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Abstract
In this paper we study the problem of optimal zone coverage, using distributed sensing, i.e.
a group of collaborating sensors. We formulate the problem as an optimization problem with
time-varying cost function. We examine the case where a group of elevated imaging sensors
look down to and form the map of a 2-dimensional environment at a pre-specified resolution.
The sensors solve an optimization problem that attempts to optimize a time-varying cost
function. The cost at any time instance measures the distance between the desired resolution
function and the achieved resolution until the previous time instant. We discuss the numerical
implementation challenges of this approach and demonstrate its performance on a numerical
example.
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Resolution-Directed Optimization-based

Distributed Sensing

Richard J. Vaccaro∗ Petros Boufounos† Mouhacine Benosman‡

Abstract

In this paper we study the problem of optimal zone cov-
erage, using distributed sensing, i.e. a group of collab-
orating sensors. We formulate the problem as an opti-
mization problem with time-varying cost function. We
examine the case where a group of elevated imaging sen-
sors look down to and form the map of a 2-dimensional
environment at a pre-specified resolution. The sensors
solve an optimization problem that attempts to opti-
mize a time-varying cost function. The cost at any time
instance measures the distance between the desired res-
olution function and the achieved resolution until the
previous time instant. We discuss the numerical imple-
mentation challenges of this approach and demonstrate
its performance on a numerical example.

1 Introduction

As distributed sensing systems become increasingly
capable and prevalent, distributed control, positioning
and path planning become increasingly important. For
such control to be successful it is important that it
takes the physical properties of sensor appropriately
into account, both in terms of mobility and in terms
of sensing properties. Furthermore, it is important
that the positioning and path planning of the sensors
is matched to the application goals.

In this paper we examine the use of mobile sensors
for mapping the environment at a pre-defined resolu-
tion. The goal of the sensors is to cover a region, taking
snapshots as they move around. The desired resolution
is achieved by combining multiple snapshots, possibly
taken by different sensors, each with different resolution
characteristics. In addition to it path, at each step each
sensor optimizes the parameters of its imaging system,
which determine the area covered and the resulting res-
olution. For each snapshot, the sensors may acquire a
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larger area at a low resolution or a smaller area at a high
resolution, according to the physics and capabilities of
their imaging systems.

Distributed algorithms for configuring mobile sen-
sors to cover a specified region have been developed over
the past decade, e.g. [1–4]. In earlier work sensors were
assumed to have infinite range or to be bounded range
isotropic sensors [5]. In more recent work, anisotropic
sensors with a bounded footprint are considered [6–8].
The approach taken in these references is to model a
2-dimensional environment as a polygon, possibly con-
taining polygonal obstacles. A fixed objective function
is defined and optimized, which is the joint probabil-
ity of detection of interesting objects. The objective
function is formulated using an a priori fixed density
function that represents the importance of each point
in the environment. The gradient of the objective func-
tion with respect to the parameters of the sensors pro-
vides a control direction to move the sensors towards
important regions. These algorithms are mostly useful
in applications where the sensors need to monitor a re-
gion of interest, especially areas where targets might be
present, but not necessarily map the whole area.

In terms of the formulation, this paper differs sig-
nificantly from previous work in several ways. First, the
sensor model is an elevated imaging sensor looking down
to a 2-dimensional environment. Second, the objective
is to map the environment, i.e., to provide image res-
olution over the environment that achieves a specified
value at each point in the environment. We use a sub-
additive function to model the resolution when images
of overlapping sensors are combined. The third, and
most important difference, is that the objective func-
tion is time varying. At each time index t, the objective
function is a measure of the difference between the de-
sired resolution and the resolution achieved by all the
sensors up to time t − 1. This model enables the map-
ping functionality we desire, instead of the monitoring
functionality addressed in the existing literature. Al-
though our problem formulation allows for the presence
of polygonal obstacles as in [9], this paper considers only
an obstacle-free environment.

