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Abstract
We study in this paper the problem of adaptive trajectory tracking control for nonlinear
systems affine in the control with time-varying parametric uncertainties. We propose to
use a modular approach, in the sense that we first design a robust nonlinear state feedback
which renders the closed loop input to state stable (ISS) between an estimation error of the
uncertain parameters and an output tracking error. Next, we complement this robust ISS
controller with a model-free extremum seeking (ES) algorithm to estimate the time-varying
model uncertainties. The combination of the ISS feedback and the ES algorithm gives an
indirect adaptive controller. We show the efficiency of this approach on a two-link robot
manipulator example.
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Extremum Seeking-Based Indirect Adaptive Control for Nonlinear Systems
with Time-varying Uncertainties

Meng Xia and Mouhacine Benosman

Abstract— We study in this paper the problem of adaptive
trajectory tracking control for nonlinear systems affine in the
control with time-varying parametric uncertainties. We propose
to use a modular approach, in the sense that we first design
a robust nonlinear state feedback which renders the closed
loop input to state stable (ISS) between an estimation error of
the uncertain parameters and an output tracking error. Next,
we complement this robust ISS controller with a model-free
extremum seeking (ES) algorithm to estimate the time-varying
model uncertainties. The combination of the ISS feedback and
the ES algorithm gives an indirect adaptive controller. We show
the efficiency of this approach on a two-link robot manipulator
example.

I. INTRODUCTION

Extremum Seeking (ES) method has often been used as a
real-time optimization tool [1]. As opposed to the classical
model-based control, extremum seeking does not need de-
tailed modeling of the process. Since ES controllers do not
depend on exact plant models and also can easily deal with
multi-input systems, they have been used in many control
applications, such as automotive brakes [2], electromagnetic
actuators [3], [4] and stirred-tank bioreactors [5]. On the
other hand, model-based Input-output feedback linearization
has been proven to be powerful in the control design for
trajectory tracking and stabilization of nonlinear systems [6].
One shortcoming of the feedback linearization approach is
that it requires precise system modelling [6]. When there
exist model uncertainties, a robust input-output linearization
approach needs to be developed. For instance, high-gain
observers [7] and linear robust controllers [8] have been pro-
posed in combination with the feedback linearization tech-
niques. Another approach to deal with model uncertainties is
using adaptive control methods. Of particular interest to us is
the modular approach to adaptive nonlinear control, e.g. [9].
In this approach, first the controller is designed by assuming
all the parameters are known and then an identifier is used to
guarantee certain boundedness of the estimation error. The
identifier is independent of the designed controller and thus
the approach is called ‘modular’. A modular approach has
been proposed in [10] for adaptive neural control of pure-
feedback nonlinear systems, where the input-to-state stability
(ISS) modularity of the controller-estimator is achieved and
the closed-loop stability is guaranteed by the small-gain
theorem.
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In this paper, we study a class of nonlinear systems which
are input-output linearizable through static state feedback
[11]. We assume that the uncertainties in the linearized
model are additive as guaranteed by the ‘matching condition’
[12]. The control objective is to achieve asymptotic tracking
of a desired trajectory. The robust controller for the
uncertain nonlinear system can be designed according to the
following guidelines. In the first step, we design a controller
for the nominal model (i.e. when the uncertainties are
assumed to be zero) so that the tracking error dynamics is
asymptotically stable. In the second step, we use a Lyapunov
reconstruction method [11] to show that the error dynamics
are input-to-state stable (ISS) [13] where the estimation
error in the parameters is the input to the system and the
tracking error represents the system state. Finally, we use ES
to guarantee that the error in the estimation of parameters
are bounded and decreasing so that the the tracking error
will be bounded and decreasing, as guaranteed by the ISS
property. Learning-based adaptive control for nonlinear
systems has been studied in [3], [4]. In these two papers,
the problem of adaptive robust control of electromagnetic
actuators was studied, where ES was used to tune the
feedback gains of the nonlinear controller in [3] and ES
was used to estimate the unknown model parameters in [4].
An extension to the general case of nonlinear systems was
proposed in [15], [16]. We relax here the strong assumption,
used in [15], [16], about the existence of an ISS feedback
controller, and propose a constructive proof to design such
an ISS feedback for the particular case of nonlinear systems
affine in the control.

