is the focal length and (c,, ¢,) is the principal point.
We denote this function that performs the transformation fol-
lowed by the projection as gT¢ : R?® — R2. On the other
hand, given the pose of the camera and the parameters of the
surface shape, we can backproject a pixel g}, to a 3D point p}’
in the world coordinate system by computing the intersection
between the surface and the ray corresponding to the pixel.
Let us denote this backprojection function as hT: : R? — R3,

Initial model: We denote the first frame as the reference
frame. For spherical surface, we assume its center is fixed at
the origin and the optical axis of the reference frame passes
through the sphere center, i.e., Ry = I3, t; = (0,0,7 —
)T, where I3 is the 3 x 3 identity matrix and 7’ is the dis-
tance to the surface. Similarly, the planar model is assumed
to be orthogonal to the normal of the reference frame (i.e.,
(81, 82,B83) = (0,0,1)) and the distance between the ref-
erence frame and the plane is the same as the distance be-
tween the reference frame and the spherical model, i.e., Ry =
I3,t1 = (0, O, -1 - ’I“/)T.

In this work, we use the bifurcation points of the vessels
as feature points, and the correspondences between the fea-
ture points across images are manually selected. The feature
points in the reference image are backprojected onto the reti-
nal surface using the function h™. Next, we proceed by reg-
istering each 2D retinal image with this 3D model. We exploit
the standard P3P algorithm [9], which is widely used in struc-
ture from motion and simultaneous localization and mapping
(SLAM) systems. We geometrically verify the given point
correspondences in a RANSAC framework. RANSAC helps
us handle the noise in picking pixel locations and noise in
localization due to the geometrical shape assumption. After
localizing each image, the inlier points and the new feature
points that do not appear in the model, but appear in the local-
ized image, are added to the 3D model. Thus, the 3D model
is enlarged for each new image.

v, =

2.2. Bundle Adjustment

The spherical shape of the fundus is seen as a quadratic sur-
face through the eye lens due to refraction [8]. Hence the
following equation is satisfied for pj’

o1 (254 yp) +ozp + a3z +auypzr +aszp+1 =0, (6)

where v, . . ., a5 are the surface parameters.

Assume the kth 3D point is observed in the ith and jth
frames as g, and q7,, corresponding to each other. The repro-
jection error of this pair is given by

e(dy, al) = |lg™ (h™ (a},)) — ai||. (7)



We carry out an optimization procedure [10] to minimize
the sum of reprojection errors of all correspondence pairs
from all images.

> e(ahap) + e (ap.ap). @)
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The initialization for this procedure is taken from the esti-
mates we get in the first step. Note that we optimize the poses
of all cameras since the surface is defined in the world coor-
dinate system independent of the camera poses.

2.3. 3D Visualization

After the bundle adjustment, we have the surface parameters
and the refined pose of each image. We create a point cloud by
backprojecting all the pixels in all the images onto the surface
based on the refined poses, resulting in a highly dense point
cloud. For a better visualization, we downsample the point
cloud based on a voxel grid. We set a voxel grid with a size
of (vg, vy, v.) and each grid is represented with the centroid
of the 3D points that falls inside this grid.

3. EXPERIMENTS AND RESULTS

We implemented the system in C++ on a Windows 8 environ-
ment. The experiments were carried out on sequences of reti-
nal images acquired from healthy newborn infants. We used
r = 8.5 mm as the radius of the sphere, since average eyeball
diameter was reported to be 16—17 mm at birth [11]. Camera
intrinsic parameters were provided by the imaging system'.
We carried out our experiments on two image sequences, each
of which consisted of 4 wide-angle retinal images. For each
image, we had around 20 correspondences. Using a repro-
jection error threshold of 8§ pixels the P3P algorithm returned
about 50% inlier ratio for spherical model and 90% inlier ratio
for planar model.

In order to compare different shape priors, initial camera
localization was carried out using either spherical or planar
surface model, and consequent refinement was carried out us-
ing a spherical, quadratic, or planar surface. Resulting re-
projection errors can be seen in Table 1. Except the spheri-
cal model, reprojection errors were small. In both sequences
the minimum reprojection error was acquired when we started
with a spherical model and performed BA with the quadratic
surface assumption.

Reconstruction results with different shape priors are dis-
played in Figure 1 for the sequence 2. As seen from the re-
sults, vessels were mostly matched in quadratic and planar
surface reconstructions, while spherical model had some er-
rors. Also, the resulting shape of the quadratic surface was
close to planar. By looking at the small reconstruction errors

'We did not use a distortion model as it was not provided by the imaging
setup.

Initial Model | Bundle Adjustment | Seq. 1 | Seq. 2
Sphere Sphere 237.24 | 323.60
Sphere Quadratic 5.06 5.12

Plane Quadratic 9.02 11.91
Plane Plane 6.64 7.82

Table 1. Average reprojection errors in pixel square units.

in Table 1 and shape of the resulting quadratic surface, we
observed that 2D mosaicing of these images might be a good
approximation of the actual geometry.

Figure 2 shows an overview of our visualization system
and the reconstruction result for the sequence 1 with an initial
spherical model followed by BA on a quadratic surface. Here,
the user can view the camera positions and navigate to the
corresponding image by clicking the camera icon. (Please see
http://youtu.be/FMwdTLQX1fo for a supplementary
video.) Notice the matching vessels. As a vessel goes out of
one view, it can be seen continually in a neighboring view.

4. CONCLUSION AND DISCUSSION

We presented an in-depth analysis of shape assumptions in 3D
retinal fundus reconstruction. First, cameras were localized
based on an initial 3D model assumption (sphere or plane).
Second, the parameters of the surface and the estimated poses
of the images were simultaneously refined using a nonlinear
least squares minimization of the reprojection errors. In this
step, we assumed different shape models including planar,
quadratic, and spherical surface. The experiments were car-
ried out on two sequences of retinal images. As a result 3D
reconstruction with a quadratic or planar surface model gave
small reprojection errors. Moreover, small reprojection errors
with planar assumption and the shape of resulting quadratic
surface being close to plane suggested that 2D mosaicing of
the images can provide a good approximation of the actual
geometry. We also presented a novel visualization framework
that can be used as a model-guided browsing interface for reti-
nal images. In the future, we will extend our system by tak-
ing the center lines of vessels into account during registration.
Improved filtering techniques for better 3D visualization are
also in the scope of our future work.
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Fig. 1. Reconstruction results.
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