While the sensor model we describe is motivated
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Figure 1: Side view in sensor coordinates. The point z
is located on the line bisecting the angle γv.
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Figure 2: Sensor footprint in sensor coordinates (top
view). The footprint is the shaded region, which extends
from Zmin to Zmax. The footprint is the polygon
defined by the four labeled vertices.

by optical sensors, very similar models apply to radar,
lidar, and Synthetic Aperture Radar (SAR) models. In
general, these sensors have a fixed angular resolution
and field of view. This, in turn, determines the spatial
resolution and the spatial coverage of the sensor as
a function of the distance of the scene the sensor
is acquiring. Multiple snapshots of a scene can be
fused using well-established approaches, which we don’t
explore here. For examples, see [10] and references
within. We only assume that the resolution of the
fused image is a sublinear combination of the resolution
achievable with individual snapshots.

In the next section we provide a precise formulation
of the sensing problem. The corresponding optimization
problem is presented in Sec. 3. The implementation of
the proposed optimization-based sensing is presented in
Sec. 4. Section 5 is dedicated to our numerical results,
and, finally, the paper ends with a discussion in Sec 6.

2 Problem Formulation

2.1 Sensor Model In this paper we consider sensors
sensing and mapping an environment Q of polygonal
shape, which is a subset of the xy plane. We assume
the environment is discretized and use q ∈ Q to denote
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Figure 3: An example environment polygon, Q, of
square shape and dimensions 100 × 100, also used for
our experiments. An arbitrary point in the environment
is labeled q ∈ Q.

points. For the examples in this paper, Q is the 100×100
square region shown in Fig.3.

We assume the sensors are elevated and roaming
above the environment, imaging the ground. Each
sensor plans its own path and decides on its orientation
and its imaging parameters. Specifically, at each step
the sensor selects its coordinates (cx, cy) in the xy plane,
its azimuth angle, θ, i.e., the rotation of its imaging
system with respect to the environment’s x axis, and
the vertical orientation of its imaging system, ψ, with
respect to the axis normal to the environment. The
imaging system has a fixed angular field-of-view (FOV)
in the horizontal and vertical direction, denoted using γh
and γv, respectively. This is fixed by the imaging system
hardware. Furthermore, the sensor is position at height
H above the ground, which is also fixed throughout the
path planning, even though variable sensor height can
be incorporated in the model. We assume there is no roll
in the sensor flight, although it can also be integrated
into the model in a straightforward manner.

Figures 1 and 2 illustrate a side and top view of the
sensor geometry, respectively. Given the sensor parame-
ters, the sensor acquires snapshots of its FOV footprint
on the environment, indicated using the shaded area
in Fig. 2, lying between Zmin an Zmax in Fig. 1. All
the snapshots from all the sensors are then combined to
form the final map of the environment.

The full set of sensor parameters, together with in-
dicative values used in simulations in this paper, is de-
scribed in Table 1. For the simulations in this paper
we assume all sensors have the same non-tunable sens-
ing parameters, i.e., same angular field of view, angular



Variable Description Value

H Height of sensor 301

γh Horizontal angular width 20◦

γv Vertical angular width 2◦

(cx, cy) (x, y) location of sensor arbitrary2

ψ 90 - declination angle arbitrary

θ Azimuth angle of sensor arbitrary

Table 1: Definition of variables.

sensing resolution and height. The path planning prob-
lem each sensor solves involves determining its location
(cx, cy), azimuth angle θ and vertical orientation ψ.

It is often convenient to describe the environment in
coordinates relative to the sensor orientation, i.e., in the
sensor’s reference frame. In this case, the environment
lies in the zy plane, which is a translated and rotated
version of the xy plane according to the sensor position
and orientation. When θ = 0, the z-axis of the sensor is
aligned with the x-axis of the global coordinate system.
As described in Fig. 1, a given sensor is located at
height H above the origin of the zy plane. The angle ψ,
capturing the vertical orientation of the (FOV) of the
sensor, is measured with respect to the normal to the
zy plane.