The rest of the paper is organized as follows. In Section
II, we present notations, together with some fundamental
definitions and results. In Section III, we provide our
problem formulation. The nominal controller design is
presented in Section IV. In Section V, three cases are
considered for the uncertain system based on the structure
of uncertainties term in the model and a robust controller
is designed for each case such that ISS is guaranteed from
the estimation errors input to the tracking errors state. The
stability of the multi-parametric extremum seeking (MES)
algorithm that is used for parameters estimation is provided
in Section VI. Note that the proofs of our Theorems have
been omitted due to space constraints, however, they will
be reported in a future journal version of this work. Section
VII is dedicated to an application example and the paper
conclusion is given in Section VIII.



II. PRELIMINARIES

Throughout the paper, we use ‖·‖ to denote the Euclidean
norm; i.e. for a vector x ∈ R

n, we have ‖x‖ , ‖x‖2 =√
xT x, where xT denotes the transpose of the vector x.

The 1-norm of x ∈ R
n is denoted by ‖x‖1. In this paper,

when we refer to a matrix norm, we mean the Frobenius
norm, which for a matrix A ∈ R

m×n, with elements
aij , is defined as ‖A‖ ,

√∑n
i=1

∑n
j=1 |aij |2. We use

the following norm properties for the need of our proof:
1) for any x ∈ R

n, ‖x‖ ≤ ‖x‖1, 2) for any x, y ∈
R

n, ‖x‖ − ‖y‖ ≤ ‖x − y‖, 3) for any x, y ∈ R
n,

xT y ≤ ‖x‖‖y‖. Given x ∈ R
m, the signum function is de-

fined as sign(x) , [sign(x1), sign(x2), · · · , sign(xm)]T ,

where xi denotes the i-th (1 ≤ i ≤ m) element of x.
We have xT sign(x) = ‖x‖1. For an n × n matrix P ,
we denote by P > 0 if it is positive definite. Similarly,
we denote by P < 0 if it is negative definite. We use
diag{A1, A2, · · · , An} to denote a diagonal block matrix
with n blocks. For a matrix B, we denote B(i, j) as the
element that locates at the i-th row and j-th column of matrix
B. We denote In as the identity matrix or simply I if the
dimension is clear from the context. We use ḟ to denote
the time derivative of f and f (r)(t) for the r-th derivative
of f(t), i.e. f (r) ,

drf
dt

. We denote by C
k functions that

are k times differentiable and by C
∞ a smooth function. A

continuous function α : [0, a) → [0,∞) is said to belong to
class K if it is strictly increasing and α(0) = 0. It is said to
belong to class K∞ if a = ∞ and α(r) → ∞ as r → ∞ [11,
pp. 144]. A continuous function β : [0, a)× [0,∞) → [0,∞)
is said to belong to class KL if, for a fixed s, the mapping
β(r, s) belongs to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to s

and β(r, s) → 0 as s → ∞ [11, pp. 144].
Consider the system

ẋ = f(t, x, u) (1)

where f : [0,∞)×R
n ×R

m → R
n is piecewise continuous

in t and locally Lipschitz in x and u, uniformly in t. The
input u(t) is piecewise continuous, bounded function of t for
all t ≥ 0.

Definition 1 ([11]): The system (1) is said to be input-to-
sate stable (ISS) if there exist a class KL function β and a
class K function γ such that for any initial state x(t0) and
any bounded input u(t), the solution x(t) exists for all t ≥ t0
and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ( sup
t0≤τ≤t

‖u(τ)‖).
Theorem 1 ([11]): Let V : [0,∞) × R

n → R be a
continuously differentiable function such that

α1(‖x‖) ≤V (t, x) ≤ α2(‖x‖)
∂V

∂t
+

∂V

∂x
f(t, x, u) ≤ −W (x), ∀‖x‖ ≥ ρ(‖u‖) > 0 (2)

for all (t, x, u) ∈ [0,∞) × R
n × R

m, where α1, α2 are
class K∞ functions, ρ is a class K function, and W (x) is a
continuous positive definite function on R

n. Then, the system
(1) is input-to-state stable (ISS).