Thus, by tuning the vertical orientation of the
sensor, it is possible to image areas of different size in the
environment, as depicted in Figs. 1 and 2. In particular,
the labeled ranges in Fig. 1 are equal to

(2.1)
Zmax = H tan(ψ + γv/2)
Zmin = H tan(ψ − γv/2)

z = H tan(ψ)

In sensor coordinates, the footprint vertices (zk, yk)
corresponding to vertex k in Fig. 2 are given using:

z1 y1
z2 y2
z3 y3
z4 y4

 =


Zmin −Zmin sin(γh/2)
Zmax −Zmax sin(γh/2)
Zmax Zmax sin(γh/2)
Zmin Zmin sin(γh/2)

(2.2)

We use S(θ) to denote the rotation matrix

S(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.(2.3)

Thus, the global coordinates (x, y) of a point (z, y) in
the sensor footprint are obtained by rotating the point

1The units are arbitrary. The same units are used to describe

the environment polygon.
2The sensor-location coordinates are given in the same units

as the sensor height.

by the angle θ and translating it by the camera location
(cx, cy): [

x
y

]
= S(θ)

[
z
y

]
+

[
cx
cy

]
.(2.4)

Using (2.4), the four vertices in (2.2) defining the sensor
footprint may be mapped into global coordinates.

In our path planning problem, the sensor footprint
is determined by four variables: (cx, cy, θ, ψ). The
first two, cx, cy, describe the sensor position above the
plane of the environment and are determined by the
motion of the sensor. The last two parameters, θ, ψ,
describe the horizontal and vertical angular orientation
of the imaging system on the sensor. Thus, it is
assumed that the location parameters will be updated
on a “slow” time scale because they correspond to the
physical motion the sensor. On the other hand, it is
assumed that the angular variables will be updated
on a “fast” time scale because the sensor can change
these angles very quickly simply by moving its imaging
system around its axis. In the remainder of this paper,
all variables associated with the ith sensor will have a
superscript of i.

2.2 Resolution of Overlapping Snapshots Most
imaging systems can be accurately described as having a
fixed angular resolution or, equivalently, a fixed number
of pixels to cover its field of view. Thus, we define
the resolution of a sensor as the total number of sensor
pixels divided by the footprint area.

Assuming that the sensor has fixed horizontal and
vertical angular FOV, as defined in Table 1, the res-
olution Ri of sensor i is inversely proportional to the
squared horizontal range z2 (see Fig. 1):

(2.5) Ri =
Ki

z2

where Ki is a constant that depends on the physical
characteristics of sensor i. In this paper we assume that
all sensors have the same value of Ki. We also make
the approximation that the resolution at all points in
the footprint of the sensor i is the value given by (2.5).
This approximation is valid when the angular FOV of
the sensor is small, i.e., when sin(γ) ≈ γ.

At every time step each sensor is taking a snapshot
of its FOV, according to its parameters. All these
snapshots are eventually fused to generate a large
map of the environment at high resolution, using one
of a number of possible fusion and super-resolution
algorithms, e.g., see [10] and references within.

In order to be able to direct the sensor parameter
optimization, we need a resolution model for the result-
ing map. Our model explicitly models the resolution



achieved at each point in the environment, assuming
the point has been acquired by n snapshots—i.e., has
been part of their footprint—each with resolution Ri
pixels per unit area.

When fusing multiple snapshots the resulting image
may not have lower resolution than the maximum
resolution of any snapshot. Otherwise, we could just
use the snapshot with the higher resolution and obtain
a better result without fusion. Thus, this is a lower
bound on the achievable resolution of the fused image.
Ideally, the resolution of the fused image would be
the sum of the resolutions of each individual snapshot.
However, due to uncertainties and imperfections of the
sensor fusion process, this is unfortunately unrealistic.
Still, it does provide an upper bound on the achievable
resolution.

The actual overall resolution will be somewhere
between these bounds. That is, if

R =
[
R1 R2 · · · RN

]
(2.6)

is a vector of the resolutions achieved by N sensors,
the overall resolution res(R) obtained at points in the
intersection of the sensor footprints must satisfy the
following inequalities

(2.7) max
i
Ri ≤ res(R) ≤ R1 + · · ·+RN .