III. PROBLEM FORMULATION

A. Nonlinear system model

We consider here affine uncertain nonlinear systems of the
form:

ẋ = f(x) + ∆f(t, x) + g(x)u
y = h(x),

(3)

where x ∈ R
n, u ∈ R

p, y ∈ R
m (p ≥ m), represent

respectively the state, the input and the controlled output
vectors, ∆f(t, x) is a vector field representing additive model
uncertainties. The vector fields f , ∆f , columns of g and
function h satisfy the following assumptions.

Assumption 1: The function f : R
n → R

n and the
columns of g : R

n → R
p are C

∞ vector fields on a bounded
set X of R

n and h : R
n → R

m is a C
∞ vector on X . The

vector field ∆f is C
1 on X .

Assumption 2: System (3) has a well-defined (vector)
relative degree {r1, r2, · · · , rm} at each point x0 ∈ X ,
and the system is linearizable, i.e.

∑m
i=1 ri = n.

Assumption 3: The desired output trajectories yid (1 ≤
i ≤ m) are smooth functions of time, relating desired initial
points yid(0) at t = 0 to desired final points yid(tf ) at t = tf .

B. Control objectives

Our objective is to design a state feedback controller u(x)
so that for the uncertain nonlinear model (3) the tracking
error is uniformly bounded. We stress here that the goal of
parameters tuning is not for stabilization but for performance
optimization. To achieve the control objective, we proceed
as follows. First, we design a robust controller which can
guarantee the input-to-state stability (ISS) of the tracking
error dynamics w.r.t the estimation errors input. Then, we
combine this controller with a model-free extremum-seeking
algorithm to iteratively tune the uncertain parameters, to
optimize online a desired performance cost function.

IV. NOMINAL CONTROLLER DESIGN

Under Assumption 2 and nominal conditions, i.e. when
∆f(t, x) = 0, system (3) can be written as, e.g. [6]

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t), (4)

where

y(r)(t) = [y
(r1)
1 (t), y

(r2)
2 (t), · · · , y(rm)

m (t)]T

ξ(t) = [ξ1(t), · · · , ξm(t)]T

ξi(t) = [yi(t), · · · , y
(ri−1)
i (t)], 1 ≤ i ≤ m

(5)

The functions b(ξ), A(ξ) can be written as functions of f , g

and h, and A(ξ) is non-singular in X̃ , where X̃ is the image
of the set of X by the diffeomorphism x → ξ between the
states of system (3) and the linearized model (4).

At this point, we introduce one more assumption on
system (3).

Assumption 4: The additive uncertainties ∆f(t, x) in (3)
appear as additive uncertainties in the input-output linearized
model (4)-(5) as follows (see also [12])

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t) + ∆b(t, ξ(t)), (6)



where ∆b(t, ξ(t)) is C
1 on X̃ .

If we consider the nominal model (4) first, then we can
define a virtual input vector v(t) as

v(t) = b(ξ(t)) + A(ξ(t))u(t). (7)

Combining (4) and (7), we can obtain the following input-
output mapping

y(r)(t) = v(t). (8)

Based on the linear system (8), it is straightforward to apply
a stabilizing controller for the nominal system (4) as

un = A−1(ξ) [vs(t, ξ) − b(ξ)] , (9)

where vs is a m×1 vector and the i-th (1 ≤ i ≤ m) element
vsi is given by

vsi = y
(ri)
id − Ki

ri
(y

(ri−1)
i − y

(ri−1)
id ) − · · · − Ki

1(yi − yid).
(10)

Denote the tracking error as ei(t) , yi(t) − yid(t), we
obtain the following tracking error dynamics

e
(ri)
i (t) + Ki

ri
e(ri−1)(t) + · · · + Ki

1ei(t) = 0, (11)

where i ∈ {1, 2, · · · , m}. By selecting the gains K i
j where

i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}, we can obtain
global asymptotic stability of the tracking errors ei(t). To
formalize this condition, we make the following assumption.

Assumption 5: There exists a non-empty set A where
Ki

j ∈ A such that the polynomials in (11) are Hurwitz, where
i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}.

To this end, we define z = [z1, z2, · · · , zm]T , where
zi = [ei, ėi, · · · , e

(ri−1)
i ] and i ∈ {1, 2, · · · , m}. Then,

from (11), we can obtain

ż = Ãz,

where Ã ∈ R
n×n is a diagonal block matrix given by

Ã = diag{Ã1, Ã2, · · · , Ãm}, (12)

and Ãi (1 ≤ i ≤ m) is a ri × ri matrix given by

Ãi =




0 1
0 1

0
. . .

... 1
−Ki

1 −Ki
2 · · · · · · −Ki

ri




.

As discussed above, the gains Ki
j can be chosen so that the

matrix Ã is Hurwitz. Thus, there exists a positive definite
matrix P > 0 such that (see e.g. [11])

ÃT P + PÃ = − I. (13)

V. ROBUST CONTROLLER DESIGN

A. Preliminary Analysis

We now consider the uncertain model (3), i.e. when
∆f(t, x) 6= 0. The corresponding linearized model is given
by (6) where ∆b(t, ξ(t)) 6= 0. The global asymptotic stability
of the error dynamics (11) cannot be guaranteed anymore
due to the additive uncertainty ∆b(t, ξ(t)). We use Lyapunov
reconstruction techniques to design a new controller so that
the tracking error is guaranteed to be bounded. The new
controller for the uncertain model (6) is defined as

uf = un + ur, (14)

where the nominal controller un is given by (9) and the
robust controller ur will be given later on based on particular
forms of the uncertainty ∆b(t, ξ(t)). By using the controller
(14), from (6) we obtain

y(r)(t) = b(ξ(t)) + A(ξ(t))uf + ∆b(t, ξ(t))

= b(ξ(t)) + A(ξ(t))un + A(ξ(t))ur + ∆b(t, ξ(t))

= vs(t, ξ) + A(ξ(t))ur + ∆b(t, ξ(t)), (15)

Further, the dynamics for z is given by

ż = Ãz + B̃δ, (16)

where Ã is defined in (12), δ is a m × 1 vector given by

δ = A(ξ(t))ur + ∆b(t, ξ(t)), (17)

and the matrix B̃ ∈ R
n×m is given by

B̃ =




B̃1

B̃2

...
B̃m


 , (18)

with B̃i (1 ≤ i ≤ m) given by a ri × m matrix such that

B̃i(l, q) =

{
1 if l = ri and q = i

0 otherwise

If we apply V (z) = zT Pz as a Lyapunov function for the
dynamics (16), where P is the solution of the Lyapunov
equation (13), then we obtain

V̇ (t) =
∂V

∂z
ż

= zT (ÃT P + PÃ)z + 2zT PB̃δ

= − ‖z‖2 + 2zT PB̃δ, (19)

where δ given by (17) depends on the robust controller ur.
Next, we will design the controller ur based on the

particular forms of the uncertainties that appear in (6), i.e.
∆b(t, ξ(t)). For notational convenience, the unknown param-
eter vector/matrix (which may be time-varying) is denoted
by ∆(t) and the estimate for the unknowns is denoted by
∆̂(t). Further, the estimation error vector/matrix is given by
e∆(t) = ∆(t)− ∆̂(t). The dimensions of ∆ (and in turn, ∆̂
and e∆) will be clear from the context.



B. Case 1: State-Independent Uncertainties

We consider the case when ∆b(t, ξ(t)) is simply ∆(t),
where ∆(t) = [∆1(t), . . . ,∆m(t)]T . Assume that we can
obtain the estimate (e.g. by ES) of the unknown parameters
∆i(t), which may be time-varying and is denoted by ∆̂i(t),
for i = 1, 2, . . . ,m. Let ∆̂(t) = [∆̂1(t), . . . , ∆̂m(t)]T . We
use the following robust controller

ur = −A−1(ξ)(B̃T Pz + ∆̂(t)). (20)

The closed-loop error dynamics can be written as

ż = f(z, e∆), (21)

where e∆(t) is the input to the system, z(t) represents the
system state and f is given by

f(z, e∆) = (Ã − B̃B̃T P )z + B̃e∆.

Theorem 2: Consider the system (3), under Assump-
tions 1-5 and the assumption that ∆b(t, ξ(t)) =
[∆1(t), . . . ,∆m(t)]T , with the feedback controller (14),
where un is given by (9) and ur is given by (20). Then, the
closed-loop system (21) is ISS from the estimation errors
input e∆(t) ∈ R

m to the tracking errors state z(t) ∈ R
n.