One function that satisfies this property is the lp norm
of the vector R, 1 < p <∞,

(2.8) ‖R‖p
def
= (Rp1 + · · ·RpN )

1/p
.

When p = 1, the lp norm equals the upper bound in
(2.7). When p = ∞, the lp norm equals the lower
bound in (2.7). Thus, in this paper, we use the lp norm,
1 < p < ∞, of the vector of individual resolutions,
as a subadditive model for the resolution obtained by
fusing the snapshots of overlapping sensors. Note,
however, that this is not a critical assumption in our
development. Other subadditive smooth functions can
be substituted.

3 Objective Function and Optimization

In order to direct the sensing process, we define a desired
resolution function, φd(q), for each point q ∈ Q in
the environment. This is an operator-defined global
function that the sensors try to achieve through the
distributed optimization of their parameters.

To formulate the optimization it is often convenient
to aggregate the system variables using vector notation.
Thus, we use xt to denote the vector of the location
variables of all of the sensors at time t, and ψt and
θt the vectors of the vertical and horizontal angular

orientations, respectively, of the sensors at time t.
We use Ri to denote the resolution provided by the
ith sensor at all points in its footprint Fi, which
is uniquely determined by the corresponding sensor
variables (cxi, cyi, θi, ψi).

The resolution is inversely proportional to the area
of the imaged scene. Thus, it is equal to

(3.9) Ri(cxi, cyi, θi, ψi, q) ={
K

H2[1 + tan2(ψi)]
, q ∈ Fi(cxi, cyi, θi, ψi)

0, o.w.

where K is a sensor constant that depends on the total
number of pixels captured by the sensor. It is assumed
that all of the sensors have the same value ofK, in which
case its value is unimportant for the optimization that
follows.

At any time t the objective function we wish to
minimize is a measure of the difference between the
desired resolution and the achieved resolution up to time
t. This is measured by the following function:

(3.10)
Gt(x,θ,ψ) =

∫
Q

f
(
φd(q)− [φpt−1(q)

+
∑
i

(
Ri(cxi, cyi, θi, ψi, q)

)p
] 1/p

)2
dq,

where φt−1(q) is the resolution achieved by the sensors
up to time t − 1, p defines the norm used to model
a subadditive combination of overlapping sensors (see
Section 2.2), and f(·) is a loss function such as

(3.11) f(x) = |x|γ

for some γ ≥ 1. If the value γ = 2 is used, the square
of the difference between the desired and achieved
resolutions in (3.10) will tend to ignore small errors and
greatly emphasize large errors. On the other hand, if
γ = 1 is used, small errors will have a greater influence
than with γ = 2. In the simulations that follow we use
γ = 1.75. By definition, the initial achieved resolution
map φ0(q) is identically zero.

A gradient-based optimization approach is de-
scribed by the following initialization and iteration. At
each time instant, a complete gradient-based minimiza-
tion with respect to the angle parameters of the sensors
is performed. However, sensor positions are updated
using only a single gradient step. The reason is that
once the sensors have moved and acquired new data,
the objective function has changed.

Initialization Given the desired resolution map φd(q),
and x0, a vector of initial sensor locations, find the
initial sensor angles by the following optimization

(3.12) θ0,ψ0 = arg min
θ,ψ

G0(x0,θ,ψ).



Calculate the initial position gradient, g0, which is the
gradient with respect to x of G0(x,θ0,ψ0) evaluated
at x0. This gradient is used in Step 2 of the iteration
shown below.

Iteration, t = 1, 2, · · ·

1. Acquire images from all sensors and update the
achieved resolution map: φj(q,xt−1,θt−1,ψt−1) is
equal to
(3.13)

{φpt−1(q)+[
∑
i

(Ri(cxit−1, cy
i
t−1, θ

i
t−1, ψ

i
t−1, q))

p]}1/p

2. Take a position step. That is, take a single step in
the direction of the negative position gradient

(3.14) xt = xt−1 − αgt−1,

where α is a step size, and gt−1 is the position
gradient from the previous step evaluated at xt−1.
The value of α is found by a line search.