C. Case2: State-Dependent Uncertainties

We consider the second case when ‖∆b(t, ξ(t))‖ is upper
bounded by a function of the state ξ(t), i.e.

‖∆b(t, ξ(t))‖ ≤ ‖∆(t)‖‖L(ξ)‖, (22)

where ∆(t) ∈ R
m×m and L(ξ) is a known bounded function.

Assume that we can obtain the estimate (e.g. by ES) for
∆(i, j), which may be time-varying and is denoted by
∆̂(i, j), for i, j = 1, 2, . . . ,m. Let ∆̂(t) be the matrix with
the element ∆̂(i, j). We use the following robust controller

ur = − A−1(ξ)B̃T Pz‖L(ξ)‖2

− A−1(ξ)‖∆̂(t)‖‖L(ξ)‖sign(B̃T Pz). (23)

Similar to the previous case, the closed-loop error dynamics
can be written in the form of

ż = f(t, z, e∆), (24)

where e∆(t) is the system input and z(t) is the system state.
Theorem 3: Consider the system (3), under Assumptions

1-5 and the assumption that ∆b(t, ξ(t)) satisfies (22), with
the feedback controller (14), where un is given by (9) and
ur is given by (23). Then, the closed-loop system (24) is
ISS from the estimation errors input e∆(t) ∈ R

m×m to the
tracking errors state z(t) ∈ R

n.

D. Case 3: Sum of a State-dependent Term and a Time-
dependent Term

We consider the third case when ∆b(t, ξ(t)) is composed
of a state-dependent term and a time-dependent term, i.e.

∆b(t, ξ(t)) = ∆(t)(Q(ξ) + η(t)), (25)

where ∆(t) ∈ R
m×m, Q(ξ) is a known bounded function,

the vector η(t) is unknown but the upper bound for ‖η(t)‖ is

known to be C1, i.e. ‖η(t)‖ ≤ C1. Assume that we can obtain
the estimate (e.g. by ES) for ∆(i, j), which may be time-
varying and is denoted by ∆̂(i, j), for i, j = 1, 2, . . . ,m. Let
∆̂(t) be the matrix with the element ∆̂(i, j) that locates at
the i-th row and j-th column. We use the following robust
controller

ur = − A−1(ξ)[B̃T Pz‖Q(ξ)‖2 + ∆̂(t) × Q(ξ)

+ ‖∆̂(t)‖C1sign(B̃T Pz) + B̃T PzC2
1 ]. (26)

Similar to the previous two cases, the closed-loop error
dynamics can be written in the following form

ż = F (t, z, e∆), (27)

where e∆(t) is the system input and z(t) is the system state.
Theorem 4: Consider the system (3), under Assumptions

1-5 and the assumption that ∆b(t, ξ(t)) satisfies (25), with
the feedback controller (14), where un is given by (9) and
ur is given by (26). Then, the closed-loop system (27) is
ISS from the estimation errors input e∆(t) ∈ R

m×m to the
tracking errors state z(t) ∈ R

n.

VI. MULTI-PARAMETRIC ES-BASED ADAPTATION

Let us now define the following cost function

J(∆̂, t) = F (z(∆̂), t) (28)

where F : R
n × R

+ → R
+, F (0, t) = 0, F (z, t) > 0 for

z 6= 0. We need the following assumptions on J .
Assumption 6: The cost function J has a local minimum

at ∆̂∗(t) = ∆(t).
Assumption 7: |∂J(∆̂,t)

∂t
| < ρJ , for any t ∈ R

+ and any
∆̂ ∈ R

p.
Remark 1: Assumption 6 simply states that the cost func-

tion J has at least a local minimum at the true values of the
uncertain parameters.

We can now present the following result for Case 1, i.e.
the case that is studied in Section V-B.

Lemma 1: Consider the system (16) with the cost func-
tion (28), under Assumptions 6-7 and the assumption that
∆(t) = [∆1(t), . . . ,∆m(t)]T , with the feedback controller
(14), where un is given by (9) and ur is given by (20), and
∆̂(t) is estimated through the MES algorithm

˙̂
∆i = ai

√
ωi cos(ωit) − ki

√
ωi sin(ωit)J(∆̂, t), (29)

where i ∈ {1, 2, . . . , p}, ai > 0, ki > 0, ωi 6= ωj , and
ωi > ω∗, with ω∗ large enough, ensures that the norm of the
tracking error admits the following bound

‖z(t)‖ ≤ β(‖z(t0)‖, t) + γ( sup
0≤τ≤t

‖e∆(τ)‖)

where β ∈ KL, γ ∈ K and ‖e∆‖ satisfies:
1) ( 1

ω
, d)-Uniform Stability: For every c2 ∈ (d,∞), there

exists c1 ∈ (0,∞) and ω̂ > 0 such that for all t0 ∈ R

and for all e∆(0) ∈ R
m with ‖e∆(0)‖ < c1 and for

all ω > ω̂,

‖e∆(t, e∆(0))‖ < c2, ∀t ∈ [t0,∞)



TABLE I
SYSTEM PARAMETERS FOR THE MANIPULATOR EXAMPLE.

Parameter Value
I2

5

12
[kg · m2]

m1 10 [kg]
m2 5 [kg]
`1 1 [m]
`2 1 [m]
`c1 0.5 [m]
`c2 0.5 [m]

I1
10

12
[kg · m2]

g 9.8 [m/s2]

2) ( 1
ω
, d)-Uniform Ultimate Boundedness: For every c1 ∈

(0,∞), there exists c2 ∈ (d,∞) and ω̂ > 0 such that
for all t0 ∈ R and for all e∆(0) ∈ R

m with ‖e∆(0)‖ <

c1 and for all ω > ω̂,

‖e∆(t, e∆(0))‖ < c2, ∀t ∈ [t0,∞)

3) ( 1
ω
, d)-Global Uniform Attractivity: For all c1, c2 ∈

(d,∞) there exists T ∈ [0,∞) and ω̂ > 0 such that for
all t0 ∈ R and for all e∆(0) ∈ R

m with ‖e∆(0)‖ < c1

and for all ω > ω̂,

‖e∆(t, e∆(0))‖ < c2, ∀t ∈ [t0 + T,∞)
Similar bounds can be derived for the two remaining cases

but are omitted here because of space constraints.

VII. MECHATRONIC EXAMPLE

A. Two-link Manipulator

We consider here a two-link robot manipulator. The dy-
namics for the manipulator is given by (see e.g. [14])

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (30)

where q , [q1, q2]
T denotes the two joint angles and τ ,

[τ1, τ2]
T denotes the two joint torques. The matrix H is

assumed to be non-singular and is given by

H ,

[
H11 H12

H21 H22

]
,

where

H11 = m1`
2
c1

+ I1 + m2[`
2
1 + `2c2

+ 2`1`c2
cos(q2)] + I2

H12 = m2`1`c2
cos(q2) + m2`

2
c2

+ I2

H21 = H12

H22 = m2`
2
c2

+ I2.
(31)

The matrix C(q, q̇) is given by

C(q, q̇) ,

[
−hq̇2 −hq̇1 − hq̇2

hq̇1 0

]
,

where h = m2`1`c2
sin(q2). The vector G = [G1, G2]

T

is given by

G1 = m1`c1
g cos(q1) + m2g[`2 cos(q1 + q2) + `1 cos(q1)]

G2 = m2`c2
g cos(q1 + q2).

(32)
In our simulations, we assume that the parameters take values
according to [14], and summarized in Table I. The system

dynamics (30) can be rewritten as

q̈ = H−1(q)τ − H−1(q) [C(q, q̇)q̇ + G(q)] . (33)

Thus, the nominal controller is given by

un = [C(q, q̇)q̇ + G(q)]

+ H(q) [q̈d − K2(q̇ − q̇d) − K1(q − qd)] , (34)

where qd = [q1d, q2d]
T , denotes the desired trajectory and

the feedback gains K1 > 0, K2 > 0, are chosen such that
the tracking error go to zero asymptotically. For simplicity,
we use the feedback gains Ki

j = 1 in (10) for i = 1, 2 and
j = 1, 2 in our simulations. The reference trajectory is given
by the following function from the initial time t0 = 0 to the
final time tf , where

qid(t) =
1

1 + exp (−t)
, i = 1, 2

Now we assume that the nonlinear model (30) is uncertain. In
particular, we assume that there exist additive uncertainties
in the model (33), i.e.