3. Update the sensor angular parameters and the
position gradient:

(3.15)
θt,ψt = arg min

θ,ψ
Gt(xt,θ,ψ)

gt = ∇xGt(x,θt,ψt) evaluated at xt.

4 Implementation

The numerical implementation of the algorithm uses
tools initially developed for computer graphics. The
environment is modeled as a polygon in a 2-dimensional
plane, as are the sensor footprints. Obstacles may also
be modeled as polygons. The data structure for a
polygon is simply a list of its vertices in counterclockwise
order. A public-domain Matlab class, Polygon.m, has
been developed for representing manipulating polygons
[11]. This class includes a function to find the grid
points that are inside the footprints of the sensors as well
as a function to find the grid points in the intersection
of two or more polygons.

The function Gj(x,θ,ψ) defined in (3.10) is an
integral over the environment. The value of this integral
is computed numerically at a finite grid of points. The
grid spacing in the x and y directions is called δ. Fig. 4
shows two sensor footprints, each with a vertical angle
ψ = 25◦. The footprint in the lower left shows grid
points with δ = 0.5 while the footprint in the upper
right shows grid points with δ = 0.25. The smaller
value of δ was used to generate the simulation results.

4.1 Gradient Calculation The objective function
G defined in (3.10) is the integral of a function which is

0 5 10 15
0

5

10

15
Two Footprints with psi=25 degrees

Figure 4: Sensor footprints with ψ = 25◦ showing grid
points with two different values of grid spacing δ. The
footprint in the lower left shows grid points with δ = 0.5
while the footprint in the upper right shows grid points
with δ = 0.25.

discontinuous with respect to q as well as with respect to
the sensor parameters. The discontinuities with respect
to the sensor parameters are due to the fact that the
achieved resolution of each sensor is constant within
the sensor footprint and zero outside the footprint.
When any sensor parameter changes, the footprint
changes. Points that were outside the original footprint
with a function value of zero may now be inside the
footprint with a positive function value, and vice versa.
If the integrand of G were continuous, it would be
advantageous to move the derivative operator inside the
integral and calculate the derivative analytically. With
a discontinuous integrand, moving the derivative inside
the integral requires a special calculation for the points
of discontinuity [7]. Using the existing polygon tools and
a sampled grid of points, it would be difficult to identify
the set of discontinuity points, especially for the case of
overlapping sensor footprints considered here. Thus, we
use a completely numerical approach to computing the
gradient by calculating the change in the value of G
divided by an incremental change in a single parameter.
Because the function G is evaluated on a sampled grid
of points, it is necessary to use parameter increments
that cause a change in the function value.

4.2 Parameter Increments To numerically calcu-
late the derivative with respect to the angle ψi of the
ith sensor, we must choose a small increment, dψi to
make the sector midpoint, z, change by an amount that
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Figure 5: (a) dψ is the smallest change in ψ that can
be used in the gradient calculation. It results in the
point z moving by an amount 1.5δ, where δ is the grid
spacing.(b) dθ is the smallest change in θ that can be
used in the gradient calculation. It results in the point z
moving by an amount 1.5δ, where δ is the grid spacing.

is large enough to move the sensor footprint at least
one grid point. We choose the value 1.5δ, as shown in
Fig. 5(a). The result is

(4.16) dψi = tan−1

(
1.5δ

H
+ tanψi

)
− ψi

The partial derivative with respect to the vertical angle
of the ith sensor is then computed as

(4.17)
∂G

∂ψi
≈ G(x,θ,ψ + dψ)−G(x,θ,ψ)

dψi
,

where dψ is zero except element i, which equals dψi.
A similar calculation is done for the azimuth angles

θi. Specifically, the increment dθi is calculated to move
the point z by an amount 1.5δ, as shown in Fig. 5(b).

Recall that z = H tanψ. Then the result is

(4.18) dθi = tan−1

(
1.5δ

H tanψi

)
.

Note that both angle increments, dψi and dθi, are
functions of δ as well as of the current value of ψi.