q̈ = H−1(q)τ − H−1(q) [C(q, q̇)q̇ + G(q)] + ∆b(q, t).
(35)

We will illustrate our approach for the uncertain model (35).
In the following, we consider the cost function

J = Q1

∫ tf

0

‖q − qd‖2dt + Q2

∫ tf

0

‖q̇ − q̇d‖2dt, (36)

where Q1 > 0 and Q2 > 0 denote the weighting parameters.

B. MES Based Adaptation

Due to space limitation, we report hereafter only the
case presented in Section V-B, when ∆b(q, t) is simply a
time-varying vector ∆(t), where ∆(t) = [∆1(t),∆2(t)]

T .
However, we underline that we have successfully tested the
remaining cases and that all the results will be reported in a
longer journal version of this work.
Here the controller is designed according to Theorem 2 and
the two unknowns ∆1(t) and ∆2(t) are identified by the
MES (29) such that the cost function J in (36) is minimized.

We simulate the system with

∆1(t) = 1 − 0.14 sin(0.01t)

∆2(t) = 1 − 0.12 cos(0.01t). (37)

The estimate of these two parameters ∆̂i (i = 1, 2) are
computed using a discrete version of (29), given by

∆i(k + 1) = ∆i(k) + tf (αi

√
ωi cos(ωitfk)

− κi

√
ωi sin(ωitfk)J), i = 1, 2 (38)

where k = 0, 1, 2, · · · denotes the iteration index and
∆̂i (i = 1, 2) start from zero initial conditions. The pa-
rameters used in the cost function (36) and the MES (38)
are summarized in Table II. For more details about the
tuning of the parameters in the MES, we refer the reader
to [1]. However, we underline here that the frequencies ω1

and ω2 have been selected high enough to ensure efficient



TABLE II
PARAMETERS USED FOR CASE 1.

Q1 Q2 α1 α2 ω1 ω2 tf κ1 κ2

0.325 0.325 0.01 0.01 9.9 9.8 4 0.01 0.01
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Fig. 1. Case 1: Obtained trajectories vs. reference trajectories for q1 (in
the top plot) and q̇1 (in the bottom plot).
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Fig. 2. Case 1: The zoom-in cost function vs. the number of iterations.

exploration on the search space and to ensure convergence
and that the amplitudes αi and κi (i = 1, 2) of the dither
signals have been selected such that the search is fast enough.
The uncertain parameter vector ∆̂ is updated for each cycle,
i.e. at the end of each cycle at t = tf , the cost function J is
updated, and the new estimate of the parameters is computed
for the next cycle. The purpose of using MES along with the
ISS-based controller is to improve the performance of the
controller by better estimating the unknown parameters over
many cycles, hence decreasing the estimation errors over
time to provide better trajectory tracking. As shown in Fig. 1,
the ISS-based controller combined with ES greatly improves
the tracking performance. Fig. 2 show that the cost function
starts at an initial value around 7 and decreases below 1
within 20 iterations. Moreover, the estimate of the unknown
parameters converge to a neighborhood of the true parameter
trajectories within 100 iterations, as shown in Fig. 3.

VIII. CONCLUSION

In this paper, we have studied the problem of extremum
seeking-based indirect adaptive control for nonlinear systems
affine in the control with time-varying parametric uncertain-
ties. We have proposed a robust controller which renders
the feedback dynamics ISS w.r.t the parameter estimation
errors. Then we have combined the ISS feedback controller
with a model-free ES algorithm to obtain a learning-based
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Fig. 3. Case 1: Estimate of parameter ∆1 (in the top plot) and parameter
∆2 (in the bottom plot).

adaptive controller. We have presented the stability proof of
this controller and have shown a detailed application of this
approach on a two-link robot manipulator example. Future
works will deal with considering controllers under input
constraints, using different ES algorithms with less restrictive
tuning conditions, and comparing the obtained controllers to
some available classical nonlinear adaptive controllers.
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