5 Simulation Results

In our simulations we consider a scenario in which four
cooperating sensors are dispatched to observe an en-
vironment and provide the desired resolution shown in
Fig. 6(a). The high-resolution region in the center has a
value of 5.5, which is the resolution provided by a single
sensor when ψ = 25◦. The desired background resolu-
tion has a value of 2.4, which is the resolution provided
by a single sensor when ψ = 54.8◦. Thus, in princi-
ple, the whole region of interest can be mapped using
non-overlapping snapshots, appropriately directed. The
algorithm presented in Section 3 was initialized and run
for 100 time steps. The initial footprints of the four
sensors are shown in Fig. 6(b).

The resolution values for overlapping sensor foot-
prints were combined using the l2 norm; i.e. p = 2 in
(2.8). The achieved resolution at t = 100 is shown in
Fig. 6(c), which is very close to the desired resolution
shown on Fig. 6(a). A plot of the evolution of the cost
function G as a function of time is shown in Fig. 6(d).
It can be seen that the algorithm converges to a nonzero
limiting value at t = 100.

A simple calculation, using nonoverlapping sensor
footprints, can be used to bound the minimum number
of time steps needed to achieve a desired resolution
map. using nonoverlapping sensor footprints. This
number can be compared to that used by the proposed
algorithm. Suppose that the desired resolution map
consists of two constant-resolution regions, as in the
simulation example. Let A1 be the area of the low-
resolution region of Fig. 6(a) and let A2 be the area
of the high resolution region. If the ψ angle of a
given sensor is chosen to be 54.8◦, the resolution of the
resulting footprint will be 2.36, the desired background
resolution in Fig. 6(a). With ψ = 54.8◦, the area
of the sensor footprint is A1. Similarly, the area of
the sensor footprint whose resolution matches the high-
resolution region in Fig. 6(a) is A2. A lower bound on
the number of time steps needed by n = 4 sensors to
achieve the desired resolution map with nonoverlapping
sensor footprints is

(5.19) N =
A1

na1
+

A2

na2
.

Note that this is a lower bound, that is not necessar-
ily achievable due to the shape of the sensor footprints.
Even if the footprints allow for perfect non-overlapping
coverage, achieving this bound requires central planning
of the sensors’ path and orientation. Still, the simu-
lations show that we get close to this value. Specif-
ically, the value of N for the simulation example is
N = 80. Thus, the use of 100 time steps to approxi-
mately achieve the desired resolution with distributed
planning has very small compared to the bound.

6 Discussion and Conclusion

We have studied the problem of optimal zone cover-
age for mapping using distributed sensing. We for-
mulated the problem as an optimization problem with
time-varying const function and shown that a sim-
ple gradient-descent optimization algorithm can lead to
very efficient zone coverage, in the case of slow sensor
motion. Our optimization exploits our ability to sepa-
rate the fast varying angular variables from the slowly
varying position variables and formulates the optimal
problem as a sequential optimization with respect to
the two separate sets of variables. Our experimental re-
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Figure 6: (a) The desired resolution function φd(q) used in our experiments. The environment contains a region
which we desire to map with high resolution (yellow), while the rest of the environment should be mapped in
lower resolution (blue). (b) Initial sensor footprints. The rectangle in the center represents the region of high
desired resolution shown in (a). (c) The achieved resolution at t = 100 , which is close to the desired resolution.
(d) The evolution of the cost function Gt(x,θt,ψt) as a function of time t. The loss function in the definition of
G was f(x) = |x|1.75. Note that the loss function has a norm structure, but the norm can be different than the
norm used in modeling the resolution of the fused images.

sults demonstrate the effectiveness of our approach in
achieving the desired map resolution.

A more rigorous analysis of the proposed algorithm
in terms of convergence and optimality is necessary and
will be presented in a longer journal version of this work.
Furthermore, a complete distributed implementation of
the algorithm, using some techniques from distributed
optimization, e.g. [12], is also under investigation; the
corresponding results will be reported in future publi-
cations.
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